materials (**Table 4-1**). This parameter should likely be further constrained during the parameter estimation process.

Porosity is assigned to represent the fraction of water within a sediment for the calculation of the portion of specific storage attributable to the compressibility of water (**Table 4-1**). Porosity ranges from 0.35 in gravel and sand to 0.45 in clay. Since the compressibility of water expressed as a specific storage (1.4×10^{-6} ft⁻¹) is substantially smaller than the elastic and inelastic skeletal specific storage values, the groundwater flow model is not significantly influenced by assigned porosity.

4.2 Farm Parameters

Calibrated farm parameters include multipliers which act on FMP input lists and arrays and irrigation efficiencies for the four irrigation types (**Table 4-1**). Changes during calibration for all parameters were constrained to keep parameter values within reasonable ranges. Parameters that were constrained include the multiplier for crop coefficients (*KCFACT*) and the capillary fringe height multiplier (*CAPFRINGEFACT*). Calibrated crop coefficients are higher than is expected for some crops (**Table 4-2**), but generally within a reasonable range for major crop types that are present within the model domain. In some instances, for some crops, the FTR and FEI sum to a value greater than one. In these instances, One-Water automatically scales these parameters to sum to 1 (**Table 4-2**). Results suggest that both the raw crop coefficient and consumptive use data for some specific crops may need to be reevaluated in order to improve model reliability.

4.3 Model Calibration

Calibration quality quantifies the ability of the groundwater model to simulate observed hydraulic heads (groundwater levels), subsidence and compaction, and pumping. These results are evaluated with respect to fit statistics outlined by Anderson and Woessner (2002). More qualitative measures of model fit are also commonly used to evaluate model calibration quality and included in the model results.

4.3.1 Statistical Measures of Model Fit

Model calibration was evaluated through five common residual error statistics used to characterize model fit. These include the mean of residual error (ME), mean of absolute residual error (MAE), root mean of squared residual error (RMSE), Normalized RMSE (NRMSE), and linear correlation coefficient (R). The residual error here is calculated by subtracting the observed value from the modeled value at a specific physical location and time.

The mean of residual error (ME) is a measure of the general model tendency to overestimate (+) or underestimate (-) measured values. In general, it is a quantification of the model bias given by:

$$ME = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)$$

Where: N is the total number of observations y_i is the ith observed value

 \hat{y}_i is the ith simulated value of a model dependent variable

The mean absolute residual errors (MAE) is more robust to represent the goodness of fit as no individual errors will be canceled in the estimation as ME. The MAE estimates the average magnitude of the error between modeled and observed values and is defined as:

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |(y_i - \hat{y}_i)|$$

The root mean of squared residual error (RMSE) is defined as the square root of the second moment of the differences between observed and simulated error. Since the error between each observed and simulated value is squared, larger errors tend to have a greater impact on the value of the RMSE, therefore RMSE is generally more sensitive to outliers than the MAE.

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

The normalized root mean squared error (*NRMSE*) is calculated to account for the scale dependency of the *RMSE* and is a measure of the *RMSE* divided by the range of observations (Anderson and Woessner, 2002).

The linear correlation coefficient (R) is defined in the following equations:

$$R = \frac{COV(y, \hat{y})}{\sigma_y. \sigma_{\hat{y}}}$$

Where: $COV(y, \hat{y}_i)$ is the covariance between the observed (y) and simulated (\hat{y}) values

 $\sigma_{
m v}$ is the standard deviation of the observed values

 $\sigma_{\hat{\mathbf{v}}}$ is the standard deviation of the simulated values

The value of R lies between 1 (perfect linear correlation) and -1 (perfect linear correlation in the opposite direction). Usually, simulated and observed quantity is plotted in a scatter diagram to represent the model calibration results graphically with associated linear correlation coefficient R.

4.3.2 Hydraulic Head (Groundwater Levels)

Simulated and observed groundwater elevations were compared over the 1988 through 2015 calibration period (**Figure 4-4**, **Appendix A**). The calculated *RMSE* is 60.5 ft and the *MAE* is 40.3 ft. These values are small compared to the range of observed groundwater levels in the model domain (*NRMSE* = 6.3%) (**Figure 4-4**). The calculated *ME* (-6.6 ft) indicates that the model tends to simulate higher groundwater levels than observed (over-predict) by an average of about 7 feet. The plot of observed versus simulated heads indicate that lower observed groundwater levels between -300 ft below sea level and 0 ft sea level are generally overestimated by the model (model results are higher than observed) while groundwater levels

above sea level to approximately 400 ft, mean sea level are generally simulated well by the model (**Figure 4-4**). Groundwater hydrographs of observed and simulated groundwater levels from wells used in model calibration are shown in **Appendix A**.

The spatial distribution of residual errors in the simulated groundwater levels are presented in **Figures 4-5** to **4-7**. Values in red depict where simulated hydraulic head is higher than observed, while blue represents where observed hydraulic head is higher than simulated values. Maps of the average residuals at the calibration wells show that the model overpredicts groundwater levels in wells in the southern portion of the domain while the average residual error suggests simulated heads are generally lower than observed in the northern portion of the Subbasin.

Color floods of groundwater elevation were prepared for the upper and lower aquifers from March of 2011 and September of 2015 (Figures 4-8 to 4-13). These years were selected to illustrate the spatial distribution of hydraulic head and model response to wet (Spring 2011) and dry periods (Fall 2015). Simulated groundwater levels in the upper aquifer show higher water levels along the Coast Range to the west with lower groundwater levels towards the San Joaquin Valley axis to the east (Figures 4-7 and 4-9). During the irrigation season in 2015, groundwater depressions form near Stratford, near the Fresno Slough, and toward the SLC west of San Joaquin (Figure 4-12). The lower aquifer shows groundwater depressions southwest of Mendota to the Coast Range to the west and more substantially in the Stratford area towards the southeastern extent of the model (Figure 4-13). These depressions are more exaggerated at the end of the irrigation season in 2015 as compared to Spring 2011 (Figure 4-13).

4.3.3 Subsidence

Simulated subsidence and aquifer system compaction were compared to measured values throughout the model domain (**Figure 4-14, Appendix B**). Emphasis was placed on simulated results near the SLC and observations are generally more concentrated in this area compared to other areas in the model domain. Simulated results show a *ME* of 0.11 ft meaning the simulated subsidence and compaction is on average slightly less than observed (**Figure 4-14**). *MAE* and *RMSE* are 0.29 feet and 0.50 ft, respectively. The *NRMSE* is 10.0%, meaning that the model error in subsidence and compaction is relatively small compared to the range of observations. However, the range of observations spans approximately 5 ft, with very few measured values exceeding 3 ft (**Figure 4-14**).

Simulated subsidence since the year 2000 along the SLC is compared in 2006, 2009, 2013 and 2015 (**Figure 4-15**). The model is able to capture areas of increased subsidence along the canal over the 15-year period to some extent. However, the model underestimates the magnitude of subsidence near mile post 130 and mile post 160 in 2015, which could be improved with additional calibration.

Model results for subsidence monitoring locations that are not along the SLC generally track observed trends and magnitude fairly well, however, when the magnitude of subsidence increased near the end of the calibration period, the model captures the trend in subsidence but not always the magnitude that was experienced. This could be due to the data limitations that influence the model's representation of

groundwater pumping spatially and the reliance of groundwater pumping on the distribution of surface water supplies in the model domain on a field scale.

4.3.4 Groundwater Pumping

Simulated groundwater pumping was compared to measured pumping within each of the nine farms within WWD in years where reliable measurements were available (2012-2015). The model reliably captures both periods of high and low groundwater pumping (**Figure 4-16**). The *ME* is low (-538 acre-fee per year (AFY), suggesting little model bias. The *MAE* and *RMSE* are 11,336 AFY and 12,809 AFY, respectively. The *NRMSE* is 11.8%.

4.4 Model Water Budget

The water budget within the model domain was calculated for the 1989-2015 DWR water years (October through September). Water budgets are subdivided with respect to the land surface system and Groundwater Budget. The land surface system water budget summarizes annual inflows and outflows from the FMP including precipitation, surface water imports, water from groundwater pumping, evapotranspiration and net deep percolation. The groundwater budget summarizes annual inflows and outflows from the groundwater system including deep percolation, stream leakage, lateral subsurface flow and groundwater pumping. It should be noted that groundwater pumping acts as an inflow to the land surface system budget and an outflow in the groundwater budget. Conversely, net deep percolation acts as an outflow in the land surface system budget and an inflow to the groundwater budget.

4.4.1 Land Surface System

The simulated land surface system budget for the model domain is summarized by water year in **Table 4-4** and **Figure 4-17.** Inflows of water into the land surface system budget within the model domain include precipitation, imported surface water and groundwater pumping. Outflows from the land surface system budget within the model domain include evaporation and deep percolation. Total simulated inflows and outflows to the land surface system in the 1989 through 2015 water years range from 2,527,000 to 3,988,000 AFY and average 3,297,000 AFY.

4.4.2 Groundwater System

The simulated groundwater budget for the model domain is summarized by water year in **Table 4-5** and **Figure 4-18**. Inflows to the groundwater budget includes net deep percolation from irrigation and precipitation, losses from surface water bodied within the model domain and lateral subsurface flow from general head boundaries in the northern, eastern and southern portion of the model domain. Outflows from the groundwater budget include groundwater pumping, flow from the aquifer system to surface water boundaries and lateral subsurface flow to general head boundaries. Total simulated inflow in the 1989 through 2015 water years ranges from 718,000 to 1,562,000 AFY and averages 1,085,000 AFY. Total outflows range from 717,000 to 1,886,000 AFY and average 1,241,000 AFY. The simulated change in groundwater storage ranges from a 737,000 AFY increase in storage to a 1,081,000 AFY decrease in storage with an average annual decrease in groundwater storage of 157,000 AFY.

4.5 Westside Subbasin Water Budget

Water budgets for the Westside Subbasin were calculated using output from the MODFLOW FMP and the Zone Budget post-processing tool for evaluating local water budgets (Harbaugh, 1990).

4.5.1 Land Surface System

Inflows of water into the land surface system budget in the Subbasin include precipitation, imported surface water and groundwater pumping and are summarized annually in **Table 4-6** and **Figure 4-19**. Additional details regarding inflows from the land surface system are summarized by water year in **Table 4-7**. Total simulated inflows over the historic period ranges from 982,000 AFY to 1,844,000 AFY and averages 1,502,000 AFY. Simulated precipitation ranges from 160,000 AFY to 847,000 AFY with an average of 389,000 AFY. Imported surface water ranges from 179,000 AFY to 1,373,000 AFY and averages 841,000 AFY. Throughout the historic period, the District maintained a CVP contract of 1,190,000 AFY to 697,000 AFY.

Outflows from the land surface system budget in the Subbasin includes evaporation and deep percolation and are summarized annually in **Table 4-6** and **Figure 4-19**. Additional details regarding outflows from the land surface system are summarized by water year in **Table 4-8**. Net deep percolation is equal to deep percolation to the aquifer system minus the direct groundwater uptake from plants and evaporation. Total simulated outflow ranges between 982,000 and 1,845,000 AFY and averages 1,503,000 AFY between 1989 through 2015. Total evapotranspiration ranges from 920,000 and 1,399,000 AFY and averages 1,185,000 AFY (**Table 4-6**). Net deep percolation ranges from 30,000 to 528,000 AFY and averages 317,000 AFY.

4.5.2 Groundwater System

Groundwater inflows include net deep percolation from precipitation and irrigation, seepage from streamflow to the aquifer system from ephemeral streams and lateral subsurface flow and are summarized for the historical water budget in **Table 4-9** and **Figure 4-20**. Total simulated inflow to the groundwater system ranges from 159,000 to 747,000 AFY and averages 477,000 AFY. Simulated net deep percolation averages 317,000 AFY and ranges from 28,000 in 2009 to 530,000 AFY in 1999 and is generally greater in wet years and less in dry years (**Figure 4-21**). Simulated seepage from streams ranges from nearly none to 33,000 AFY and averages about 10,000 AFY. Lateral subsurface inflow from adjacent subbasins ranges from 88,000 AFY to 245,000 AFY and averages 151,000 AFY (**Figure 4-22**).

Outflows from the groundwater system include groundwater pumping and lateral subsurface outflow to adjacent subbasins and are summarized in **Table 4-9** and **Figure 4-20**. Total simulated outflow from the groundwater system ranges from 241,000 to 865,000 AFY and averages 493,000 AFY. Groundwater pumping ranges from 91,000 AF in 2005 to nearly 700,000 AF in 1991 and averages 324,000 AFY (**Figure 4-23**). Lateral subsurface outflow to adjacent subbasins averages 169,000 AFY with a range from 144,000 to 192,000 AFY (**Figure 4-22**).

Annual change in groundwater storage ranges from a net decrease of up to 568,000 AF to a net increasing of up to 427,000 AF, in which the change in storage depends largely on the hydrologic year type and

amount of imported surface water (**Table 4-9**). Groundwater storage generally increases between the late 1990's and decreases beginning in 2008. Other periods during the calibration period are relatively stable (**Figure 4-24**).

Groundwater budget results are segregated by aquifer type (Upper and Lower Aquifers) and provided in **Table 4-10** and **Table 4-11**. Simulated recharge in the Upper Aquifer is derived from precipitation and irrigation in combination with up to 10,000 AFY in stream recharge from creeks draining the Coast Range to the west of the Subbasin. Lateral subsurface flow from adjacent areas is generally small (**Table 4-11**). Outflows from the Upper Aquifer include lateral subsurface flow, groundwater pumping and vertical flow through the Corcoran clay and composite wells which act as a conduit for flow between the Upper and Lower Aquifers. Groundwater pumping totals 92,000 AFY or about 28% of total pumping (**Figure 4-25**). Simulated lateral subsurface flow out of the Upper Aquifer is substantially higher than lateral inflows into the Lower Aquifer such that the net lateral flow is approximately 100,000 AFY out of the Subbasin (**Figure 4-26**). Vertical flow between the Upper and Lower Aquifer is considerable and is generally a result of intraborehole flow through composite wells (**Figure 4-27**). Consequently, despite the majority of pumping occurring in the Lower Aquifer, the majority of the changes in groundwater storage are propagated to the water table in the Upper Aquifer over long enough time periods (**Table 4-11**).

The sources of recharge to the Lower Aquifer are lateral subsurface flow and vertical flow from the Upper Aquifer (**Table 4-11**) totaling an average of 271,000 AFY. Outflows include groundwater pumping and lateral subsurface outflow. Pumping in the Lower Aquifer accounts for approximately 71% of total pumping from the Subbasin (**Figure 4-25**). However, pumping is generally offset by recharge from the Upper Aquifer and lateral subsurface flow from adjacent areas (**Figure 4-26** and **Figure 4-27**). Changes in groundwater storage are generally smaller in the Lower Aquifer, but short-term changes can be substantial during periods of heavy pumping (**Figure 4-24**).

4.5.3 Groundwater Overdraft

On the scale of the Subbasin, the WSGM simulates a decline in groundwater storage averaging 19,000 AFY. Over the entire historical water budget period, the cumulative decline in groundwater storage was nearly 517,000 AF (**Table 4-9**). While this measure of overdraft (as represented by decline in groundwater storage) suggests that the Subbasin was in an overdraft condition, this amount of groundwater storage decline represents less than 4% of total outflow and less than 6% of total groundwater pumping. This suggests that the Subbasin groundwater budget is relatively balanced over the model calibration period.

While the decline in groundwater storage as an indicator of overdraft was relatively small compared to other water budget components, overdraft as represented by subsidence is considered the primary overdraft concern in the Subbasin due to impacts on selected areas of the SLC as described in the GSP. Overdraft from subsidence impacts on critical infrastructure has occurred in selected areas of the Subbasin along the SLC where the combination of groundwater pumping from the Lower Aquifer, occurrence of clay beds susceptible to compaction, and declines in Loser Aquifer groundwater levels have historically occurred.

4.5.4 Estimate of Sustainable Yield

The Subbasin sustainable yield for the historic period can be approximated by the relationship between long-term pumping and groundwater storage change by:

Sustainable Yield =
$$Q_h + \Delta S_h$$

where: Q_h is the average annual gross pumping within the Subbasin simulated in the historic period

 ΔS_h is the average annual gross change in groundwater storage in the Subbasin simulated from 1989 through 2015

This approach is based on the expectation that a reduction in long-term groundwater pumping will produce a roughly commensurate increase in long-term groundwater storage such that a reduction in pumping will effectively offset a decrease in storage. Given a long-term average pumping of 324,000 AFY and a decline in storage of 19,000 AFY, the approximate sustainable yield for the basin estimated from the WSGM is 305,000 AFY.

4.6 Model Sensitivity

A model response or prediction depends on the governing equations it solves, the mechanisms and structure of the model, and the values of the model parameters. Sensitivity analysis is a means of evaluating model uncertainty due to parameter estimates by systematically altering one of the model parameters and examining the associated change in the model response. After the groundwater flow model was calibrated, quantitative sensitivity analyses were performed using the flow model parameters that were most uncertain and likely to affect the flow simulation results. The calibrated flow model was used as the baseline simulation and sensitivity simulations were compared with those of the baseline simulation at all observation points. Model sensitivity was evaluated for model parameters using UCODE-2014. The basis of a model parameters sensitivity was based on hydraulic head observations, groundwater pumping observations and subsidence, and compaction observations given a 2% parameter value perturbation. Sensitivity was evaluated through the Composite Scaled Sensitivity (CSS) statistic described by Hill and Tiedman (2007).

- Sensitivity of simulated hydraulic heads to parameter perturbation are presented in Figure 4-28. The CSS statistic shows the model is most sensitive to the FTR coefficient in the FMP, KVW1 and KHS3 parameters within the aquifer system defined in **Table 4-1**.
- Sensitivity of simulated land subsidence and compaction observations to parameter perturbation are presented in Figure 4-29. The CSS statistic shows the model is most sensitive to the FTR coefficient in the FMP and KHS3 and SSKVS1 parameters within the aquifer system defined in Table 4-1.
- Sensitivity of simulated groundwater pumping to parameter perturbation are presented in Figure 4-30. The CSS statistic shows the model is most sensitive to the OFE3 coefficient in the FMP and KVW1 parameter within the aquifer system defined in **Table 4-1**.

5 PREDICTIVE MODEL DEVELOPMENT

The numerical model was used to simulate projected groundwater conditions over the 50-year planning horizon used for GSP development. Predictive scenarios were developed to conduct the projected water budget assessment, develop measurable objectives and minimum thresholds and evaluate the efficacy of projects and management actions. Model results are used to inform planning and decision making during the development and adoption of the GSP. Accordingly, predictive model scenarios were developed using guidelines outlined in the DWR Modeling BMP (Joseph et. al., 2016).

5.1 Baseline Model

A baseline model was developed to serve as a comparative benchmark for predictive scenarios and analysis of climate change. The baseline model relies largely on historic data over a 50-year period to simulate future groundwater conditions. Results from the simulation are used to evaluate groundwater storage, groundwater levels and subsidence.

5.1.1 Model Period and Hydrology

The model period selected for the predictive scenario spans from the end of the historic water budget period used for model calibration (January 1988 – December 2015) through the 50-year GSP planning horizon ending in December of 2070.

Simulation of the 50-year planning and implementation horizon spanning from 2020 through 2070 relies on data from the historic period from 1965 through 2015 as outlined in Water Code §354.18(c)(3). This time frame includes a combination of wet and dry periods used to evaluate the basin water budget response to variable hydrologic stresses. During periods where no historic data is available (dependent on data source), values were assigned from surrogate water years using the closest DWR Water Year Hydrologic Classification Indices (Water Year Index). These values are derived from unimpaired runoff in the Sacramento and San Joaquin Valleys and published in DWR Bulletin 120.

Data used to assign model stresses within the period between the end of the calibration period and the start of the 50-year planning and implementation horizon (2016-2019) rely on a combination of 2016 through 2019 data and historic data from the 1961 through 1964. In instances where no historic data is available, values were assigned from similar DWR Water Year Indices.

5.1.2 Model Geometry

Temporally, the 55-year future scenario (2016 through 2070) was divided into 660 monthly stress periods. Each stress period was subdivided equally into 2 timesteps. Spatially, the model relied on the same discretization used in the historic period and outlined in **Section 3.1.1** and shown in **Figures 3-1** and **3-2**.

5.1.3 Aquifer Hydraulic Parameters

Hydraulic properties defined in the LPF package (horizontal and vertical hydraulic conductivity, specific yield and specific storage due to the compressibility of water) and SUB package (elastic and inelastic

storativity) were unchanged from values used in the calibrated model and assigned to respective packages in the predictive model (**Table 4-2**).

5.1.4 Farm Process

The MODFLOW FMP define the water supply and demand functions used to calculate pumping and a majority of groundwater recharge to the system. As a result, decisions and datasets used to specify Farm Process inputs play a significant role in calculating the groundwater budget. A description of assumptions and inputs are described below.

5.1.4.1 Farm Delineation

The delineation of water balance sub-areas (farms) was updated for the predictive modeling period. Westlands was subdivided into 10 farms during the model calibration period in order to more accurately represent the spatial distribution of irrigation demand, surface water deliveries and groundwater pumping (**Figure 3-4**). The absence of this constraint coupled with the foreseeable need to shift supply and demand to different portions of the district required coarsening of the farm delineation within Westlands. Accordingly, the 10 farms used to represent the district during the historic period were reduced to one to simulate future conditions (**Figure 5-1**). No changes were made to the farm delineation outside of the Subbasin.

5.1.4.2 Climate

Climate inputs required for the MODFLOW FMP include the precipitation and reference evapotranspiration for each model cell stress period. Rainfall in the model domain was assigned from data developed by the Prism Climate Group (http://prism.oregonstate.edu/). Monthly historical PRISM data from 1963 through 2015 were used to assign precipitation in model cells for the predictive scenario in every stress period from 2018 through 2070. Values assigned in 2016 and 2017 were based on the monthly 4-km gridded PRISM mode data available for respective years. Average assigned precipitation over the predictive period is 8.4 inches per year over the active portion of the model domain. The distribution (minimum, maximum and mean) of precipitation assigned to cells within the active portion of the model domain summarized by calendar year is shown in **Figure 5-2**.

Reference evapotranspiration data are available from CIMIS weather stations beginning in 1982 and on a 2-km gridded format from the CIMIS spatial model of ET_o beginning in 2003. In order to develop the most accurate spatial dataset, the model relies predominantly on the gridded ET_o data from the spatial CIMIS database. For the historic period from 2003-2015 (corresponding to the predictive period from 2058-2070), the daily data provided in the spatial CIMIS model was incorporated directly into the groundwater model. During the period where only daily station data were available (1982-2003), daily ET_o from the station data were compared to daily gridded ET_o . For each day, the spatial model which most accurately represented the station data was selected and used in place of the station data for that day. These data were then combined with the 2003-2015 spatial CIMIS data to produce monthly gridded data from 1982 - 2015 (corresponding to the predictive period from 2038 -2070). Values in the remaining years (2018 – 2037) were assigned using available data from the most similar Water Year Index from the San Joaquin Valley. Values assigned in 2016 and 2017 are based on the monthly 2-km gridded spatial CIMIS model data

available for those years. Assigned precipitation over the predictive period averages 5.9 ft per year (ft/yr) over the active portion of the model domain. The distribution (minimum, maximum and mean) of evapotranspiration assigned in the active portion of the model domain summarized by calendar year is shown in **Figure 5-3**.

5.1.4.3 Surface Water Deliveries

Surface water imports within the model domain were assigned using output from the California Water Resources Simulation Model II which provides monthly projected diversion amounts for CVP contractors (CalSim II). CalSim II is a water resources model developed jointly by DWR and USBR to simulate operations of the CVP and SWP (USBR, 2015). As part of the Water Storage Investment Program (WSIP) developed by the California Water Commission, CalSimII was run under 2030 and 2070 climate scenarios for future conditions which has subsequently been adopted for use in SGMA planning.

For the purposes of developing the baseline simulation of future conditions, output from the 2030 WSIP CalSim II run were used to assign surface water imports to entities within the model domain for the baseline scenario. These data were utilized in place of historic deliveries largely because they more closely match annual projected imports estimated by the district that are generally lower than historic amounts due to increased environmental flows and projected climate trends. CalSim II 2030 climate scenario projects WWD will receive an average of 517,000 AF per contract water year (March – February) – or about 43% of Westland's original 1,190,000 AF CVP contract from 2020 through 2070 (**Figure 5-4, Table 5-1**). Within each year, surface water imports were distributed between stress periods based on irrigation demand as opposed to using the monthly deliveries provided by CalSim II.

The SLC/California Aqueduct is jointly managed by USBR and DWR under a Coordinated Use Agreement (USBR, 1986). Due to apportionment issues highlighted during the 2014-2015 drought, the Cooperated Use Agreement (COA) between DWR and USBR was updated and amended in 2018 (U.S. Department of the Interior (DOI), 2018, **Figure 5-5**). Based on the 2018 Addendum, it is expected that annual exports south of the delta through the CVP will be increased by an average of 95,000 AF, or about four percent. The COA will result in WWD receiving approximately 70 percent of the additional CVP exports south of the delta. This additional water ranges between 48,000 AF in wet water years to 85,000 AF in dry years (**Figure 5-6**). On average the total COA benefit is projected to contribute an additional 66,000 AF of water to the overall WWD supply, or approximately 6% of the original CVP contract amount of 1,190,000 AF (**Table 5-1**).

The third element of imported water is imported supplies from transfer and exchange projects. Historically, imported water from transfer and exchange projects have been acquired and imported annually by WWD and its water contractors in order to supplement CVP deliveries. These supplemental water deliveries have been obtained through a combination of transfers and exchanges between numerous entities within the Central Valley and delivered through the SLC. The additional water from transfers and exchanges are also delivered to the District through Laterals 6 and 7 in the Mendota Pool. From 1988 to 2017, supplemental district supply and water contractors acquired water on average approximately 180,000 AFY (**Table 5-2**).

Future projections of the total amount of additional imported water supplies are estimated based on the historical amounts with respect to the District's CVP allocation. This relationship results in supplemental water imports that are projected to average 90,000 acre-feet on an annual basis when the CVP allocation exceeds 1,000,000 to 218,000 AF when the WWD CVP allocation is between 750,000 and 1,000,000 AF (**Figure 5-7**). The annual projected amount of additional imported water is shown in **Table 5-1**. Supplemental water averages 154,000 AFY over the 50-year planning and implementation period. When added to projected CVP deliveries (including COA), the total annual surface water deliveries are projected to average 732,000 AFY (**Figure 5-8**).

Projected surface water imports to other entities holding CVP contracts were also assigned using modeling results provided by CalSim II. In most instances, each CalSim II diversion serves multiple water purveyors. Furthermore, the area served by each water purveyor may not fall entirely within the model domain. To account for this, water specified in each CalSim diversion was divided between purveyors proportionately based on their contract amount. This amount was reduced proportionately to the fraction of the entity within the model domain. Imports were aggregated annually (March – February) for each MODFLOW farm and distributed monthly based on irrigation demand.

Projected surface water allocations to entities in the southern Kings and Tulare Lake Subbasins (North Fork Kings GSA, South Fork Kings GSA, Mid-Kings GSA, Southwest Kings GSA, El Rico GSA) reliant on the Kings River could not be obtained. As a result, deliveries to these areas within the model domain were estimated based on a regression relationship. The linear regression model compares historic annual surface water imports to Westlands with respect to deliveries to the areas of North Fork Kings GSA, South Fork Kings GSA, Southwest Kings GSA and El Rico GSA within the model domain. The regression model estimates the amount of water delivered to each of the unknown entities as some fraction of the amount imported to WWD. This relationship is then applied to the projected imports to WWD to estimate the projected surface water delivered to North Fork Kings GSA, South Fork Kings GSA, Mid-Kings GSA, and El Rico GSA.

5.1.4.4 Groundwater Pumping

Groundwater pumping is allocated dynamically for the baseline future condition scenario in timesteps when direct groundwater uptake from crops, precipitation, and surface water deliveries within a model stress period are not able to meet the consumptive demand within a farm. The number of wells and their construction did not change between the historic and future simulation. Groundwater pumping was distributed equally between all wells within each farm. The location of simulated wells is shown in **Figure 3-9**.

5.1.4.5 Land Use

A land use type was assigned to each model cell and held constant for the entire baseline scenario. Within WWD, land use provided by the district for 2016 was used to assign land use types (**Figure 5-9**). Outside of the district, the most recent land use survey available was used (**Table 3-2**). For the baseline case, neither land use dataset was modified prior to implementing in the predictive modeling period.

5.1.4.6 Farm Parameters

Crop and landscape parameters defined in the FMP (i.e. irrigation efficiency, crop coefficient, rooting depth) from the calibrated model period were used in the predictive modeling period.

5.1.5 Boundary Conditions

Boundary conditions specified outside of the MODFLOW FMP include the SFR package, the LAK package and GHB package.

5.1.5.1 General Head Boundary

Head dependent boundaries specified at the edge of the model domain using the GHB package are used to represent lateral subsurface groundwater flow into and out of the numerical model. The amount into or out of the model domain is dependent on the hydraulic head assigned to the boundary with respect to the hydraulic head inside the model domain. Significant bias can be introduced into the model projection if the hydraulic head assigned to the boundary is too high or low. It is often important to capture seasonal fluctuations due to groundwater pumping for irrigation which may propagate laterally to a significant extent in confined aquifers.

The hydraulic head in the GHB package was assigned based on repetition of simulated hydraulic heads in CVHM from 1963 to 2017 in CVHM cells corresponding to GHB cells in WSGM. Simulated hydraulic head from 2016 and 2017 were used for the 2016 and 2017 WSGM model years while hydraulic heads from 1963 through 2015 were used for the 2018 through 2070 projected period. Hydraulic heads from CVHM were adjusted in two significant ways to develop an appropriate distal head boundary for the projected period:

- 1) Hydraulic heads in the CVHM model were shifted vertically to provide a smooth transition between the historic and projected modeling periods.
- 2) At the time of preparing the GHB, it was assumed that hydraulic heads in adjacent subbasins outside the model domain will be sustainably managed to SGMA 2015 baseline levels during the projected period. Accordingly, long term average hydraulic heads were kept stable during the projected period but allowed to vary due to shorter term hydrologic stresses. This was achieved through adjusting the simulated water levels in CVHM such that the 5-year moving average did not change with time.

An example of these adjustments is shown for simulated water levels in one CVHM model cell in **Figure 5-10**.

5.1.5.2 Groundwater Surface Water Interaction

Boundary conditions used to simulate groundwater-surface water interaction are the SFR package for streams and the LAK package for the Mendota Pool. For the SJR and drainages in the coast ranges, gaged streamflow in 2016 and 2017 data were assigned over the corresponding model period. In the Kings River, which does not have public gage data available, historic data from 2002 and 2011 were used as a surrogate for these years. The period from 2018 through 2070 relied on historic data (where available) and data

from similar DWR water year indexes where historic data were unavailable for the Kings River system and western drainages. For the SJR, flows were adjusted based on the methodology outlined in the San Joaquin River Restoration Program (SJRRP) flow requirements (SJRRP, 2013). These are based on historic unimpaired flow into Millerton Reservoir where available and data from surrogate years based on DWR water index where data are unavailable. The water budget for the Mendota Pool was based on historic data (where available) and surrogate years based on DWR water index where data is unavailable.

5.1.6 Initialization

Initial conditions for the predictive simulation include the initial hydraulic heads within each active model cell, initial preconsolidation head within each model cell and the initial stage in the Mendota Pool at the start of January 1st, 2016. These values were extracted from the simulated output at the end of the last timestep of the calibrated model and used to initialize the predictive model run.

5.2 Climate Change

Model uncertainty due to climate change was evaluated in accordance with Section 354.18(c)(3) of the GSP regulations. Model inputs for climate projections were developed using guidelines outlined in the DWR "Guidance for Climate Change Data Use During Groundwater Sustainability Plan Development" document (DWR, 2018). Analysis of climate change is based from data originally developed for the WSIP which provides 4 climate datasets centered around 2030 and 2070 climate conditions. Of these, datasets reflecting the central tendency of 2030 (near future) and 2070 (late future) of the ensemble of global circulation models were used to develop climate change factors used for two model projections which incorporate climate uncertainty. The projected run with no climate change perturbations, central tendency of 2030 (near future) scenarios are hereafter referred to as the No Climate Change, 2030 Climate Change and 2070 Climate Change, respectively. Model inputs altered for projections influenced by climate change include surface water deliveries, streamflow, reference evapotranspiration and precipitation and are described below.

5.2.1 Surface Water Deliveries

Surface water deliveries to WWD and other areas within the model domain were assigned using results from the CalSim II model developed jointly by DWR and USBR. The process for developing input data for imported surface water are described in Section 5.1.4.3. Imported surface water data for baseline model with no climate change factors were used for the 2030 Climate Change scenario. The 2070 Climate Change scenario relied on data output from the 2070 central tendency CalSim scenario. CVP projected deliveries to WWD are shown in **Figure 5-11** and **Table 5-3**. Total imported surface water to WWD is shown in **Figure 5-12** and **Table 5-3**.

5.2.2 Streamflow

Climate adjusted streamflow can be derived using three methods outlined in the DWR Climate Change Document (DWR, 2018). Based on the nature of the input and location of the model domain, Method 1 and 3 were used to develop input for climate scenarios. Method 1 uses routed streamflow with bias correction generated through a Variable Infiltration Capacity (VIC) Model developed for the WSIP and is available as timeseries data at selected gage locations for several drainages within the state. Method 3 relies on monthly basin average change factors for hydrologic basins within the state which can be used to correct historic unimpaired flows to account for climate change. For the application of Method 1, DWR has developed a climate change tool used to correct existing monthly timeseries data that was utilized for stream inflow points in the model domain.

Method 1 was used to generate runoff input for the SJR. Timeseries data from the 2030 Climate Change and 2070 Climate Change VIC models are available for the Gravelly Ford gage through September 2003. Surrogate data from similar DWR hydrologic year types were used for the historic period from October 2003 through the end of the projected period.

For all other inflow locations, monthly flow for the 2030 Climate Change and 2070 Climate Change projections were derived using the climate change perturbation tool developed by DWR. A comparison of average unimpaired flow in Los Gatos Creek used in the No Climate Change, 2030 Climate Change and 2070 Climate Change projections are summarized by water year and shown in **Figure 5-13**. Discharge in the north and south branches of the Kings River are regulated by releases from the Pine Flat dam. However, there are no VIC output from these locations to specify flow into the model domain. Currently there are no publicly available sources of data to inform how these releases may be impacted by climate change within the SGMA framework. As a result, Method 3 was used to perturb model inputs at these locations.

5.2.3 Precipitation and Reference Evapotranspiration

DWR provides spatial and temporal perturbation factors to adjust precipitation and ET_o data to develop climate change projections based on the VIC model developed for the WSIP. Monthly VIC climate perturbation factors are available on 6-km by 6-km gridded cells (**Figure 5-14**). These data are applied as a multiplier to the monthly precipitation and ET_o data from the No Climate Change projection in each model cell for each climate projection beginning in March of 2017. Data are available for the historic period through December 2011. Perturbation factors for the period between January 2011 and December 2015 were derived from available data using similar DWR water year indices. Spatially each WSGM cell was mapped to each VIC model cell based on whether the centroid of the WSGM cell falls within a given VIC model cell. Average annual precipitation and ET_o for each climate projection is shown in **Figure 5-15** and **Figure 5-16**.

5.3 **Projects and Management Actions**

Model projections were used to evaluate Projects and Management Actions (PMAs) considered by WWD as part of GSP preparation and described in Chapter 4 of the GSP:

- 1. Project No. 1 Surface Water Imports
- 2. Project No. 2 Initial Allocation of Groundwater Extraction
- 3. Project No. 3 Aquifer Storage and Recovery
- 4. Project No. 4 Targeted Pumping Reductions
- 5. Project No. 5 Percolation Basins

Of these, PMAs 2 through 4 were simulated using the groundwater model to evaluate impacts. PMA 1 is considered an existing management action which was included in the Baseline model projection. At the time of modeling, the District has not collected sufficient details with respect to PMA 5 to adequately constrain model inputs to develop a model scenario. As a result, this PMA is not currently evaluated using the numerical model.

5.3.1 Project No. 2 - Initial Allocation of Groundwater Extraction

A groundwater model scenario was used to determine groundwater pumping allocations for the GSP. It is expected that groundwater pumping allocations will serve as the primary PMA for the Subbasin to achieve sustainability. As a result, the simulation of PMA No. 2 is premised largely on determining the amount of groundwater that can be sustainably extracted from the aquifer system such that the long term change in storage over the 50-year projected water budget period from 2020 through 2070 is negligible. Operating under this premise, it is assumed that in order to stabilize groundwater storage the average groundwater pumping must be roughly equal to average groundwater recharge within the Subbasin over the model projection period. Under these conditions the water budget within the Subbasin is sustainable with respect to groundwater storage and the sustainable yield of the Subbasin can be roughly approximated to determine groundwater pumping allocations.

Given supply constrained demand concept driving One-Water, groundwater pumping is dynamically linked to irrigation demand which is driven largely by a combination climate inputs (ET and precipitation), surface water deliveries and land use. Given that climate inputs and surface water imports are fixed in the model projection, balancing groundwater pumping and recharge must be largely achieved through adjusting the amount of irrigated acreage.

Given these constraints, the projected model run used to inform pumping allocations for PMA No. 2 was developed by adjusting the amount of irrigated land in a given year such that pumping is equal to groundwater recharge. Within each USBR water contract year, the irrigated acreage was adjusted by changing the crop type in model cells from an irrigated crop type to a non-irrigated crop (wheat) in instances where groundwater pumping is greater than recharge and converting a non-irrigated crop to an irrigated crop (cotton) when recharge is greater than pumping. The land fallowing scheme was developed such that annual crops are fallowed first and permanent crops (trees, vineyards) are fallowed second. The land use footprint for making these adjustments is the 2016 land use array shown in **Figure 5-9**. Land use arrays from wet (2065) and dry (2043) years from the No Climate Change projection are shown in **Figure 5-17** and **Figure 5-18**, respectively.

The upper limit on irrigated acreage within the Subbasin was set as 450,000 acres based on the approximate maximum amount of irrigable land within the District. In wet years where recharge exceeds pumping and the upper limit of 450,000 acres is reached, the surplus water is banked and carried over for use in dry years. The lower limit on irrigated acreage was set as 300,000 acres in a given year. In instances where pumping exceeds recharge and there is no banked water, irrigated acreage is reduced below 300,000 acres. The resulting irrigated acreage for the No Climate Change, 2030 Climate Change and 2070 Climate Change projections are shown in **Figure 5-19**.

Within this framework it is also assumed that adjacent subbasins will each achieve sustainability as defined by 2015 baseline conditions. Though GSAs outside of the Subbasin will likely employ a variety of measures to achieve sustainability, for modeling purposes, land fallowing is the only management implemented to mitigate overdraft conditions during periods in the projected period where this is of concern. As a result, a similar approach was utilized within each water balance sub-area (farm) outside of the Subbasin.

5.3.2 Project No. 3 – Aquifer Storage and Recovery

Aquifer Storage and Recovery (ASR) is being investigated as a conjunctive use strategy to improve water supply reliability within the Subbasin. Due to the predominance of fine-grained soils combined with the occurrence of the Corcoran Clay throughout the majority of the Subbasin, there are limited opportunities for surface recharge within the Subbasin to benefit Lower Aquifer groundwater conditions (KDSA, 2009; Wood, 2019). As a result, the GSA has proposed implementing a large-scale agricultural ASR program, through artificial injection wells, as a more pragmatic alternative to enhance subsurface recharge in the Subbasin. The program feasibility was demonstrated in a 2018 pilot study on a retrofitted District-owned well (Brown and Caldwell, 2018). The report favored the development of a District-wide ASR program as an augmentation strategy for conjunctive use in the Subbasin. The District is currently pursuing programmatic compliance through a Report of Waste Discharge (ROWD) with the Central Valley Regional Water Quality Control Board (CVRWQCB or Regional Board) and California Division of Drinking Water (DDW) to inject water in up to 400 Ag-ASR wells within the Subbasin (Brown and Caldwell, 2019).

From the 932 WWD production wells included in the WSGM, 400 were selected randomly as ASR wells for PMA No. 3 model scenarios (**Figure 5-20**). Of these, 27 are completed in the Upper Aquifer, 204 are completed in the Lower Aquifer and 169 are composite wells completed in some portion of both aquifers.

Aquifer storage is anticipated to occur during periods where there is available water for injection. Sources of injected water are anticipated to be a combination of Section 215 non-storable water, at-risk carryover water from the San Luis Reservoir, flood flow dischargeand supplemental surface water imported by the District in wet years. The District expects an annual average of 28,000 AFY to be imported for injection by ASR wells during the projected period.

The total amount of water potentially available from flood flow discharge given implementation of ASR in 400 wells averages approximately 12,300 AFY in the No Climate Change and 2030 Climate Change models and 13,800 AFY in the 2070 Climate Change Scenarios (**Table 5-4** and **Table 5-5**). The total amount of water available for import in any given month was estimated based on the projected flow in the James Bypass. James Bypass flows were estimated based on specified inflow at the North Fork Kings River at Crescent Weir and adjusted for losses. This amount was further constrained to 50,000 AFY in any given year based on conveyance limits included in a 2017 Finding of No Significant Impact (FONSI) filed by the USBR in 2017 and also the total monthly injection capacity of the 400 ASR wells given a maximum of 650 gallons per minute (gpm) injection rate (USBR, 2017).

Supplemental water imported by the District and water users from other sources is specified in the model during wet years such that the total annual average amount of water imported for ASR totals 28,000 AFY.

In the No Climate Change and 2030 Climate Change projections, 50,000 AF of supplemental imports are specified as injection when projected CVP imports exceed 60% of the District's CVP contract. In the 2070 Climate Change projection, 50,000 AF supplemental imports are specified as injection when projected CVP imports exceed 42% of the District's CVP contract (**Table 5-4** and **Table 5-5**).

The total amount of water imported for injection in ASR wells is summarized by water contract year in **Figure 5-21** in the No Climate Change and 2030 Climate Change projection and **Figure 5-22** in the 2070 Climate Change projection. Injection within ASR wells were distributed equally between December and March of each year where water is supplied. During these stress periods, wells used for ASR are decoupled from the Farm Process and are not used to meet irrigation demand within the District. Accordingly, all groundwater pumping demand (if any) during these stress periods is met by the remaining 532 wells assigned in the District that are not used for injection.

5.3.3 Project No. 4 – Targeted Pumping Reductions

Land subsidence near Checks 16, 17 and 20 of the SLC/California Aqueduct during the 2013-2016 drought highlighted the necessity to develop a mechanism for the GSA to reduce groundwater pumping to avoid or mitigate undesirable results related to subsidence in these areas. With respect to the SLC at Checks 16, 17, and 20, any amount of additional land subsidence will significantly and adversely impact the ability for the USBR and DWR to convey water without implementing new design and construction measures to mitigate the impacts of aqueduct operations from subsidence. Accordingly, the GSA has developed a process to require groundwater pumping reductions in portions of the Subbasin and when necessary to immediately and directly relieve the groundwater pumping stress when continued pumping would produce significant undesirable results.

The numerical model is used to evaluate the efficacy of targeted pumping reductions in avoiding undesirable results. Given the immediate sensitivity regarding subsidence issues along the California Aqueduct at Checks 16, 17 and 20, modeling for PMA No. 4 focuses on pumping reductions in this area for a fixed number of wells during projected dry period. The model scenario was developed to evaluate an extreme case such that no pumping is simulated during the period considered and supplemental water provided by the District meets the entirety of pumping demand.

Wells in which pumping reductions were applied fall within subsidence prone areas are shown in **Figure 5-23**. A total number of 94 wells were included in the WSGM within these areas. Of these, 74 wells are completed in the Lower Aquifer and 20 are composite wells completed in the Upper and Lower Aquifers.

Pumping in these wells was disabled from the FMP from March 2042 through February 2047 (2042-2047 water contract years). This represents a long-term drought in the projected period where subsidence and other undesirable results are likely to occur (**Figure 5-8** and **5-12**). During this period, the amount of water pumped from wells located in the subsidence prone areas is substituted with surface water imports provided by the District and specified as a non-routed delivery in the FMP. The volume of simulated groundwater extracted by these wells was determined from the Baseline Model for each respective climate scenario (**Figure 5-24**).

6 CURRENT WATER BUDGET YEAR RESULTS

In order to maintain consistency with the GSP, model results are presented with respect to the Current Water Budget Year (2016) and projected water budget period (2017-2070). Results from the current water budget year include model output from October through December of the calibration period. As stated in **Section 5**, the current water budget year relies entirely on model data reported for the 2016 DWR water year.

6.1 Water Budget

Water budget results from the current water budget year are presented below. The simulated land surface water budget for the Subbasin shows a total inflow and outflow of 1,321,000 AFY (**Table 6-1**). The simulated groundwater budget for the Subbasin shows a total inflow of 404,000 AF, total outflow of 733,000 AFY, and a decline in groundwater storage of 330,000 AF (**Table 6-2**). The change in groundwater storage from January 2016 to January 2017 is shown in (**Figure 6-1**). Results from the Upper Aquifer show total simulated inflow of 199,000 AF, outflow of 450,000 AF, and a decline in groundwater storage of 249,000 AF (**Table 6-3**). Results from the Upper Aquifer show a total simulated inflow of 382,000 AF, outflow of 460,000 AF, and a decline in groundwater storage of 81,000 AF (**Table 6-4**).

6.2 Groundwater Levels and Land Surface Subsidence

Simulated groundwater levels are provided for January 2016 for the Shallow Aquifer (**Figure 6-2**), Upper Aquifer (**Figure 6-3**), and Lower Aquifer (**Figure 6-4**). Groundwater levels are provided for January 2017 for the Shallow Aquifer (**Figure 6-5**), Upper Aquifer (**Figure 6-6**), and Lower Aquifer (**Figure 6-7**). The simulated change between January 2016 and January 2017 are shown for the Shallow Aquifer (**Figure 6-9**), and Lower Aquifer (**Figure 6-10**). The amount of simulated land surface subsidence accrued from January 2016 to January 2017 is shown in **Figure 6-11**.

Table 6-1: Westside Subbasin Land Surface Budget for Current Water Budget Year

Water Budget Term	Volume (af)
Precipitation	467,000
Imported Surface Water ¹	255,000
Utilized Surface Water ²	252,000
Groundwater Pumping	564,000
ET Groundwater	38,000
Total Inflow	1,321,000
Evaporation Irrigation	8,000
Evaporation Precipitation	215,000
Transpiration Irrigation	707,000
Transpiration Precipitation	151,000
Deep Percolation Irrigation and Precipitation	186,000
Deep Percolation Cultural Practices	16,000
ET Groundwater	38,000
Total Outflow	1,321,000

1. Reported surface water imports from District records (not included in total)

2. Simulated surface water imports in WSGM (some water rejected)

3. Difference between deep percolation and direct groundwater uptake

Table 6-2: Westside Subbasin Groundwater Budget for Current Water Budget Year

Water Budget Term	Volume (af)
Net Deep Percolation (af)	165,000
Stream Leakage (af)	<1,000
Lateral Subsurface Inflow (af)	239,000
Total Inflow (af)	404,000
Groundwater Pumping (af)	558,000
Lateral Subsurface Outflow (af)	175,000
Total Outflow (af)	733,000
Change in Groundwater Storage (af)	-330,000

Table 6-3: Westside Subbasin Upper Aquifer Groundwater Budget for Current Water Budget Year

Water Budget Term	Volume (af)
Net Deep Percolation(af)	165,000
Stream Leakage (af)	<1,000
Lateral Subsurface Inflow (af)	34,000
Total Inflow (af)	199,000
Groundwater Pumping (af)	161,000
Lateral Subsurface Outflow (af)	113,000
Vertical Flow	177,000
Total Outflow (af)	450,000
Change in Groundwater Storage (af)	-249,000

Table 6-4: Westside Subbasin Lower Aquifer Groundwater Budget for Current Water Budget Year

Water Budget Term	Volume (af)
Lateral Subsurface Inflow (af)	205,000
Vertical Flow	177,000
Total Inflow (af)	382,000
Groundwater Pumping (af)	397,000
Lateral Subsurface Outflow (af)	62,000
Total Outflow (af)	460,000
Change in Groundwater Storage (af)	-81,000

7 PREDICTIVE MODEL RESULTS

Results from the projected water budget period from 2017 through 2070 are presented below. Results are largely summarized with respect to the 20-year GSP planning horizon in 2040, and the 50-year GSP planning horizon in 2070. Results include land surface and groundwater budgets, groundwater levels, change in groundwater levels, and subsidence. Water budget output is summarized by water year (October – September) while spatial output (storage, groundwater levels and subsidence) is evaluated in January following each water year to assess groundwater conditions after water levels recover from irrigation. Output evaluating impacts of PMAs also include relative differences between the baseline and a given PMA with respect to storage, hydraulic head, and subsidence.

7.1 Baseline Model Results

Results from the Baseline model scenario are presented for the No Climate Change, 2030 Climate Change and 2070 Climate Change numerical model simulation from 2017 through 2070. Results include water budgets for the land surface system and groundwater system used in water budget analysis for the GSP are referenced in **Table 7-1** and **Table 7-2** and maps of groundwater levels, change in groundwater storage and land surface subsidence referenced in **Table 7-3**. Water budget results are presented on an annual basis based on DWR water year (October – September). Maps of simulated groundwater levels, change in groundwater storage and land surface subsidence referenced in **Table 7-3**. Water budget results are presented on an annual basis based on DWR water year (October – September). Maps of simulated groundwater levels, change in groundwater storage and land surface subsidence are presented for the 20 and 50-year planning horizons from January 1st, 2040 and January 1st, 2070.

	Land Surface		Groundwater System			
Projection	Inflows	Outlfows	Aggregate	Upper Aquifer	Lower Aquifer	
No Climate	Table C-1	Table C-2	Table C-3	Table C-4	Table C-5	
2030 Climate Change	Table C-6	Table C-7	Table C-8	Table C-9	Table C-10	
2070 Climate Change	Table C-11	Table C-12	Table C-13	Table C-14	Table C-15	

Table 7-1: List of Water Budget Tables for the Baseline Scenario Projected Period

Table 7-2: List of Water Budget Figures for the Baseline Scenario Projected Period

Climate Projection	Land Surface Water Budget	Groundwater Budget
No Climate	Figure D-1	Figure D-2
2030 Climate Change	Figure D-3	Figure D-4
2070 Climate Change	Figure D-5	Figure D-6

Table 7-3:	List of Groundwater Level, Groundwater Storage and Subsidence Maps for the	ıe			
Baseline Scenario Projected Period					

Climate Projection	GW Level	Change in GW Level	Change in GW Storage	Subsidence
No Climate	Figure E-1 \rightarrow E-6	Figure E-7 \rightarrow E-12	Figure E-13 & E-14	Figure E-15 & E-16
2030 Climate Change	Figure F-1 \rightarrow F-6	Figure F-7 \rightarrow F-12	Figure F-13 & F-14	Figure F-15 & F-16
2070 Climate Change	Figure G-1 \rightarrow G-6	Figure G-7 \rightarrow G-12	Figure G-13 & G-14	Figure G-15 & G-16

7.1.1 Land Surface System Water Budget

Inflows and outflows to the land surface system in the Baseline scenario are summarized in **Figure 7-1** and **Figure 7-2**.

The largest source of water among the land surface system inflows is surface water applied to meet irrigation demand. The No Climate Change and 2030 Climate Change projections are developed using the 2030 CalSim surface water data while the 2070 Climate Change Scenario is based on the 2070 CalSim surface water data that are substantially lower (**Figure 7-1**). The difference in the amount of available surface water is reflected in the amount of surface water utilized in the No Climate Change projection (620,000 AFY) and 2030 Climate Change projection (598,000 AFY) compared to the 2070 Climate Change projection (530,000 AFY). The difference in applied surface water is reflected in the groundwater pumping required to meet irrigation demand. The No Climate Change and 2030 Climate change projection simulate average long-term groundwater pumping of 320,000 AFY and 316,000 AFY, respectively, while the pumping in the 2070 Climate Change projection averages 471,000 AFY (**Figure 7-1**).

Average surface water imports are smaller in the 50-year GSP planning horizon than the 20-year horizon in all climate projections. Imported surface water in the No Climate Change and 2030 Climate Change projections decline from 843,000 AFY in the 20-year planning horizon to 726,000 AFY in the 50-year planning horizon (**Table C-1** and **Table C-6**). Imported water in the 2070 projection and decline from 670,000 AFY to 586,000 AFY (**Table C-11**). Imported surface water is also substantially smaller than the average amount of 841,000 AFY assigned in the historic period (841,000 AFY) from 1989 through 2015 (**Table 4-6**). As a result, all models show a decline in surface water reliability as determined by the CalSim II model results provided by DWR.

Surface water deliveries vary substantially during the simulation period while land use is fixed as outlined in DWR's BMP for developing projected water budgets. As a result, imported surface water is not effectively utilized in the Baseline scenario because irrigation demand does not increase when more surface water is available. Of the total surface water in the model, 85% percent is used in the No Climate Change projection, 82% is utilized in 2030 Climate Change projection and 90% is utilized in the 2070 Climate Change projection.

The largest outflow from the land surface system is ET – of which ET from irrigation is the biggest term (**Figure 7-2**). Average annual ET from the No Climate Change and 2030 Climate Change Baseline projections are relatively similar (1,067,000 and 1,054,000 AFY, respectively), while ET from the 2070

Climate Change projection is slightly higher (1,124,000 AFY) due to the perturbation factors applied (**Figure 5-16**). Average annual ET in the projected period is lower than the historic period (1,186,000 AFY) and is largely a derivative of the fixed land use footprint used in the Baseline model scenario (**Table 4-8**).

The other major outflow from the land surface system is deep percolation which ranges from 356,000 to 372,000 AFY (**Figure 4-2**). The total deep percolation during the projected period is substantially less than the 516,000 AFY applied during the historic period (**Table 4-8**). This is likely due to a combination of crop type, which have gradually transitioned toward an increase in crops with higher irrigation efficiencies and improvements to irrigation efficiency within each crop type applied beginning in the latter portion of the historical period. Applied water for pre-irrigation and salt management is also lower leading to an overall decrease in deep percolation. The difference in deep percolation appears to be related to a commensurate decrease the amount of simulated ET directly from the water table. This water budget component decreased from 199,000 AFY in the historic period to between 71,000 and 81,000 AFY in the projected Baseline period (**Table 4-8**).

7.1.2 Groundwater System Water Budget

Inflows and outflows to groundwater system in the Baseline scenario are summarized in **Figure 7-3** and **Figure 7-4**.

Sources of inflow include net deep percolation (discussed in **Section 7.1.1**), lateral subsurface flow and leakage from stream channels from ephemeral creeks draining the coast ranges in the western portion of the model domain (**Figure 7-3**). Inflow from groundwater storage (representing a decrease in groundwater storage) is also contributes significantly to the Baseline groundwater budgets during the 50-year planning horizon and is discussed in **Section 7.1.2**. Average annual inflow from stream leakage is relatively small (~10,000 AFY). The bulk of the lateral subsurface inflow occurs in the Lower Aquifer where the majority of groundwater pumping occurs in all climate projections. The No Climate Change and 2030 Climate Change projection shows an average annual inflow of 128,000 AFY to the Lower Aquifer, while the 2070 Climate Change projection shows 67,000 AFY more inflow (195,000 AFY) over the 50-year planning horizon (**Figure 7-3**).

Outflows include groundwater pumping and lateral subsurface flow. The majority of the lateral subsurface outflow occurs from the Upper Aquifer. With respect to net flow, lateral subsurface flow is generally out of the Upper Aquifer and to adjacent subbasins and into the Lower Aquifer from adjacent subbasins in the Baseline scenario. As mentioned in **Section 7.1.1**, groundwater pumping in the No Climate Change and 2030 Climate Change projections average 320,000 AFY and 316,000 AFY, respectively, while the pumping in the 2070 Climate Change projection averages 471,000 AFY (**Figure 7-4**). Groundwater pumping is greater during the 50-year planning horizon, which is drier overall, than the 20-year horizon. Pumping in the 50-year planning horizon is between 70,000 and 79,000 AFY greater in the 2070 simulation.

Inter-aquifer flows between the Upper and Lower Aquifer are also substantial. Flow between aquifers occur through the wells completed in the Upper and Lower Aquifers and (to a lesser extent) through the

Corcoran clay. Average annual flows between aquifers total between 132,000 to 146,000 AFY in all scenarios. Flow, in aggregate, occurs from the Upper Aquifer to the Lower Aquifer (**Table X-X**).

7.1.3 Sustainability Indicators

The predictive model can be used to evaluate the projected groundwater conditions with respect to sustainability indicators. These are analyzed with respect to the 2040 and 2070 SGMA timelines in 2040 and 2070 These include groundwater levels, land surface subsidence and groundwater storage provided in (**Appendix E** - **G**).

7.1.3.1 Groundwater Levels

Groundwater levels are relatively stable through 2040 in the No Climate Change and 2030 Climate Change projections within the Subbasin (**Appendix E** and **F**). Some areas show moderate water level increases while others show increases. This is likely due to the differences in relative recharge and pumping rates as a result of reducing the number of farms within the Subbasin. Simulated results from the 2070 Climate Change 20-year projection show more substantial amounts of drawdown particularly in shallow groundwater zone and Upper Aquifer the southwestern portion of the Subbasin. All scenarios show considerable drawdown in the shallow groundwater zone and Upper and Lower Aquifers in the generally drier 50-year projection period (**Appendix G**).

7.1.3.2 Subsidence

Simulated subsidence is relatively minor and occurs largely in the southern portion of the Subbasin in 2040 in the No Climate Change and 2030 Climate Change projections but approaches 3 to 4 feet in the southern portion of the Subbasin in the 2070 Climate Change projection. Output at the end of the 2070 show substantial simulated subsidence in the southern portion of the Subbasin No Climate Change and 2030 Climate Change projections of the Subbasin No Climate Change and 2030 Climate Change projections and severe subsidence over substantial portions of the Subbasin (**Appendix E - F**).

7.1.3.3 Groundwater Storage

The numerical model projects a substantial decrease in groundwater storage over the 50-year planning horizon under Baseline conditions (**Figure 7-3**). Projected overdraft in the 2070 Climate Change scenario is relatively severe by the end of 2070. The model shows projected groundwater storage over the 20-year planning horizon is relatively stable in the No Climate Change and 2030 Climate Change scenarios but simulates overdraft conditions in the 2070 Climate Change projection. Inspection of cumulative storage change with respect to time more clearly reveals the influence of climate and water year type on storage change (**Figure 7-5**). Prolonged dry periods where available surface water imports are curtailed lead to increased groundwater pumping to meet irrigation demand resulting in groundwater overdraft. This analysis highlights the need to reduce irrigation demand during extended dry periods to avoid undesirable results.

7.1.4 Estimated Sustainable Yield

The sustainable yield for the Subbasin under this baseline conditions was estimated using the following equation:

Sustainable Yield =
$$Q_p + \Delta S_p + (L_h - L_p)$$

where: Q_p is the average annual groundwater pumping within the Subbasin simulated in the projected model

 ΔS_p is the average annual change in groundwater storage in the Subbasin simulated in the projected model

 L_h is the average annual lateral subsurface inflow into the Subbasin from adjacent GSAs simulated during the historic water budget period

 L_p is the average annual lateral subsurface inflow into the Subbasin from adjacent GSAs simulated during the 2020 through 2070 projected water budget period

One of the benefits of this methodology is that the resulting sustainable yield estimate accounts for gross differences between historic and projected lateral subsurface flow between the Subbasin and adjacent GSAs as compared to historic methodologies of safe yield that accounts for total amount of subsurface inflows as a component of safe yield. However, these projected differences in subsurface flows are also dependent on adjacent GSAs sustainably managing groundwater levels to 2015 baseline levels. IFollowing the completion of these model projections, it was learned that the neighboring GSAs in the Kings and Tulare Lake Subbasins are planning on sustainably managing groundwater levels to below 2015 baseline levels, thereby creating groundwater conditions that could impact sustainability goals in the Subbasin.

In addition, since the methodology is premised on Subbasin-wide simulated storage, the spatial and temporal distribution of groundwater pumping may need to be further augmented to avoid exceeding other sustainability indicators within the Subbasin that are not included in Baseline model scenarios. Similarly, the methodology assumes a linear relationship between groundwater pumping, groundwater storage and lateral subsurface inflows and outflows. While this is a useful approximation, this assumption may not adequately represent physical relationship in the aquifer system (i.e. a given change in groundwater pumping may not produce an equal change in groundwater storage in the actual system). Recognizing this, there is a need to develop a projection where simulated groundwater storage is stable to more appropriately estimate the sustainable yield for the Subbasin. This is largely addressed in PMA No. 2.

Based on this methodology, the estimated sustainable yield derived from the Baseline model run given the No Climate Change, 2030 Climate Change and the 2070 Climate Change projections are shown in **Table 7-4**. Simulated output from the No Climate Change and 2030 Climate Change model runs produce an estimated sustainable yield of between 267,000 AFY and 271,000 AFY for the 2040 and 2070 projected periods. Sustainable yield estimated from the 2070 Climate Change model run is higher; ranging from 290,000 AFY over the 2020-2040 period and 294,000 AFY over the 2020-2070 period.

Croundwater Budget Term	No Climate Change		2030 Climate		2070 Climate	
Groundwater Budget Term	2040 2070		2040	2070	2040	2070
Pumping (af)	238,000	317,000	243,000	313,000	393,000	467,000
Change in GW Storage (af)	-9,000	-53,000	-8,000	-47,000	-66,000	-112,000
Difference in Lateral Subsurface Inflow (af) ¹	38,000	6,000	34,000	5,000	-37,000	-61,000
Sustainable Yield (af)	267,000	270,000	269,000	271,000	290,000	294,000

Table 7-4: Baseline Estimated Sustainable Yield for the 2040 and 2070 GSP Planning Horizons

1. Difference between simulated historic and projected lateral subsurface flow

7.2 PMA No. 2 Model Results

Results from the PMA No.2 model scenario are presented for the No Climate Change, 2030 Climate Change and 2070 Climate Change numerical model simulation from 2017 through 2070. Results include water budgets for the land surface system and groundwater system used in water budget analysis for the GSP are referenced in **Table 7-5** and **Table 7-6** and maps of groundwater levels, change in groundwater storage and land surface subsidence referenced in **Table 7-7**. Maps illustrating the relative impacts of PMA No. 2 on water levels, groundwater storage and land surface subsidence referenced on an annual basis based on DWR water year (October – September). Maps of simulated groundwater levels, change in groundwater levels, change in groundwater storage and land surface subsidence are presented for the 20 and 50-year planning horizons from January 1st, 2040 and January 1st, 2070.

Table 7-5: List of Water Budget Tables for the PMA No. 2 Projected Period

	Land Surface		Groundwater System		
Climate Projection	Inflows	Outlfows	Aggregate	Upper Aquifer	Lower Aquifer
No Climate	Table C-16	Table C-17	Table C-18	Table C-19	Table C-20
2030 Climate Change	Table C-21	Table C-22	Table C-23	Table C-24	Table C-25
2070 Climate Change	Table C-26	Table C-27	Table C-28	Table C-29	Table C-30

Table 7-6: List of Water Budget Figures for the PMA No. 2 Projected Period

Climate Projection	Land Surface Water Budget	Groundwater Budget
No Climate	Figure D-7	Figure D-8
2030 Climate Change	Figure D-9	Figure D-10
2070 Climate Change	Figure D-11	Figure D-12

Climate Projection	GW Level	Change in GW Level	Change in GW Storage	Subsidence
No Climate	Figure E-17 \rightarrow E-22	Figure E-23 → E-28	Figure E-35 & E-36	Figure E-39 & E-40
2030 Climate Change	Figure F-17 \rightarrow F-22	Figure F-23 \rightarrow F-28	Figure F-35 & F-36	Figure F-39 & F-40
2070 Climate Change	Figure G-17 \rightarrow G-22	Figure G-23 → G-28	Figure G-35 & G-36	Figure G-39 & G-40

Table 7-7: List of Groundwater Level, Groundwater Storage and Subsidence Maps for the PMA No. 2 Scenario Projected Period

Table 7-8: PMA No. 2 List of Figures of Project Impacts on Water Levels, Groundwater Storage & Subsidence

Climate Projection	Water Levels	Groundwater Storage	Subsidence
No Climate	Figure E-29 \rightarrow E-34	Figure E-37 & E-38	Figure E-41 & E-42
2030 Climate Change	Figure F-29 \rightarrow F-34	Figure F-37 & F-38	Figure F-41 & F-42
2070 Climate Change	Figure G-29 \rightarrow G-34	Figure G-37 & G-38	Figure G-41 & G-42

7.2.1 Land Surface System Water Budget

Inflows and outflows to the land surface system in the Baseline scenario are summarized in **Figure 7-6** and **Figure 7-7**.

The largest source of inflow to the PMA No. 2 Land Surface System water budget is surface water imports utilized by the numerical model to satisfy irrigation demand (**Table 7-6**). The average utilization of surface water available for import is higher than the amount simulated in the Baseline. Of the available water, 93% is utilized in the No Climate Change projection, 92% is utilized in the 2030 Climate Change projection and 96% is utilized in the 2070 Climate Change projection. This increase is related to flexibility included in the PMA No. 2 scenario enabling irrigated acreage to increase when additional surface water Is available. Full utilization is not achieved for two reasons: 1) an upper limit on the amount of irrigable lands such that there is still a limit (although higher) on irrigation demand 2) irrigation demand can be met by direct ET from the water table and difficult to include in water budgets without running the model.

Total average simulated ET is greater in the No Climate Change and 2030 Climate Change projections and lower in the 2070 Climate Change projection (**Table 7-7**). ET is a function of crop type and reference ET and is scaled to the amount of available surface water in PMA No. 2. In PMA No. 2, the average amount of irrigated lands in the Subbasin in the No Climate Change and 2030 Climate Change projections is greater than the Baseline resulting in greater ET. Less water is available on average in the 2070 Climate Change resulting in fewer irrigated lands and lower average annual ET. The amount of water applied for irrigation is reflected in the amount of deep percolation which is greater than the Baseline in the No Climate Change and 2030 Climate Change projections (**Table 7-7**).

7.2.2 Groundwater System Water Budget

Inflows and outflows to groundwater system in the Baseline scenario are summarized in **Figure 7-8** and **Figure 7-9**. The PMA No. 2 scenario simulates substantial differences in groundwater pumping, lateral subsurface flows and groundwater storage (discussed in **Section 7.2.3.3**) relative to the Baseline.

Total average groundwater pumping in the No Climate Change and 2030 Climate Change projections is similar to the Baseline (**Figure 7-4** and **Figure 7-9**). However, groundwater pumping in each given year can vary substantially particularly during dry years when irrigation demand is reduced to account for limits on available surface water supply. Conversely, pumping in wet years can be slightly higher in PMA No. 2 in order to increase the amount of irrigated land (this is not necessarily a management approach which is being promoted by the District but is a derivative of the land allocation and water budgeting approach developed for the PMA No. 2 simulation). Average annual groundwater pumping in the 2070 Climate Change projection is substantially less than in the Baseline due to reduction in demand commensurate to the quantity of available surface water. Similarly, groundwater pumping in the 2070 Climate Change projection is slightly less than in the No Climate Change and 2030 Climate Change projections because there is less surface water and (as a result) less deep percolation to recharge the aquifer system.

The dynamics of simulated lateral subsurface flow between the Subbasin and adjacent areas shifts considerably in the PMA No. 2 scenario output relative to the Baseline. This is due to a combination of simulated management activities inside and outside of the Subbasin. Gross lateral subsurface inflows are generally similar between model scenarios in the No Climate Change and 2030 Climate Change projections and decrease (particularly in the Lower Aquifer) likely due to a substantial reduction in groundwater pumping (**Figure 7-3** and **Figure 7-8**). Simulated lateral subsurface outflows are smaller in all PMA No. 2 results relative to the Baseline likely due (at least in part) to the decrease in groundwater pumping outside of the Subbasin and shifting the groundwater gradients near the Subbasin boundary.

7.2.3 Sustainability Indicators

Projected groundwater conditions with respect to sustainability indicators for the PMA No. 2 model scenario are analyzed in 2040 and 2070. These include groundwater levels, land surface subsidence and groundwater storage provided in (**Appendix E - G**).

7.2.3.1 Groundwater Levels

The water budgeting and land management framework included in PMA No. 2 provides substantial benefits to water levels within the Subbasin. Groundwater levels from the end of the 20-year planning horizon show some decline in the central and southwestern portion of the Subbasin in the Upper Aquifer and water table but are relatively stable throughout the remainder of the Subbasin. The model shows additional declines in similar areas at the end of the 50-year period but are otherwise stable in the remainder for the Subbasin.

7.2.3.2 Subsidence

Simulated results from PMA No. 2 also show substantial benefits to land surface subsidence. All climate projections show negligible amounts subsidence at the end of the 20-year planning horizon. The models

simulate some subsidence in the southern portion of the district at the end of the 50-year planning horizon but does not exceed about 1.5 feet in total.

7.2.3.3 Groundwater Storage

The numerical model projects relatively stable gross groundwater storage and throughout the 50-year planning horizon. Results demonstrate effective conjunctive use management where groundwater is stored during wet periods and appropriate utilization of groundwater during dry periods (**Figure 7-10**). Spatially, storage declines show similar trends as those observed in water table groundwater levels. Generally, the western portion of the Subbasin (largely south of Cantua Creek) show decline in storage at the end of 2070.

7.2.4 Estimated Sustainable Yield

Based on the methodology provided in **Section 7.1.4**, the estimated sustainable yield derived from the PMA No. 2 model run given the No Climate Change, 2030 Climate Change and the 2070 Climate Change projections are shown in **Table 7-9**. Calculated sustainable yield from all climate change projections are relatively similar and range from 241,000 AFY to 277,000 AFY.

HOHZOHS								
Groundwater Budget Term	No Climate Change		2030 Climate Change		2070 Climate Change			
	2040	2070	2040	2070	2040	2070		
Pumping (af)	287,000	322,000	286,000	328,000	292,000	297,000		
Change in GW Storage (af)	22,000	-7,000	23,000	-8,000	7,000	-11,000		
Difference in Lateral Subsurface Inflow (af) ¹	-33,000	-54,000	-32,000	-54,000	-41,000	-45,000		
Sustainable Yield (af)	276,000	261,000	277,000	266,000	258,000	241,000		

Table 7-9: PMA No. 2 Estimated Sustainable Yield for the 2040 and 2070 GSP Planning

1. Difference between simulated historic and projected lateral subsurface flow

7.3 PMA No. 3 Model Results

Results from the PMA No.3 model scenario are presented for the No Climate Change, 2030 Climate Change and 2070 Climate Change numerical model simulation from 2017 through 2070. Results include water budgets for the land surface system and groundwater system used in water budget analysis for the GSP are referenced in **Table 7-10** and **Table 7-11** and maps of groundwater levels, change in groundwater storage and land surface subsidence referenced in **Table 7-12**. Maps illustrating the relative impacts of PMA No. 2 on water levels, groundwater storage and land surface subsidence are presented on an annual basis based on DWR water year (October – **September**). Maps of simulated groundwater levels, change in groundwater storage and land surface subsidence are presented for the 20 and 50-year planning horizons from January 1st, 2040 and January 1st, 2070.

	Land S	Surface	Groundwater System			
Projection	Inflows	Outlfows	Aggregate	Upper Aquifer	Lower Aquifer	
No Climate	Table C-31	Table C-32	Table C-33	Table C-34	Table C-35	
2030 Climate Change	Table C-36	Table C-37	Table C-38	Table C-39	Table C-40	
2070 Climate Change	Table C-41	Table C-42	Table C-43	Table C-44	Table C-45	

Table 7-10: List of Water Budget Tables for the PMA No. 3 Projected Period

Table 7-11: List of Water Budget Figures for the PMA No. 3 Projected Period

Climate Projection	Land Surface Water Budget	Groundwater Budget		
No Climate	Figure D-13	Figure D-14		
2030 Climate Change	Figure D-15	Figure D-16		
2070 Climate Change	Figure D-17	Figure D-18		

Table 7-12: List of Groundwater Level, Groundwater Storage and Subsidence Maps for the PMA No. 3 Scenario Projected Period

Climate Projection	GW Level	Change in GW Level	Change in GW Storage	Subsidence
No Climate	Figure E-43 \rightarrow E-48	Figure E-49 \rightarrow E-54	Figure E-60 & E-61	Figure E-64 & E-65
2030 Climate Change	Figure F-43 \rightarrow F-48	Figure F-49 \rightarrow F-54	Figure F-60 & F-61	Figure F-64 & F-65
2070 Climate Change	Figure G-43 \rightarrow G-48	Figure G-49 → G-54	Figure G-60 & G-61	Figure G-64 & G-65

Table 7-13: PMA No. 3 List of Figures of Project Impacts on Water Levels, Groundwater Storage & Subsidence

Climate Projection	Water Levels	Groundwater Storage	Subsidence
No Climate	Figure E-55 \rightarrow E-60	Figure E-62 & E-63	Figure E-66 & E-67
2030 Climate Change	Figure F-55 \rightarrow F-60	Figure F-62 & F-63	Figure F-66 & F-67
2070 Climate Change	Figure G-55 \rightarrow G-60	Figure G-62 & G-63	Figure G-66 & G-67

7.3.1 Land Surface System Water Budget

Inflows and outflows to the land surface system in the Baseline scenario are summarized in **Figure 7-11** and **Figure 7-12**. Differences in the land surface system budget between PMA No. 3 and the Baseline are negligible. Land surface system inflows and outflows change by less than 5 ,000 AFY.

7.3.2 Groundwater System Water Budget

Inflows and outflows to the land surface system in the Baseline scenario are summarized in Figure 7-13 and Figure 7-14.

Total simulated inflows to the Subbasin groundwater system show an average annual increase of between 4,000 and 7,000 AFY due to simulated annual average injection of between 25,000 and 28,000 AFY. Total simulated outflows increase between 2 and 6 AFY.

Groundwater injection impacts on the Subbasin water budget are summarized in **Figure 7-15**. The model suggests that groundwater injection as part of the ASR program will predominantly lead to a decrease in lateral subsurface inflows into the Subbasin and an increase in lateral subsurface outflows. Lateral subsurface inflow decreases by between 13,000 and 18,000 AFY while lateral subsurface increases by between 5,000 and 9,000 AFY. The majority of the difference in lateral flows is simulated in the Lower Aquifer where the majority of injection occurs and perhaps due to higher Lower Aquifer diffusivity (T/S). In total, changes to lateral subsurface flow account for between 72% of the water injected for ASR.

Other water budget terms affected by injection include groundwater storage, groundwater pumping and groundwater ET. Groundwater storage increases by between 5,670 and 5,810 AFY or between 21% and 22% percent of injected water. Change in simulated groundwater pumping and groundwater ET are presented as a gross "Change Farm Flow" term for simplicity and accounts for between 4% and 8% of water injected.

7.3.3 Sustainability Indicators

Projected groundwater conditions with respect to sustainability indicators for the PMA No. 3 model scenario are analyzed in 2040 and 2070. These include groundwater levels, land surface subsidence and groundwater storage provided in (**Appendix E** - **G**).

7.3.3.1 Groundwater Levels

PMA No. 3 shows modest benefits to groundwater levels at the end of the 20 and 50-year planning horizons (**Appendix E** - **G**). Substantial impacts are observed in the Lower Aquifer in 2040, but not in 2070. This suggests that benefits are short-lived and dissipate quickly likely because injection occurs in a confined system with a relatively high diffusivity (T/S).

7.3.3.2 Subsidence

PMA No. 3 shows benefits to land surface subsidence in both the 20 and 50-year planning horizons (**Appendix E** - **G**). Accrual of benefits increase over time and are greater in 2070 than 2040. Benefits are largely simulated in the southern portion of the Subbasin where subsidence impacts are the greatest.

7.3.3.3 Groundwater Storage

Projected benefits to groundwater storage are discussed in **Section 7.3.2**. Storage benefits are modest relative to the amount of groundwater injected and small relative to the amount of storage decline simulated over the projected period. Total cumulative change in groundwater storage is shown in **Figure**

7-16. Cumulative storage benefits as a result of groundwater injection with respect to time are shown in **Figure 7-17** for the No Climate Change projection. In this plot total simulated cumulative injection is plotted in relation to the benefits to storage (storage increase) and increase in lateral subsurface flow during the model simulation period. These results suggest that the majority of storage benefits due to injection are lost to outflows to adjacent subareas relatively quickly.

7.3.4 Estimated Sustainable Yield

Based on the methodology provided in **Section 7.1.4**, the estimated sustainable yield derived from the PMA No. 3 model run given the No Climate Change, 2030 Climate Change and the 2070 Climate Change projections are shown in **Table 7-14**. Calculated sustainable yield from all climate change projections are increase substantially due to PMA No. 3. The calculation of sustainable yield accounts for both change in groundwater storage and lateral subsurface flow that are impacted by injection relative to the Baseline.

Table 7-14: PMA No. 3 Estimated Sustainable Yield for the 2040 and 2070 GSP Planning Horizons

Groundwater Budget Term	No Climate Change		2030 Climate Change		2070 Climate Change	
	2040	2070	2040	2070	2040	2070
Pumping (af)	237,000	315,000	242,000	311,000	391,000	465,000
Change in GW Storage (af)	4,000	-47,000	5,000	-42,000	-54,000	-107,000
Difference in Lateral Subsurface Inflow (af) ¹	62,000	26,000	59,000	25,000	-17,000	-41,000
Sustainable Yield (af)	303,000	294,000	306,000	294,000	320,000	317,000

1. Difference between simulated historic and projected lateral subsurface flow

7.4 PMA No. 4 Model Results

Results from the PMA No.4 model scenario are presented for the No Climate Change, 2030 Climate Change and 2070 Climate Change numerical model simulation from 2017 through 2070. Results include water budgets for the land surface system and groundwater system used in water budget analysis for the GSP are referenced in **Table 7-15** and **Table 7-16** and maps of groundwater levels, change in groundwater storage and land surface subsidence referenced in **Table 7-17**. Maps illustrating the relative impacts of PMA No. 2 on water levels, groundwater storage and land surface subsidence referenced on an annual basis based on DWR water year (October – **September**). Maps of simulated groundwater levels, change in groundwater storage and land surface subsidence are presented at the end of the pumping reduction period on April 1st, 2040 and 50-year planning horizons on January 1st, 2070.

	Land S	Surface	Groundwater System			
Climate Projection	Inflows	Outlfows	Aggregate	Upper Aquifer	Lower Aquifer	
No Climate	Table C-46	Table C-47	Table C-48	Table C-49	Table C-50	
2030 Climate Change	Table C-51	Table C-52	Table C-53	Table C-54	Table C-55	
2070 Climate Change	Table C-56	Table C-57	Table C-58	Table C-59	Table C-60	

Table 7-15: List of Water Budget Tables for the PMA No. 4 Projected Period

Table 7-16: List of Water Budget Figures for the PMA No. 4 Projected Period

Climate Projection	Land Surface Water Budget	Groundwater Budget		
No Climate	Figure D-19	Figure D-20		
2030 Climate Change	Figure D-21	Figure D-22		
2070 Climate Change	Figure D-23	Figure D-24		

Table 7-17: List of Groundwater Level, Groundwater Storage and Subsidence Maps for
the PMA No. 4 Scenario Projected Period

Climate Projection	GW Level	Change in GW Level	Change in GW Storage	Subsidence
No Climate	Figure E-69 \rightarrow E-74	Figure E-75 \rightarrow E-80	Figure E-87 & E-88	Figure E-91& E-92
2030 Climate Change	Figure F-69 \rightarrow F-74	Figure F-75 \rightarrow F-80	Figure F-87 & F-88	Figure F-91 & F-92
2070 Climate Change	Figure G-69 \rightarrow G-74	Figure G-75 → G-80	Figure G-87 & G-88	Figure G-91 & G-92

Table 7-18: PMA No. 4 List of Figures of Project Impacts on Water Levels, Groundwater Storage & Subsidence

Climate Projection	Water Levels	Groundwater Storage	Subsidence
No Climate	Figure E-81 \rightarrow E-86	Figure E-89 & E-90	Figure E-93 & E-94
2030 Climate Change	Figure F-81 \rightarrow F-60	Figure F-89 & F-90	Figure F-93 & F-94
2070 Climate Change	Figure G-81 \rightarrow G-60	Figure G-89 & G-90	Figure G-93 & G-94

7.4.1 Land Surface System Water Budget

Inflows and outflows to the land surface system in the Baseline scenario are summarized in **Figure 7-18** and **Figure 7-19**. Differences in the land surface system budget between PMA No. 4 and the Baseline are small over the 50-year planning period and largely constrained to pumping and surface water deliveries. Surface water deliveries are between 6,000 and 7,000 AFY greater on average in PMA No. 4 than simulated in the Baseline over the 50-year period. Conversely, groundwater pumping is between 6,000 and 7,000 AFY less on average than the Baseline over the 50-year period.

7.4.2 Groundwater System Water Budget

Inflows and outflows to the land surface system in the Baseline scenario are summarized in Figure 7-20 and Figure 7-21.

Total simulated inflows to the Subbasin groundwater system show an average annual decrease of between 5,000 and 7,000 AFY in PMA No. 4 compared to the Baseline. The majority of the difference between the scenarios can be accounted for as an increase in groundwater storage in PMA No. 4 with a smaller amount attributed to a decrease in lateral subsurface flow and net deep percolation (**Figure 7-20**).

Simulated outflows in the groundwater system decrease by between 6,000 and 8,000 AFY in PMA No. 4 compared to the Baseline. Of this, the vast majority can be attributed to the decrease in pumping due to in lieu recharge from surface water deliveries (**Figure 7-21**).

7.4.3 Sustainability Indicators

Projected groundwater conditions with respect to sustainability indicators for the PMA No. 4 model scenario. Since PMA No. 4 does not begin until after the end of the 20-year planning period, results are instead analyzed at the end of the pumping reduction period in 2047 and at the end of the 50-year planning horizon. Sustainability indicators analyzed include groundwater levels, land surface subsidence and groundwater storage provided in (**Appendix E** - **G**).

7.4.3.1 Groundwater Levels

PMA No. 4 shows substantial localized benefits to groundwater levels with respect to the Baseline (**Appendix E** - **G**). Substantial impacts are observed in the Lower Aquifer in 2047 at the end of the pumping reduction period where the majority of pumping occurs. Water level benefits are also much greater north of Canuta Creek where there are more groundwater pumping wells. These impacts do not propagate significantly to the Upper Aquifer or shallow groundwater zone. Furthermore, benefits tend to be short-lived and dissipate quickly likely because injection occurs in a confined system with a relatively high diffusivity (T/S).

7.4.3.2 Subsidence

PMA No. 4 shows substantial localized benefits to land surface subsidence both in 2047 and at the end of the 50-year planning horizons (**Appendix E - G**). Subsidence in 2047 is reduced by nearly a foot near the SLC in the No Climate Change and 2030 Climate Change projections and exceeds one foot in the 2070 Climate Change projection. Reduced subsidence in PMA No. 4 relative to the Baseline decrease at the end of the 50-year planning horizon suggesting that subsequent dry periods may reverse accrued benefits.

7.4.3.3 Groundwater Storage

Projected benefits to groundwater storage are discussed in **Section 7.3.2**. Storage benefits are relatively large with respect to the amount of pumping reduction. Total cumulative change in groundwater storage is shown in **Figure 7-22**. Cumulative storage benefits as a result of pumping reductions with respect to time are shown in **Figure 7-23**. In this plot the cumulative difference in groundwater pumping is plotted

in relation to the benefits to storage (storage increase) during the model simulation period. These results suggest that nearly one half of the simulated in lieu recharge benefit remains in groundwater storage even after over 20-years.

7.4.4 Estimated Sustainable Yield

Based on the methodology provided in **Section 7.1.4**, the estimated sustainable yield derived from the PMA No. 4 model run given the No Climate Change, 2030 Climate Change and the 2070 Climate Change projections are shown in **Table 7-19**. Calculated sustainable yield from all climate change projections are relatively similar to the Baseline in 2070 and identical to the Baseline in 2040 (prior to simulated PMA No. 4 implementation).

Table 7-19: PMA No. 4 Estimated Sustainable Yield for the 2040 and 2070 GSP Planning Horizons

Groundwater Budget Term	No Climate Change		2030 Climate Change		2070 Climate Change	
.	2040	2070	2040	2070	2040	2070
Pumping (af)	238,000	310,000	243,000	307,000	393,000	459,000
Change in GW Storage (af)	-9,000	-51,000	-8,000	-45,000	-66,000	-107,000
Difference in Lateral Subsurface Inflow (af) ¹	38,000	9,000	34,000	9,000	-37,000	-58,000
Sustainable Yield (af)	267,000	268,000	269,000	271,000	290,000	294,000

1. Difference between simulated historic and projected lateral subsurface flow

8 MODEL UNCERTAINTY AND RECOMMENDATIONS

Numerical groundwater models are created based on simplified assumptions used to replicate complex natural systems. Consequently, results are generally subject to errors and limitations due to conceptual misunderstandings of the hydrologic system and uncertainties in estimating aquifer properties and boundary conditions. These uncertainties are due to both spatial and temporal limitations in observation data and the types of observation data available. Key limitations identified during model development include:

- Simulation of aquifer system compaction and land surface subsidence does not account for time delay that can substantially improve representation of compaction in model interbeds. This feature is available in the SUB package but adds numerical complexity that was considered prohibitive with respect to model runtime at the time of model development. Delay beds should be considered for future model updates.
- Direct evaporation and plant uptake of groundwater is poorly constrained. Simulated direct groundwater uptake can be substantial due to the proximity of the water table to the land surface, however, simulated amounts of groundwater evapotranspiration have not been compared to measured or estimated values. These estimates would be useful in further constraining consumptive use and dynamics between groundwater and surface processes.
- Estimates of water applied as part of cultural practices is poorly constrained. Water applied for cultural practices are known to include water used for pre-irrigation and as part of leaching salts in the soil. However, the amount and timing of water applied for these purposes is challenging to estimate, particularly in the projected model scenarios.
- Assumptions applied to areas adjacent to the Subbasin should be refined as information becomes available. Information such as land use, groundwater pumping estimates, surface water distribution and well construction can be readily incorporated to improve model performance in the historic period. Information regarding future land use and projects and management actions would be helpful in refining groundwater conditions at the Subbasin boundaries during the projected period.
9 SUMMARY AND CONCLUSIONS

An integrated hydrologic model (WSGM) was developed for the Westside Subbasin to support SGMA analysis and the preparation of a GSP. The model is based on an HCR developed for the Subbasin in conjunction with geologic and hydrologic data. The model dynamically links land surface and groundwater processes to simulate conjunctive use. The model was calibrated to historic groundwater levels, subsidence and compaction measurements and estimated groundwater pumping and provides insights into hydrologic responses in the Subbasin. A summary of model findings include:

- The model is able to reproduce groundwater levels and groundwater pumping relatively accurately. Simulation of land surface subsidence is adequate but may be improved through further model refinement.
- Major sources of recharge to the Subbasin include areal recharge from precipitation and irrigation and lateral subsurface flow (predominantly to the Lower Aquifer)
- Major sources of discharge from the Subbasin include groundwater pumping and lateral subsurface flow (largely in the Upper Aquifer)
- Though separated by the Corcoran clay, the Upper and Lower Aquifer are hydraulically connected through intraborehole flow through composite wells. Vertical flow is likely a substantial source of recharge to the Lower Aquifer.
- Groundwater storage (aggregated over the Subbasin) is relatively stable over the 1989 2015 historic period
- Simulated output from WSGM were used to develop an estimate of sustainable yield over the historic period of 305,000 AFY

WSGM was used to simulate projected groundwater conditions through the 50-year GSP planning horizon ending in 2070. Model inputs were developed based on GSP modeling BMPs published by DWR used to develop a Baseline scenario which includes:

- Over 50 years of historical data to develop projected hydrology
- Surface water imports from the CalSim II model developed jointly by USBR and DWR
- Projected land use based on 2016 cropping maps
- Analysis of climate uncertainty by perturbing model inputs using 2030 Climate Change and 2070 Climate Change multipliers

WSGM was also used to evaluate the efficacy of PMAs being proposed by the District to achieve sustainability. These include:

- Project No. 1 Surface Water Imports (Included in Baseline)
- Project No. 2 Initial Allocation of Groundwater Extraction
- Project No. 3 Aquifer Storage and Recovery

- Project No. 4 Targeted Pumping Reductions
- Project No. 5 Percolation Basins (Not simulated in WSGM)

Results from the projected model were used to evaluate land surface water budgets, groundwater budgets and sustainability indicators (water levels, subsidence and groundwater storage). Output from the predictive model runs suggest:

- The Baseline model run results shows substantial declines in groundwater levels and groundwater storage and considerable amounts of land surface subsidence
- Simulated impacts are exacerbated in the 2070 Climate Change projection
- The model shows that implementation of PMA No. 2 substantially alleviates impacts on sustainability indicators through management of groundwater pumping and irrigated acreage.
- The model shows that groundwater injection simulated in PMA No. 3 results in moderate impacts to sustainability indicators
- The model shows that pumping reductions simulated near the SLC in PMA No. 4 leads to localized reduction in land surface subsidence and can substantially alleviate subsidence impacts near the canal
- Sustainable yield calculated from output from all scenarios ranges roughly between 250,000 and 300,000 AFY

10 REFERENCES

Allen, R. G., L. S. Pereira, D. Raes, M. Smith. 1998. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO - Food and Agriculture Organization of the United Nations, Rome.

Anderman, E.R. and Hill, M.C. 2003. MODFLOW-2000, The U.S. Geological Survey (USGS) modular groundwater flow model—Three additions to the hydrogeologic-unit flow (HUF) package—Alternative storage for the uppermost active cells (STYP parameter type), flows in hydrogeologic units, and the hydraulic conductivity depth-dependence (KDEP) capability: USGS Open-File Report 03–347, 36 p.

Anderson, M.P. and Woessner, W.W. 2002. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, Academic Press, 381 p.

Bedekar, V., Morway, E.D., Langevin, C.D., and Tonkin, M. 2016. MT3D-USGS version 1: A U.S. Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW: U.S. Geological Survey (USGS) Techniques and Methods 6-A53, 69 p.

Bertoldi, G.L., Johnston, R.H., and Evenson, K.D. (1991). Ground water in the Central Valley, California—A summary report: U.S. Geological Survey Professional Paper 1401-A, 44 p.

Hanson, R.T., Boyce, S.E., Schmid, Wolfgang, Hughes, J.D., Mehl, S.M., Leake, S.A., Maddock, Thomas, III, and Niswonger, R.G., 2014, One-Water Hydrologic Flow Model (MODFLOW-OWHM): U.S. Geological Survey Techniques and Methods 6–A51, 120 p., <u>https://dx.doi.org/10.3133/tm6A51</u>.

Brown and Caldwell. 2019. Report of Waste Discharge and Technical Report. pg. 4-17.

Brown and Caldwell. 2018. Aquifer Storage and Recovery Pilot Study Workplan. pg. 4-16.

Brush, C.F. 2013. Historical Rim Inflows, Surface Water Diversions and Bypass Flows for the California Central Valley Groundwater-Surface Water Simulation Model (C2VSim), Version 3.02-CG.

Burow, Karen R., Jennifer L. Shelton, Joseph A. Hevesi, and Gary S. Weissmann. 2004. Hydrologic Characterization of the Modesto Area, San Joaquin Valley, California. Preliminary Draft. U.S. Geological Survey (USGS). Water-Resources Investigation Report. Prepared in cooperation with Modesto Irrigation District.

California Department of Water Resources (DWR), California Data Exchange Center (CDEC), http://cdec.water.ca.gov/

California Department of Water Resources (DWR). 2018 Resource Guide: Guidance DWR-Provided Climate Change Data and Guidance for Use During Groundwater Sustainability Plan Development. <u>https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-</u> <u>Management/Sustainable-Groundwater-Management/Best-Management-Practices-and-Guidance-</u> Documents/Files/Resource-Guide-Climate-Change-Guidance v8.pdf California Department of Water Resources (DWR). 2016. Best Management Practices: Modeling. <u>https://water.ca.gov/Programs/Groundwater-Management/SGMA-Groundwater-Management/Best-Management-Practices-and-Guidance-Documents</u>

California Department of Water Resources (DWR). 2011. Land use survey – California land and water use, Madera County. http://www.water.ca.gov/landwateruse/lusrvymain.cfm

California Department of Water Resources (DWR). 2010. State Plan of Flood Control Descriptive Document, Central Valley Flood Management and Planning Program.

California Department of Water Resources (DWR). 2001. Land use survey – California land and water use, Madera County. http://www.water.ca.gov/landwateruse/lusrvymain.cfm

California Department of Water Resources (DWR). 2000. Land use survey – California land and water use, Fresno County. <u>http://www.water.ca.gov/landwateruse/lusrvymain.cfm</u>

California Department of Water Resources (DWR). 1995. Land use survey – California land and water use, Madera County. <u>http://www.water.ca.gov/landwateruse/lusrvymain.cfm</u>

California Department of Water Resources (DWR). 1994. Land use survey – California land and water use, Fresno County. http://www.water.ca.gov/landwateruse/lusrvymain.cfm

California Department of Water Resources (DWR). 1986. Land use survey – California land and water use, Fresno County. http://www.water.ca.gov/landwateruse/lusrvymain.cfm

Carl S.F. 1999. T-PROGS: Transition Probability Geostatistical Software, Version 2.1, University of California, Davis, 84 p.

Carle S. F.; Fogg G. E. 1996. Transition Probability-Based Indicator Geostatistics: Mathematical Geology, 28(4), 453-476.

Carle, S. F.; Fogg G. E. 1997. Modeling spatial variability with one and multidimensional continuous-lag Markov chains: Mathematical Geology, 29(7) 891-918.

Chow, V.T. 1959. Open-Channel Hydraulics, McGraw-Hill, NY, 680 p.

Croft, M.G. & Gordon, G.V. 1968. Geology, Hydrology, and quality of water in the Hanford-Visalia area, San Joaquin Valley, California: U.S. Geological Survey (USGS) Open-File Report, 170 p.

Croft, M.G. 1972. Subsurface geology of the late Tertiary and Quaternary water-bearing deposits of the San Joaquin Valley, California: U.S. Geological Survey (USGS) Water-Supply Paper 1999-H, 29 p.

Deutsch, C. V.; Journel, A.G. 1992. GSLIB: Geostatistical Software Library and user's guide. Oxford University Press, New York, 340 p.

Doherty, J. 2003. Groundwater model calibration using pilot points and regularization. *Ground Water* 41 No. 2: 170–177.

Emerson D.G., A.V. Vecchia, and A.L. Dahl. 2005. Evaluation of the drainage-area ratio method used to estimate streamflow for the Red River of the North Bason, North Dakota and Minnesota. USGS Scientific Investigations Report 2006-5017-ONLINE ONLY. USGS, Reston, VA.

Faunt, C.C., J.B. Blainey, M.C. Hill, F.A. D'Agnese, and O'Brien, G.M. 2004. Death Valley Regional Groundwater Flow System, Nevada and California—Hydrogeologic Framework and Transient Groundwater Flow Model— Chapter F: Transient Numerical Model, U.S. Geological Survey Scientific Investigations Report 2004-5205. pp. 265–352.

Faunt, C.C., ed. 2009. Groundwater Availability of the Central Valley Aquifer, California: U.S. Geological Survey Professional Paper 1766, 225 p.

Fetter, C.W. 2001. Applied Hydrogeology (4th ed.), Prentice-Hall, Upper Saddle River, New Jersey, 598p.

Fleckenstein, J.H., Niswonger, R.G., and Fogg, G.E. 2006. River-aquifer interactions, geologic heterogeneity, and low-flow management, Ground Water, 44(4), 837-852.

Hanson, R.T., Boyce, S.E., Schmid, W., Hughes, J.D., Mehl, S.W., Leake, S.A., Maddock III, T. and Niswonger, R.G. 2014. *One-water hydrologic flow model (MODFLOW-OWHM)* (No. 6-A51). US Geological Survey.

Harbaugh, A.W. 2005 MODFLOW-2005, the U.S. Geological Survey (USGS) modular ground-water model -- the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16.

Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. 2000. MODFLOW-2000, The U. S. Geological Survey (USGS) Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process. Open-file Report. U. S. Geological Survey, (92), 134 p.

Harbaugh, A.W. 1990. A computer program for calculating subregional water budgets using results from the U.S. Geological Survey (USGS) modular three-dimensional ground-water flow model: U.S. Geological Survey (USGS) Open-File Report 90-392, 46 p.

Heath, R.C. 1983. Basic ground-water hydrology, U.S. Geological Survey Water-Supply Paper 2220, 86p.

Helm, D.C. 1977. Estimating parameters of compacting fine-grained interbeds within a confined aquifer system one-dimensional simulation of field observations, in International Symposium on Land Subsidence, 2d, Anaheim, California, 1976, Proceedings: International Association of Hydrological Sciences Publication 121, p. 145–156.

Helm, D.C. 1976. One-dimensional simulation of aquifer-system compaction near Pixley, California, 2, stress-dependent parameters: American Geophysical Union, Water Resources Research, v. 12, no. 3, p. 375–391.

Helm, D.C. 1975. One-dimensional simulation of aquifer-system compaction near Pixley, California, 1, Constant parameters: American Geophysical Union, Water Resources Research, v. 11, no. 3, p. 465–478.

Helm, D.C. 1974. Evaluation of stress-dependent aquitard parameters by simulating observed compaction from known stress history: Berkeley, California, University of California, doctoral dissertation, 175 p.

Hill, M.C., and C.R. Tiedman 2007. Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley Inter-science, Hoboken, NJ.455 p.

Hirsch, R.M. 1979. An evaluation of some record reconstruction techniques. *Water Resources Research*15, no.6: 1781-1790.

Höffmann, J., Leake, S.A., Galloway, D.L., and Wilson, A.M. 2003. MODFLOW-2000 Ground-Water Model--User Guide to the Subsidence and Aquifer-System Compaction (SUB) Package: U.S. Geological Survey O

Joseph, T., Godwin, J., McManus, D., Nordberg, M., Shannon, H. and S. Springhorn. 2016. Best Management Practices for the Sustainable Management of Groundwater – Modeling BMP. California Department of Water Resources, 41 p.pen-File Report 03-233, 44 p.

Kenneth D. Schmidt and Associates (KDSA) and Luhdorff and Scalmanini Consulting Engineers (LSCE). 2000. Long-term Impacts of transfer pumping by the Mendota Pool Group: Prepared for San Joaquin River Exchange Contractors Water Authority, Newhall Land and Farming Company, and Mendota Pool Group, 60 p.

Kenneth D. Schmidt and Associates (KDSA). 2009. Groundwater Conditions Beneath District Owned Lands in the Westlands Water District.

Konikow, L.F., Hornberger, G.Z., Halford, K.J., and Hanson, R.T. 2009. Revised multi-node well (MNW2) package for MODFLOW ground-water flow model: U.S. Geological Survey (USGS) Techniques and Methods 6–A30, 67 p.

Luhdorff & Scalmanini (LSCE). 2018. Hydrogeology: Conceptualizatiion Report–Westside Subbasin.

McDonald, M.G. and A.W Harbaugh. 1988. A modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey (USGS) Techniques of Water-Resources Investigations, book 6, chap. A1, 586 p.

Merritt, M.L., and Konikow, L.F. 2000. Documentation of a Computer Program to Simulate Lake-Aquifer Interaction Using the MODFLOW Ground-Water Flow Model and the MOC3D Solute-Transport Model: U.S. Geological Survey (USGS) Water-Resources Investigations Report 00-4167, 146 p.

Mahamoud, Y.M. 2008. Prediction of daily flow duration curves and streamflow for ungauged catchments using regional flow duration curves. *Hydrological Sciences Journal* 53, no. 4: 706-724.

Mussetter Engineering. 2000. Geomorphic and Sediment Baseline Evaluation of the San Joaquin River from the Delta to the Confluence with the Merced River and Major Tributaries, Prepared for the U.S. Army Corps of Engineers.

Naff RL, Banta ER. 2008. The US Geological Survey modular ground-water model-PCGN: a preconditioned conjugate gradient solver with improved nonlinear control. Geological Survey (US).

Natural Resources Conservation Service (NRCS), United States Department of Agriculture (USDA). Web Soil Survey. Available online at https://websoilsurvey.nrcs.usda.gov/.

Niswonger, R.G., Panday, Sorab, and Ibaraki, Motomu. 2011. MODFLOW-NWT, A Newton formulation for MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6-A37, 44 p.

Page, R.W. 1977. Guide for data collection to calibrate a predictive digital ground-water model of the unconfined aquifer in and near the city of Modesto, California: U.S. Geological Survey (USGS) Water-Resources Investigations Report 76-41, 46 p.

Phillips, S.P., Green, C.T., Burow, K.R., Shelton, J.L., and Rewis, D.L. 2007. Simulation of multistage groundwater flow in part of the Northeastern San Joaquin Valley, California: U.S. Geological Survey (USGS) Scientific-Investigations Report 2007–5009, 43 p.

Poeter, E.P., Hill M.C., Lu, D., Tiedeman, C.R. and Steffen Mehl 2014. UCODE_2014, With New Capabilities to Define Parameters Unique to Predictions, Calculate Weights Using Simulated Values, Estimate Parameters with SVD, Evaluate Uncertainty with MCMC, and more: Integrated Groundwater Modeling Center Report Number GWMI 2014-02.

PRISM Climate Group, Oregon State University – PRISM Climate Data. http://www.prism.oregonstate.edu/

Prudic, D.E., Konikow, L.F., and Banta, E.R. 2004. A new stream-flow routing (SFR1) package to simulate stream-aquifer interaction with MODFLOW-2000: U.S. Geological Survey (USGS) Open-File Report 2004-1042, 95 p.

Riley, F.S. 1969. Analysis of borehole extensometer data from Central California, in Tyson, L.J., ed., Land Subsidence: Tokyo, International Association of Hydrological Sciences Publication 89, v. 2, p. 423–431.

Riley, F.S. 1984. Developments in borehole extensometer, in International Symposium on Land Subsidence, 3d, Venice, Italy, 1984, Proceedings: International Association of Hydrological Sciences Publication 151, p. 169–186.

San Joaquin River Restoration Program (SJRRP). 2013. Restoration Flows Guidelines, 52 p.

Schmidt, W. 2004 A Farm Package for MODFLOW-2000: Simulation of Irrigation Demand and Conjunctively Managed Surface-Water and Ground-Water Supply; PhD Dissertation: Department of Hydrology and Water Resources, The University of Arizona, 278 p.

Schmidt, W., Hanson, R.T., Maddock III, T.M., and Leake, S.A. 2006. User's guide for the Farm process (FMP) for the U.S. Geological Survey's modular three-dimensional finite difference ground-water flow model, MODFLOW-2000: U.S. Geological Survey Techniques and Methods 6-A17, 127 p.

Siade, A., Nishikawa, T., and Martin, P 2015. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA), *Hydrogeology Journal* 23: 1267-1291

Sibson, R. 1981. A brief description of natural neighbor interpolation (Chapter 2). In V. Barnett (ed.). *Interpolating Multivariate Data*. Chichester: John Wiley. pp. 21–36.

Snyder, R.L., K. Bali. 2008. Irrigation scheduling of alfalfa using evapotranspiration. Proceedings, 2008 California Alfalfa & Forage Symposium and Western Seed Conference, San Diego, CA, 2-4 December 2008.

Snyder, R.L., M. Orang, K. Bali and S. Eching. 2000. Basic Irrigation Scheduling (BIS). University of California, Davis. 10p.

Thiem, G. 1906. Hydrologische Methoden; Gebhardt, Leipzig.

Traum, J. A., S. P. Phillips, G. L. Bennett, C. Zamora, and L. F. Metzger. 2014. Documentation of a groundwater flow model for the San Joaquin River Restoration Program (SJRRPGW) study area, California. U.S. Geological Survey Scientific Investigations Report 2014–5148.

United States Bureau of Reclamation (USBR). 2017. Finding of No Significant Impact: Westlands Water District (WWD) 5-year Warren Act Contract for Kings River Flood Flows in the San Luis Canal (FONSI-17-023).

United States Bureau of Reclamation (USBR). 1986. Agreement Between the Unites States of America and the Department of Water Resources of the State of California for Coordinated Operation of the Central Valley Project and the State Water Project. Washington D.C.

United States Department of Agriculture (USDA). 2010. From the Surface Down – An Introduction to Soil Surveys for Agronomic Use (2nd Edition), Soil Conservation Service. Columbia, Missouri. 30 p.

U.S Department of Interior (DOI). 2018. Addendum to the Coordinated Operation Agreement Central Valley Project/State Water Project.

U.S Department of Interior (DOI). 2015. Coordinated Long-Term Operation of the Central Valley Project and State Water Project.

U.S. Geological Survey (USGS). Surface Water Daily Data for the Nation, http://waterdata.usgs.gov/nwis/dv/?referred_module=sw

Weissmann, G.S., Carle, S.F., Fogg, G.E. 1999. Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics. Water Resour. Res. 35 (6), 1761–1770.

Westlands Water District (WWD). 2012. Water Management Plan. https://wwd.ca.gov/water-management/additional-water-management/water-management-plan-2012/

Wood. 2019. Cone Penetration Test Investigation Results and Recommendations.

Luhdorff & Scalmanini Consulting Engineers

Figure ES-6 Land Surface System Water Budget – Westside Subbasin 1989 - 2015

Figure ES-7 Groundwater Budget – Westside Subbasin 1989 - 2015

Figure 3-8 Surface Water Supplied to Farms (1988-2015)

Figure 3-15 Vertical Markov Chain Models in Geostatistical Model Subdomains

Figure 4-14 Observed vs. Simulated Compaction and Land Subsidence

Figure 4-15 Observed vs. Simulated Land Subsidence Along the San Luis Canal

Figure 4-18 Global Groundwater Budget 1989 - 2015

Figure 4-19 Land Surface System Water Budget – Westside Subbasin 1989 - 2015

Figure 4-20 Groundwater Budget – Westside Subbasin 1989 - 2015

Figure 4-21 Simulated Areal Groundwater Recharge – Westside Subbasin 1989 - 2015

Figure 4-22 Lateral Subsurface Groundwater Flow – Westside Subbasin 1989 - 2015

Figure 4-23 Simulated Groundwater Pumping – Westside Subbasin 1989 - 2015

Figure 4-24 Change in Groundwater Storage – Westside Subbasin 1988 - 2015

Figure 4-25 Upper and Lower Aquifer Groundwater Pumping – Westside Subbasin 1989 - 2015

Figure 4-26 Net Lateral Subsurface Groundwater by Aquifer – Westside Subbasin 1989 - 2015

Figure 4-27 Vertical Groundwater Flow Between Aquifers – Westside Subbasin 1989 - 2015

Figure 4-28 Composite Scaled Sensitivity of Simulated Hydraulic Head to Model Parameter Values

Figure 4-29 Composite Scaled Sensitivity of Simulated Subsidence to Model Parameter Values

Figure 4-30 Composite Scaled Sensitivity of Simulated Groundwater Pumping to Model Parameter Values
	Parameter Name	Calibrated Value (Coastal/Sierra)	Field and Laboratory Values
Kh Mud (ft/d)	KH1	1.07 / 0.65	2.8x10 ⁻⁶ - 2.8x10 ⁻³ ft/d ¹
Kh Muddy Sand (ft/d)	KH2	3.3 / 1.0	2.8x10 ⁻³ - 2.8x10 ⁻¹ ft/d ¹
Kh Sand (ft/d)	KH3	36 / 52	2.8x10 ⁰ - 2.8x10 ² ft/d ¹
Kh Sand & Gravel (ft/d)	KH4	1000 / 409	2.8x10 ¹ - 2.8x10 ³ ft/d ¹ ; 8.2x10 ² ft/d ³
Kh A,B,C,D and F Clay (ft/d)	KHMUD	0.01	2.83x10 ⁻⁶ - 2.83x10 ⁻³ ft/d ¹
Kh Corcoran Clay (ft/d)	KHE	0.01	2.83x10 ⁻⁶ - 2.83x10 ⁻³ ft/d ¹
Kv Mud (ft/d)	KV1	1.11E-03 / 6.83E-04	2.0x10 ⁻⁵ - 3.0x10 ⁻³ ft/d ³
Kv Muddy Sand (ft/d)	KV2	6.33E-03 / 0.10	-
Kv Sand (ft/d)	KV3	0.70 / 0.25	-
Kv Sand & Gravel (ft/d)	KV4	11.00 / 11.00	10 ft/d ³
Kv A,B,C,D and F Clay (ft/d)	KVMUD	9.55E-04	2.0x10 ⁻⁶ - 2.0x10 ⁻³ ft/d ³
Kv Corcoran Clay (ft/d)	KVE	2.96E-05	6.6x10 ⁻⁶ ft/d ⁴
Sy Mud	SY1	0.10/0.10	0 - 0.35 ³
Sy Muddy Sand	SY2	0.20 / 0.17	0 - 0.35 ³
Sy Sand	SY3	0.27 / 0.23	0 - 0.35 ³
Sy Sand & Gravel	SY4	0.32 / 0.21	0 - 0.35 ³
Porosity Mud	PSTY1	0.45	0.33 - 0.60 ¹ ; 0.25 - 0.65 ³
Porosity Muddy Sand	PSTY2	0.40	0.35 - 0.50 ¹ ; 0.25 - 0.65 ³
Porosity Sand	PSTY3	0.35	0.25 - 0.65 ³
Porosity Sand & Gravel	PSTY4	0.35	0.25 - 0.50 ¹ ; 0.25 - 0.65 ³
Porosity A,B,C,D and F Clay	PSTYMUD	0.45	0.33 - 0.60 ¹ ; 0.25 - 0.65 ³
Porosity Corcoran Clay	PSTYE	0.45	0.33 - 0.60 ¹ ; 0.25 - 0.65 ³
SS _{ke} Mud (ft ⁻¹)	SSKE1	5.60E-06 / 6.02E-06	2.0x10 ⁻⁶ - 7.5x10 ⁻⁶ per ft ⁵⁻¹⁰
SS _{ke} Muddy Sand (ft ⁻¹)	SSKE2	2.25E-06 / 5.72E-06	-
SS _{ke} Sand (ft ⁻¹)	SSKE3	2.00E-06 / 6.49E-06	-
SS _{ke} Sand & Gravel (ft ⁻¹)	SSKE4	1.05E-06 / 1.10E-06	1.0x10 ⁻⁶ per ft ⁵⁻¹⁰
SS _{ke} A,B,C,D and F Clay (ft ⁻¹)	SSKEMUD	7.40E-06	2.0x10 ⁻⁶ - 7.5x10 ⁻⁶ per ft ⁵⁻¹⁰
SS _{ke} E Clay (ft ⁻¹)	SSKEE	7.40E-06	2.0x10 ⁻⁶ - 7.5x10 ⁻⁶ per ft ⁵⁻¹⁰
SS _{kv} Mud (ft ⁻¹)	SSKV1	1.40E-04 / 3.75E-04	1.4x10 ⁻⁴ - 6.7x10 ⁻⁴ per foot ¹⁰
SS _{kv} Muddy Sand (ft ⁻¹)	SSKV2	1.00E-04 / 1.00E-04	-
SS _{kv} Sand (ft ⁻¹)	SSKV3	5.00E-05 / 2.84E-05	-
SS _{kv} Sand & Gravel (ft ⁻¹)	SSKV4	1.10E-06 / 1.10E-05	-
SS _{kv} A,B,C,D and F Clay (ft ⁻¹)	SSKVMUD	6.86E-04	1.4x10 ⁻⁴ - 6.7x10 ⁻⁴ per foot ¹⁰
SS _{kv} E Clay (ft ⁻¹)	SSKVE	7.40E-06	1.4x10 ⁻⁴ - 6.7x10 ⁻⁴ per foot ¹⁰
Consumptive Use Fraction Multiplier	FTRFACT	1.10	-
Crop Coefficient Multipliers	KCFACT	1.00-1.34	-
Capillary Fringe Height Multiplier	CAPFRINGEFACT	0.81	-
Rooting Depth Multiplier	ROOTFACT	0.91	-
Irrigation Efficiency Furrow/Sprinkler	OFE_01	0.74	-
Irrigation Efficiency Sprinkler/Drip	OFE_02	0.81	-
Irrigation Efficiency Drip	OFE_03	0.93	-
Irrigation Efficiency Urban/Dairy	OFE_04	0.80	-

Table 4-1: Calibrated Parameter Values from the Groundwater Flow Model

¹ Fetter (1988)

² Phillips et al (2007)

³ Bertoldi et al (1991)

⁴ Page (1977)

⁵ Riley (1969)
 ⁶ Riley (1984)
 ⁷ Helm (1974)

⁸ Helm (1975)

⁹ Helm (1976)

¹⁰ Helm (1977)

Crop	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Alfalfa	0.45	0.61	0.88	0.56	0.73	0.68	0.68	0.70	0.63	0.87	0.56	0.32
Almonds	1.17	0.81	0.50	0.67	0.75	0.84	0.86	0.62	0.41	0.32	0.50	0.96
Melons	1.17	0.81	0.50	0.28	0.33	0.81	0.55	0.19	0.24	0.31	0.50	0.96
Carrots/Broccoli	1.17	1.00	1.08	1.09	0.56	0.19	0.18	0.19	0.24	0.31	0.50	0.96
Citrus	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57
Corn	1.17	0.81	0.50	0.28	0.26	0.79	1.27	1.00	0.24	0.31	0.50	0.96
Cotton	1.17	0.81	0.50	0.28	0.22	0.32	1.12	1.35	0.80	0.31	0.50	0.96
Beans	1.17	0.81	0.50	0.28	0.22	0.21	0.54	1.03	0.87	0.31	0.50	0.96
Field Crops	1.17	0.81	0.74	0.71	0.48	0.19	0.33	0.54	0.47	0.31	0.50	0.96
Нау	1.17	1.26	1.26	1.09	0.48	0.19	0.18	0.19	0.24	0.31	0.50	0.96
Grapes	1.17	0.81	0.50	0.28	0.25	0.45	0.57	0.57	0.55	0.31	0.50	0.96
Lettuce-Fall	1.17	0.81	0.50	0.28	0.22	0.19	0.18	0.19	0.28	0.56	0.50	0.96
Lettuce-Spring	1.17	0.81	0.50	0.55	0.22	0.19	0.18	0.19	0.24	0.31	0.50	0.96
Onions	1.17	0.81	0.50	0.56	0.78	0.80	0.41	0.19	0.24	0.31	0.50	0.96
Pasture	1.17	0.81	0.63	0.83	1.02	1.18	1.20	1.20	1.20	1.20	1.09	0.96
Fruits/Nuts	1.17	0.81	0.50	0.45	0.66	0.74	0.74	0.74	0.66	0.45	0.50	0.96
Safflower/Canola	1.17	0.81	0.50	0.77	1.34	1.24	0.23	0.19	0.24	0.31	0.50	0.96
Beets	1.17	0.81	0.50	0.73	1.12	1.12	1.00	0.49	0.24	0.31	0.50	0.96
Tomatoes	1.17	0.81	0.50	0.32	0.93	1.28	0.46	0.19	0.24	0.31	0.50	0.96
Wheat	1.17	0.81	1.08	1.15	1.02	0.19	0.18	0.19	0.24	0.31	0.50	0.96
Fallow/Native Veg.	1.10	1.15	1.18	1.21	1.23	1.23	1.23	1.23	1.23	1.20	0.92	0.96
Water	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26
Dairies	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
Urban	0.86	1.10	1.25	1.25	1.25	1.25	1.25	1.25	0.86	0.86	0.86	0.96

 Table 4-2: Calibrated Monthly Crop Coefficients from the Groundwater Flow Model

Crop	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Alfalfa	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Almonds	0.00	0.00	0.22	0.94	0.99	1.00	1.00	1.00	1.00	0.22	0.00	0.00
Melons	0.00	0.00	0.00	0.00	0.44	0.88	0.88	0.00	0.00	0.00	0.00	0.00
Carrots/Broccoli	0.55	0.83	0.83	0.83	0.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Citrus	0.94	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Corn	0.00	0.00	0.00	0.00	0.76	1.00	1.00	1.00	0.00	0.00	0.00	0.00
Cotton	0.00	0.00	0.00	0.00	0.00	0.55	0.99	0.99	0.83	0.00	0.00	0.00
Beans	0.00	0.00	0.00	0.00	0.00	0.28	0.99	0.99	0.83	0.00	0.00	0.00
Field Crops	0.68	0.86	1.00	1.00	0.69	0.00	0.00	0.78	0.67	0.00	0.37	0.42
Нау	0.87	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.56
Grapes	0.00	0.00	0.00	0.00	0.55	0.83	1.00	1.00	0.88	0.00	0.00	0.00
Lettuce-Fall	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.55	1.00	0.55	0.00
Lettuce-Spring	0.00	0.55	1.00	0.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Onions	0.00	0.00	0.55	0.83	0.99	0.99	0.55	0.00	0.00	0.00	0.00	0.00
Pasture	0.88	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fruits/Nuts	0.00	0.00	0.55	0.79	0.95	1.00	1.00	0.88	0.77	0.28	0.00	0.00
Safflower/Canola	0.00	0.28	0.55	0.99	0.94	0.22	0.00	0.00	0.00	0.00	0.00	0.00
Beets	0.00	0.00	0.22	0.72	0.99	0.99	0.99	0.72	0.00	0.00	0.00	0.00
Tomatoes	0.00	0.00	0.28	0.66	0.99	0.55	0.00	0.00	0.00	0.00	0.00	0.00
Wheat	0.22	0.55	0.99	0.99	0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fallow/Native Veg.	0.72	0.72	0.72	0.70	0.65	0.63	0.63	0.63	0.63	0.63	0.63	0.63
Water	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dairies	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Urban	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

 Table 4-3: Calibrated Monthly Consumptive Use Fractions from the Groundwater Flow Model

Water Year	Water Year Type	Precipitation (af)	Imported Surface Water ¹ (af)	Utilized Surface Water ² (af)	Groundwater Pumping (af)	Total Inflow (af)	Evapo- transpiration (af)	Net Deep Percolation ³ (af)	Total Outflow (af)
1989	C	696,000	1,746,000	1,545,000	1,189,000	3,430,000	2,694,000	736,000	3,430,000
1990	С	639,000	1,510,000	1,368,000	1,356,000	3,363,000	2,714,000	649,000	3,363,000
1991	С	843,000	859,000	773,000	1,606,000	3,223,000	2,597,000	626,000	3,223,000
1992	С	966,000	890,000	800,000	1,574,000	3,340,000	2,755,000	585,000	3,340,000
1993	W	1,656,000	1,586,000	1,351,000	896,000	3,904,000	3,015,000	889,000	3,904,000
1994	С	886,000	1,566,000	1,435,000	1,161,000	3,482,000	2,911,000	572,000	3,482,000
1995	W	1,720,000	1,833,000	1,485,000	609,000	3,814,000	2,857,000	957,000	3,814,000
1996	W	970,000	2,403,000	1,961,000	700,000	3,631,000	2,882,000	749,000	3,631,000
1997	W	1,260,000	2,163,000	1,717,000	779,000	3,756,000	2,933,000	823,000	3,756,000
1998	W	2,104,000	1,607,000	1,321,000	563,000	3,988,000	3,119,000	869,000	3,988,000
1999	AN	739,000	2,127,000	1,815,000	812,000	3,366,000	2,910,000	456,000	3,366,000
2000	AN	1,017,000	1,730,000	1,509,000	908,000	3,434,000	2,949,000	485,000	3,434,000
2001	D	997,000	1,532,000	1,408,000	1,163,000	3,567,000	3,117,000	451,000	3,567,000
2002	D	710,000	1,573,000	1,433,000	1,184,000	3,326,000	2,829,000	497,000	3,326,000
2003	BN	943,000	1,694,000	1,546,000	920,000	3,410,000	2,872,000	537,000	3,410,000
2004	D	688,000	1,738,000	1,545,000	999,000	3,232,000	2,671,000	561,000	3,232,000
2005	W	1,599,000	1,800,000	1,496,000	510,000	3,605,000	2,934,000	671,000	3,605,000
2006	W	1,181,000	2,036,000	1,667,000	533,000	3,381,000	2,787,000	594,000	3,381,000
2007	C	442,000	1,720,000	1,518,000	921,000	2,881,000	2,589,000	292,000	2,881,000
2008	С	741,000	1,126,000	991,000	1,116,000	2,848,000	2,539,000	309,000	2,848,000
2009	BN	663,000	863,000	758,000	1,194,000	2,616,000	2,440,000	176,000	2,616,000
2010	AN	1,175,000	1,290,000	1,122,000	738,000	3,035,000	2,563,000	472,000	3,035,000
2011	W	1,501,000	1,880,000	1,524,000	525,000	3,550,000	2,762,000	788,000	3,550,000
2012	D	675,000	1,490,000	1,325,000	967,000	2,967,000	2,655,000	312,000	2,967,000
2013	C	504,000	1,003,000	883,000	1,317,000	2,704,000	2,450,000	255,000	2,704,000
2014	C	410,000	537,000	498,000	1,619,000	2,527,000	2,379,000	148,000	2,527,000
2015	С	602,000	453,000	414,000	1,618,000	2,634,000	2,310,000	324,000	2,634,000
Ave	rage	975,000	1,509,000	1,304,000	1,018,000	3,297,000	2,749,000	547,000	3,297,000

 Table 4-4: Land Surface Water Budget for the Model Domain (1989-2015)

1. Reported surface water imports from WWD & USBR records

2. Simulated surface water imports (imports not utilized by model rejected and not included in FMP water budget)

3. Difference between deep percolation and groundwater uptake from plants and direct evaporation

Water Year	Water Year Type	Net Deep Percolation (af)	Surface Water to Aquifer (af)	Lateral Subsurface Inflow (af)	Total Inflow (af)	Groundwater Pumping (af)	Aquifer to Surface Water (af)	Lateral Subsurface Outflow (af)	Total Outflow (af)	Change In Groundwater Storage (af)
1989	C	736,000	25,000	501,000	1,262,000	1,189,000	3,000	269,000	1,461,000	-198,000
1990	С	649,000	30,000	482,000	1,160,000	1,356,000	1,000	264,000	1,621,000	-467,000
1991	C	626,000	70,000	493,000	1,189,000	1,606,000	2,000	278,000	1,886,000	-705,000
1992	C	585,000	61,000	498,000	1,143,000	1,574,000	1,000	272,000	1,847,000	-712,000
1993	W	889,000	179,000	443,000	1,511,000	896,000	4,000	219,000	1,120,000	392,000
1994	C	572,000	79,000	443,000	1,094,000	1,161,000	6,000	232,000	1,399,000	-308,000
1995	W	957,000	187,000	418,000	1,562,000	609,000	8,000	204,000	821,000	737,000
1996	W	749,000	132,000	386,000	1,268,000	700,000	10,000	196,000	906,000	358,000
1997	W	823,000	167,000	385,000	1,375,000	779,000	16,000	211,000	1,006,000	368,000
1998	W	869,000	168,000	374,000	1,410,000	563,000	11,000	203,000	777,000	633,000
1999	AN	456,000	80,000	372,000	908,000	812,000	9,000	198,000	1,019,000	-110,000
2000	AN	485,000	87,000	383,000	955,000	908,000	7,000	199,000	1,114,000	-157,000
2001	D	451,000	107,000	428,000	985,000	1,163,000	6,000	204,000	1,373,000	-382,000
2002	D	497,000	64,000	459,000	1,021,000	1,184,000	5,000	219,000	1,407,000	-385,000
2003	BN	537,000	88,000	473,000	1,098,000	920,000	5,000	200,000	1,125,000	-35,000
2004	D	561,000	41,000	471,000	1,073,000	999,000	4,000	208,000	1,211,000	-141,000
2005	W	671,000	133,000	396,000	1,199,000	510,000	6,000	201,000	717,000	471,000
2006	W	594,000	163,000	358,000	1,115,000	533,000	17,000	181,000	731,000	389,000
2007	C	292,000	82,000	362,000	736,000	921,000	9,000	233,000	1,163,000	-432,000
2008	С	309,000	91,000	431,000	831,000	1,116,000	5,000	232,000	1,353,000	-525,000
2009	BN	176,000	54,000	488,000	718,000	1,194,000	4,000	186,000	1,384,000	-666,000
2010	AN	472,000	140,000	437,000	1,049,000	738,000	6,000	194,000	937,000	112,000
2011	W	788,000	175,000	393,000	1,356,000	525,000	17,000	179,000	722,000	633,000
2012	D	312,000	102,000	390,000	804,000	967,000	8,000	203,000	1,179,000	-371,000
2013	С	255,000	76,000	461,000	791,000	1,317,000	3,000	232,000	1,552,000	-759,000
2014	C	148,000	74,000	534,000	756,000	1,619,000	2,000	212,000	1,833,000	-1,081,000
2015	C	324,000	56,000	552,000	932,000	1,618,000	4,000	219,000	1,842,000	-909,000
Ave	rage	547,000	100,000	437,000	1,085,000	1,018,000	7,000	217,000	1,241,000	-157,000

 Table 4-5: Aggregated Groundwater Budget for the Model Domain (1989-2015)

Water Year	Water Year Type	Precipitation (af)	Imported Surface Water ¹ (af)	Utilized Surface Water ² (af)	Groundwater Pumping (af)	Total Inflow (af)	Evapo- transpiration (af)	Net Deep Percolation ³ (af)	Total Outflow (af)
1989	С	269,000	1,135,000	1,069,000	328,000	1,667,000	1,183,000	483,000	1,667,000
1990	С	243,000	924,000	902,000	484,000	1,629,000	1,200,000	429,000	1,629,000
1991	С	336,000	421,000	418,000	697,000	1,452,000	1,138,000	315,000	1,452,000
1992	С	402,000	457,000	455,000	665,000	1,521,000	1,221,000	300,000	1,521,000
1993	W	706,000	760,000	752,000	318,000	1,776,000	1,327,000	448,000	1,776,000
1994	С	362,000	891,000	881,000	439,000	1,682,000	1,286,000	396,000	1,682,000
1995	W	715,000	951,000	883,000	170,000	1,767,000	1,240,000	528,000	1,767,000
1996	W	364,000	1,373,000	1,227,000	177,000	1,769,000	1,269,000	500,000	1,769,000
1997	W	506,000	1,319,000	1,111,000	178,000	1,795,000	1,295,000	499,000	1,795,000
1998	W	847,000	993,000	881,000	116,000	1,845,000	1,370,000	474,000	1,845,000
1999	AN	290,000	1,279,000	1,158,000	208,000	1,655,000	1,304,000	351,000	1,655,000
2000	AN	388,000	949,000	902,000	304,000	1,595,000	1,319,000	275,000	1,595,000
2001	D	412,000	907,000	884,000	409,000	1,705,000	1,399,000	306,000	1,705,000
2002	D	265,000	892,000	864,000	412,000	1,541,000	1,254,000	287,000	1,541,000
2003	BN	380,000	997,000	963,000	227,000	1,571,000	1,254,000	317,000	1,571,000
2004	D	272,000	1,044,000	974,000	233,000	1,479,000	1,151,000	328,000	1,479,000
2005	W	633,000	992,000	909,000	79,000	1,621,000	1,266,000	356,000	1,621,000
2006	W	453,000	1,121,000	1,023,000	90,000	1,565,000	1,197,000	369,000	1,566,000
2007	С	163,000	1,025,000	963,000	241,000	1,368,000	1,126,000	242,000	1,368,000
2008	С	302,000	574,000	554,000	329,000	1,185,000	1,054,000	132,000	1,185,000
2009	BN	257,000	357,000	348,000	377,000	982,000	952,000	30,000	982,000
2010	AN	474,000	603,000	593,000	181,000	1,248,000	1,041,000	207,000	1,248,000
2011	W	587,000	1,011,000	928,000	93,000	1,609,000	1,160,000	449,000	1,609,000
2012	D	271,000	829,000	796,000	304,000	1,371,000	1,115,000	256,000	1,371,000
2013	С	196,000	508,000	493,000	454,000	1,143,000	1,021,000	121,000	1,143,000
2014	С	160,000	223,000	220,000	614,000	993,000	947,000	46,000	993,000
2015	С	250,000	179,000	178,000	608,000	1,035,000	920,000	115,000	1,035,000
Ave	erage	389,000	841,000	790,000	324,000	1,503,000	1,185,000	317,000	1,503,000

Table 4-6: Land Surface Water Budget for the Westside Subbasin (1989-2015)

1. Reported surface water imports from WWD records

2. Simulated surface water imports (imports not utilized by model rejected and not included in FMP water budget)

3. Difference between deep percolation and groundwater uptake from plants and direct evaporation

Water Year	Water Year Type	Precipitation (af)	Imported Surface Water ¹ (af)	Utilized Surface Water ² (af)	Groundwater Pumping (af)	ET Groundwater (af)	Total (af)
1989	С	269,000	1,135,000	1,069,000	328,000	181,000	1,848,000
1990	С	243,000	924,000	902,000	484,000	175,000	1,805,000
1991	С	336,000	421,000	418,000	697,000	146,000	1,598,000
1992	С	402,000	457,000	455,000	665,000	131,000	1,653,000
1993	W	706,000	760,000	752,000	318,000	202,000	1,977,000
1994	С	362,000	891,000	881,000	439,000	177,000	1,860,000
1995	W	715,000	951,000	883,000	170,000	249,000	2,017,000
1996	W	364,000	1,373,000	1,227,000	177,000	276,000	2,045,000
1997	W	506,000	1,319,000	1,111,000	178,000	325,000	2,120,000
1998	W	847,000	993,000	881,000	116,000	377,000	2,222,000
1999	AN	290,000	1,279,000	1,158,000	208,000	318,000	1,973,000
2000	AN	388,000	949,000	902,000	304,000	260,000	1,855,000
2001	D	412,000	907,000	884,000	409,000	262,000	1,966,000
2002	D	265,000	892,000	864,000	412,000	213,000	1,754,000
2003	BN	380,000	997,000	963,000	227,000	236,000	1,806,000
2004	D	272,000	1,044,000	974,000	233,000	223,000	1,701,000
2005	W	633,000	992,000	909,000	79,000	259,000	1,881,000
2006	W	453,000	1,121,000	1,023,000	90,000	251,000	1,816,000
2007	С	163,000	1,025,000	963,000	241,000	241,000	1,609,000
2008	С	302,000	574,000	554,000	329,000	164,000	1,350,000
2009	BN	257,000	357,000	348,000	377,000	114,000	1,096,000
2010	AN	474,000	603,000	593,000	181,000	89,000	1,337,000
2011	W	587,000	1,011,000	928,000	93,000	134,000	1,743,000
2012	D	271,000	829,000	796,000	304,000	149,000	1,519,000
2013	С	196,000	508,000	493,000	454,000	103,000	1,245,000
2014	С	160,000	223,000	220,000	614,000	67,000	1,061,000
2015	С	250,000	179,000	178,000	608,000	49,000	1,084,000
Ave	rage	389,000	841,000	790,000	324,000	199,000	1,702,000

Table 4-7: Land Surface Inflows for the Westside Subbasin (1989-2015)

1. Reported surface water imports from WWD records

2. Simulated surface water imports (imports not utilized by model rejected and not included in FMP water budget)

Watar	Water	Evapor	ation (af)	Transpi	ration (af)	ET	Deep Perc	olation (af)	Total
Year	Year Type	Irrigation	Precipitation	Irrigation	Precipitation	Groundwater (af)	Irrigation Demand	Cultural Practices	(af)
1989	С	12,000	155,000	777,000	58,000	181,000	321,000	343,000	1,848,000
1990	C	14,000	158,000	786,000	67,000	175,000	288,000	317,000	1,805,000
1991	C	7,000	127,000	795,000	62,000	146,000	410,000	51,000	1,598,000
1992	С	6,000	211,000	809,000	63,000	131,000	394,000	37,000	1,653,000
1993	W	5,000	284,000	756,000	81,000	202,000	590,000	60,000	1,977,000
1994	С	9,000	249,000	755,000	95,000	177,000	267,000	307,000	1,860,000
1995	W	3,000	253,000	650,000	84,000	249,000	590,000	188,000	2,017,000
1996	W	7,000	205,000	722,000	59,000	276,000	337,000	439,000	2,045,000
1997	W	9,000	213,000	715,000	33,000	325,000	495,000	330,000	2,119,000
1998	W	2,000	315,000	558,000	118,000	377,000	581,000	270,000	2,222,000
1999	AN	10,000	189,000	740,000	48,000	318,000	279,000	390,000	1,973,000
2000	AN	12,000	203,000	762,000	82,000	260,000	337,000	199,000	1,855,000
2001	D	8,000	275,000	775,000	79,000	262,000	289,000	279,000	1,966,000
2002	D	13,000	160,000	829,000	39,000	213,000	316,000	184,000	1,754,000
2003	BN	11,000	225,000	704,000	78,000	236,000	284,000	268,000	1,806,000
2004	D	15,000	171,000	708,000	34,000	223,000	275,000	276,000	1,701,000
2005	W	4,000	293,000	598,000	112,000	259,000	390,000	225,000	1,881,000
2006	W	5,000	210,000	638,000	93,000	251,000	317,000	303,000	1,816,000
2007	C	15,000	114,000	712,000	44,000	241,000	121,000	362,000	1,609,000
2008	C	17,000	152,000	681,000	39,000	164,000	218,000	78,000	1,350,000
2009	BN	16,000	158,000	587,000	77,000	114,000	103,000	41,000	1,096,000
2010	AN	10,000	203,000	614,000	124,000	89,000	237,000	59,000	1,337,000
2011	W	5,000	244,000	660,000	116,000	134,000	331,000	253,000	1,743,000
2012	D	6,000	160,000	705,000	95,000	149,000	118,000	286,000	1,519,000
2013	C	15,000	117,000	743,000	43,000	103,000	136,000	88,000	1,245,000
2014	С	14,000	92,000	708,000	66,000	67,000	91,000	23,000	1,061,000
2015	C	19,000	107,000	674,000	72,000	49,000	151,000	13,000	1,084,000
Ave	rage	10,000	194,000	710,000	73,000	199,000	306,000	210,000	1,702,000

Table 4-8: Land Surface Outflows for the Westside Subbasin (1989-2015)

Water Year	Water Year Type	Net Deep Percolation (af)	Stream Leakage (af)	Lateral Subsurface Inflow (af)	Total Inflow (af)	Groundwater Pumping (af)	Lateral Subsurface Outflow (af)	Total Outflow (af)	Change In Groundwater Storage (af)
1989	С	485,000	0	205,000	691,000	326,000	178,000	503,000	182,000
1990	С	430,000	1,000	202,000	633,000	483,000	180,000	663,000	-36,000
1991	С	316,000	5,000	235,000	556,000	697,000	168,000	865,000	-315,000
1992	C	301,000	8,000	245,000	554,000	667,000	167,000	834,000	-286,000
1993	W	451,000	30,000	223,000	705,000	317,000	153,000	470,000	231,000
1994	C	398,000	3,000	206,000	607,000	436,000	162,000	598,000	2,000
1995	W	530,000	32,000	185,000	747,000	169,000	144,000	313,000	427,000
1996	W	500,000	10,000	141,000	651,000	176,000	152,000	329,000	320,000
1997	W	500,000	18,000	119,000	637,000	177,000	164,000	341,000	294,000
1998	W	476,000	33,000	102,000	611,000	116,000	163,000	279,000	329,000
1999	AN	349,000	6,000	98,000	453,000	209,000	171,000	380,000	73,000
2000	AN	275,000	6,000	114,000	394,000	304,000	163,000	467,000	-73,000
2001	D	306,000	10,000	142,000	458,000	408,000	170,000	578,000	-121,000
2002	D	287,000	1,000	167,000	455,000	413,000	173,000	587,000	-133,000
2003	BN	318,000	3,000	157,000	478,000	230,000	180,000	410,000	59,000
2004	D	328,000	2,000	133,000	462,000	236,000	192,000	428,000	31,000
2005	W	356,000	26,000	117,000	499,000	91,000	155,000	246,000	244,000
2006	W	368,000	14,000	88,000	470,000	101,000	153,000	254,000	211,000
2007	C	239,000	1,000	88,000	328,000	253,000	171,000	424,000	-98,000
2008	C	125,000	7,000	105,000	238,000	326,000	188,000	514,000	-281,000
2009	BN	28,000	1,000	130,000	159,000	373,000	186,000	559,000	-401,000
2010	AN	209,000	12,000	131,000	352,000	179,000	162,000	341,000	9,000
2011	W	451,000	24,000	96,000	572,000	92,000	148,000	240,000	327,000
2012	D	249,000	2,000	97,000	348,000	302,000	160,000	462,000	-112,000
2013	С	118,000	1,000	130,000	249,000	450,000	183,000	633,000	-383,000
2014	C	43,000	1,000	186,000	231,000	608,000	188,000	796,000	-568,000
2015	С	115,000	0	225,000	340,000	603,000	184,000	787,000	-449,000
Ave	rage	317,000	10,000	151,000	477,000	324,000	169,000	493,000	-19,000

 Table 4-9: Groundwater Budget for the Westside Subbasin (1989-2015)

Water Year	Water Year Type	Net Deep Percolation (af)	Stream Leakage (af)	Lateral Subsurface Inflow (af)	Total Inflow (af)	Groundwater Pumping (af)	Lateral Subsurface Outflow (af)	Vertical Flow ¹ (af)	Total Outflow (af)	Change In Groundwater Storage (af)
1989	С	485,000	0	33,000	519,000	94,000	108,000	160,000	363,000	150,000
1990	С	430,000	1,000	33,000	464,000	136,000	111,000	157,000	404,000	58,000
1991	С	316,000	5,000	36,000	357,000	199,000	105,000	166,000	470,000	-112,000
1992	С	301,000	8,000	36,000	345,000	189,000	104,000	174,000	467,000	-123,000
1993	W	451,000	30,000	36,000	517,000	93,000	94,000	179,000	365,000	146,000
1994	С	398,000	3,000	33,000	434,000	128,000	105,000	161,000	394,000	38,000
1995	W	530,000	32,000	33,000	595,000	52,000	91,000	175,000	318,000	269,000
1996	W	500,000	10,000	29,000	540,000	52,000	101,000	151,000	304,000	230,000
1997	W	500,000	18,000	28,000	546,000	50,000	111,000	138,000	299,000	243,000
1998	W	476,000	33,000	27,000	536,000	35,000	104,000	139,000	278,000	253,000
1999	AN	349,000	6,000	26,000	381,000	60,000	113,000	128,000	301,000	79,000
2000	AN	275,000	6,000	28,000	308,000	86,000	110,000	129,000	325,000	-16,000
2001	D	306,000	10,000	29,000	345,000	113,000	116,000	138,000	366,000	-18,000
2002	D	287,000	1,000	31,000	319,000	116,000	116,000	152,000	384,000	-64,000
2003	BN	318,000	3,000	30,000	351,000	68,000	120,000	163,000	351,000	-6,000
2004	D	328,000	2,000	30,000	359,000	66,000	128,000	151,000	345,000	9,000
2005	W	356,000	26,000	28,000	410,000	25,000	101,000	157,000	283,000	117,000
2006	W	368,000	14,000	25,000	407,000	29,000	97,000	140,000	266,000	134,000
2007	С	239,000	1,000	25,000	266,000	69,000	117,000	122,000	308,000	-44,000
2008	С	125,000	7,000	28,000	161,000	92,000	125,000	133,000	350,000	-189,000
2009	BN	28,000	1,000	30,000	59,000	107,000	124,000	143,000	374,000	-313,000
2010	AN	209,000	12,000	30,000	251,000	56,000	108,000	156,000	320,000	-73,000
2011	W	451,000	24,000	26,000	502,000	28,000	97,000	149,000	273,000	222,000
2012	D	249,000	2,000	25,000	276,000	85,000	110,000	127,000	322,000	-45,000
2013	С	118,000	1,000	28,000	147,000	120,000	124,000	136,000	381,000	-229,000
2014	С	43,000	1,000	31,000	75,000	167,000	125,000	162,000	454,000	-374,000
2015	С	115,000	0	33,000	148,000	169,000	122,000	176,000	467,000	-316,000
Ave	rage	317,000	10,000	30,000	356,000	92,000	111,000	150,000	353,000	1,000

Table 4-10: Upper Aquifer Groundwater Budget in the Westside Subbasin (1989-2015)

1. Flow from Upper to Lower Aquifer (Includes Flow through Corcoran Clay and Intraborehole Flow)

Water Year	Water Year Type	Lateral Subsurface Inflow (af)	Vertical Flow ¹ (af)	Total Inflow (af)	Groundwater Pumping (af)	Lateral Subsurface Outflow (af)	Total Outflow (af)	Change In Groundwater Storage (af)
1989	С	172,000	160,000	332,000	232,000	69,000	301,000	31,000
1990	С	169,000	157,000	326,000	346,000	69,000	415,000	-94,000
1991	С	199,000	166,000	365,000	497,000	64,000	561,000	-203,000
1992	С	209,000	174,000	383,000	478,000	63,000	541,000	-162,000
1993	W	187,000	179,000	366,000	224,000	59,000	283,000	86,000
1994	С	173,000	161,000	334,000	308,000	57,000	365,000	-36,000
1995	W	152,000	175,000	327,000	118,000	53,000	171,000	159,000
1996	W	111,000	151,000	262,000	124,000	51,000	175,000	89,000
1997	W	91,000	138,000	230,000	127,000	53,000	180,000	51,000
1998	W	75,000	139,000	214,000	81,000	59,000	140,000	76,000
1999	AN	72,000	128,000	199,000	149,000	58,000	207,000	-7,000
2000	AN	86,000	129,000	215,000	219,000	52,000	271,000	-58,000
2001	D	113,000	138,000	251,000	296,000	54,000	350,000	-103,000
2002	D	136,000	152,000	288,000	298,000	57,000	355,000	-70,000
2003	BN	127,000	163,000	290,000	162,000	61,000	222,000	65,000
2004	D	103,000	151,000	254,000	170,000	64,000	234,000	22,000
2005	W	89,000	157,000	247,000	66,000	54,000	120,000	127,000
2006	W	63,000	140,000	203,000	72,000	56,000	128,000	78,000
2007	С	63,000	122,000	185,000	184,000	54,000	238,000	-54,000
2008	С	77,000	133,000	210,000	233,000	63,000	297,000	-93,000
2009	BN	99,000	143,000	242,000	266,000	62,000	328,000	-88,000
2010	AN	101,000	156,000	256,000	123,000	54,000	177,000	82,000
2011	W	70,000	149,000	219,000	65,000	51,000	116,000	106,000
2012	D	72,000	127,000	199,000	217,000	50,000	267,000	-67,000
2013	С	102,000	136,000	238,000	330,000	58,000	388,000	-154,000
2014	С	156,000	162,000	318,000	441,000	62,000	503,000	-194,000
2015	С	192,000	176,000	369,000	434,000	62,000	496,000	-132,000
Ave	rage	121,000	150,000	271,000	232,000	58,000	290,000	-20,000

 Table 4-11: Lower Aquifer Groundwater Budget in the Westside Subbasin (1989-2015)

1. Flow from Upper to Lower Aquifer (Includes Flow through Corcoran Clay and Intraborehole Flow)

Figure 5-2 Total Annual Precipitation Assigned to Model Cells 2020-2070

Luhdorff & Scalmanini Consulting Engineers Figure 5-3 Total Annual Reference Evapotranspiration Assigned to Model Cells 2020-2070

Water Year

Figure 5-4 Projected CVP Surface Water Imports to Westland Water District 2020-2070

Figure 5-5 Project vs No Project South of Delta CVP Exports Cooperated Use Agreement Addendum

Figure 5-6 Increase in South of Delta CVP Imports Cooperated Use Agreement Addendum

Luhdorff & Scalmanini Consulting Engineers

Figure 5-8 Total Projected Imports to Westlands Water District Aggregated by CVP Contract Year

Figure 5-10 Example of Projected General Head Boundary Water Level Adjustments

Figure 5-11 Projected CVP Surface Water Imports to Westland Water District 2070 Climate Scenario 2020-2070

Luhdorff & Scalmanini Consulting Engineers

Figure 5-12 Total Projected Imports to Westlands Water District Aggregated by CVP Contract Year (2070 Climate Change)

Figure 5-13 Assigned Flow in Los Gatos Creek in Model Projections 2020-2070

Figure 5-15 Average Assigned Precipitation in Model Projections 2020-2070

Luhdorff & Scalmanini Consulting Engineers Figure 5-16 Average Assigned Reference Evapotranspiration in Model Projections 2020-2070

Figure 5-19 Average Assigned Irrigated Lands in PMA No. 2 2016-2070

Figure 5-21 Specified Injection in No Climate Change and 2030 Climate Change Projections

Figure 5-22 Specified Injection in 2070 Climate Change Projection

Luhdorff &

Scalmanini Consulting Engineers Figure 5-24 Simulated Groundwater Pumping within Subsidence Prone Areas in Baseline Model Scenarios (2042 – 2047)

Historic Water Year	Projected Water Year	Water Year Type ¹	CVP Allocation ² (AF)	COA Benefit ³ (AF)	Total CVP Delivery (AF)	Supplemental WWD & W.U. Transfers ⁴ (AF)	Total Imported Water (AF)
-	2016	BN	9,000	-	9,000	247,000	256,000
-	2017	W	911,000	-	911,000	124,000	1,036,000
1963	2020	W	639,000	48,000	687,000	143,000	830,000
1964	2020	W	256,000	85,000	341,000	196,000	537,000
1965	2020	W	612,000	48,000	660,000	143,000	803,000
1966	2021	BN	653,000	67,000	720,000	143,000	863,000
1967	2022	W	1,159,000	48,000	1,207,000	98,000	1,305,000
1968	2023	BN	465,000	67,000	533,000	143,000	676,000
1969	2024	W	1,190,000	48,000	1,238,000	98,000	1,336,000
1970	2025	W	553,000	48,000	600,000	143,000	743,000
1971	2026	W	380,000	48,000	428,000	196,000	624,000
1972	2027	BN	154,000	67,000	222,000	151,000	373,000
1973	2028	AN	652,000	72,000	724,000	143,000	867,000
1974	2029	W	725,000	48,000	773,000	218,000	991,000
1975	2030	W	692,000	48,000	739,000	143,000	882,000
1976	2031	C	449,000	74,000	523,000	143,000	666,000
1977	2032		2,000	74,000	76,000	151,000	227,000
1978	2033	BN	531,000	67,000	598,000	143,000	7/1 000
1980	2034		694,000	72 000	766,000	218 000	984 000
1981	2035	D	528,000	85,000	613,000	143 000	756,000
1982	2030	W	1.040.000	48.000	1.088.000	98.000	1,186,000
1983	2038	W	1.190.000	48.000	1.238.000	98.000	1.336.000
1984	2039	W	693,000	48,000	740,000	143,000	883,000
1985	2040	D	429,000	85,000	514,000	143,000	657,000
1986	2041	W	557,000	48,000	604,000	143,000	747,000
1987	2042	D	93,000	85,000	178,000	151,000	329,000
1988	2043	С	2,000	74,000	76,000	151,000	227,000
1989	2044	D	209,000	85,000	295,000	196,000	491,000
1990	2045	С	2,000	74,000	76,000	151,000	227,000
1991	2046	С	173,000	74,000	247,000	151,000	398,000
1992	2047	С	237,000	74,000	311,000	196,000	507,000
1993	2048	AN	712,000	72,000	784,000	218,000	1,002,000
1994	2049	C	320,000	74,000	394,000	196,000	590,000
1995	2050	W	740,000	48,000	/8/,000	218,000	1,005,000
1996	2051	VV	1,030,000	48,000	1,078,000	98,000	1,176,000
1997	2052	VV	560,000	48,000	1 227 000	143,000	751,000
1000	2053	۷۷ ۱۸/	1,190,000	40,000	740.000	96,000 1/13 000	1,353,000 883,000
2000	2054	AN	495 000	72 000	567 000	143,000	710 000
2000	2055	D	116.000	85.000	201.000	151.000	352.000
2002	2057	D	328,000	85,000	414,000	196,000	610,000
2003	2058	AN	546,000	72,000	618,000	143,000	761,000
2004	2059	BN	605,000	67,000	672,000	143,000	815,000
2005	2060	AN	456,000	72,000	528,000	143,000	671,000
2006	2061	W	1,190,000	48,000	1,237,000	98,000	1,335,000
2007	2062	D	206,000	85,000	291,000	196,000	487,000
2008	2063	С	2,000	74,000	76,000	151,000	227,000
2009	2064	D	116,000	85,000	201,000	151,000	352,000
2010	2065	BN	425,000	67,000	492,000	196,000	688,000
2011	2066	W	553,000	48,000	600,000	143,000	743,000
2012	2067	BN	573,000	67,000	640,000	143,000	783,000
2013	2068	D	93,000	85,000	178,000	151,000	329,000
2014	2069	C	53,000	74,000	128,000	151,000	279,000
2015	2070	C	237,000	74,000	311,000	196,000	507,000
Per	Annual Average cent of Allocati	ion	508,000 43%	6%	574,000 48%	153,000	727,000 61%

Table 5-1: Projected Surface Water Deliveries by USBR Water Contract Year (2020-2070)

1. Sacramento Valley Water Year Type

2. Projected from Coordinated Long-Term Operation of the Central Valley Project and State Water Project

3. Estimated from 2018 Ammendment to Coordinated Operation Agreement

4. Estimated from Historic Supplemental Water Supply based on CVP Allocation
| WY | WY
Index | CVP
Allocation
(%) | Net CVP
(AF) | Water User
Acquired
(AF) | Supplemental
District
Supply
(AF) | Total
Supplemental
Supply
(AF) |
|------|-------------|--------------------------|-----------------|--------------------------------|--|---|
| 1988 | С | 100% | 1,150,000 | 7,657 | 97,712 | 105,369 |
| 1989 | D | 100% | 1,035,369 | 20,530 | 99,549 | 120,079 |
| 1990 | С | 50% | 625,196 | 18,502 | -2,223 | 16,279 |
| 1991 | С | 27% | 229,666 | 22,943 | 77,399 | 100,342 |
| 1992 | С | 27% | 208,668 | 42,623 | 100,861 | 143,484 |
| 1993 | AN | 54% | 682,833 | 152,520 | 82,511 | 235,031 |
| 1994 | С | 43% | 458,281 | 56,541 | 108,083 | 164,624 |
| 1995 | W | 100% | 1,021,719 | 57,840 | 121,747 | 179,587 |
| 1996 | W | 95% | 994,935 | 92,953 | 172,609 | 265,562 |
| 1997 | W | 90% | 968,408 | 94,908 | 261,085 | 355,993 |
| 1998 | W | 100% | 945,115 | 54,205 | 162,684 | 216,889 |
| 1999 | W | 70% | 806,040 | 178,632 | 111,144 | 289,776 |
| 2000 | AN | 65% | 695,693 | 198,294 | 133,314 | 331,608 |
| 2001 | D | 49% | 611,267 | 75,592 | 135,039 | 210,631 |
| 2002 | D | 70% | 776,526 | 106,043 | 64,040 | 170,083 |
| 2003 | AN | 75% | 863,150 | 107,958 | 32,518 | 140,476 |
| 2004 | BN | 70% | 800,704 | 96,872 | 44,407 | 141,279 |
| 2005 | AN | 85% | 996,147 | 20,776 | 98,347 | 119,123 |
| 2006 | W | 100% | 1,076,461 | 45,936 | 38,079 | 84,015 |
| 2007 | D | 50% | 647,864 | 87,554 | 61,466 | 149,020 |
| 2008 | С | 40% | 347,222 | 85,421 | 102,862 | 188,283 |
| 2009 | D | 10% | 202,991 | 68,070 | 70,149 | 138,219 |
| 2010 | BN | 45% | 590,059 | 71,296 | 79,242 | 150,538 |
| 2011 | W | 80% | 876,910 | 60,380 | 191,686 | 252,066 |
| 2012 | BN | 40% | 405,451 | 111,154 | 123,636 | 234,790 |
| 2013 | D | 20% | 188,448 | 101,413 | 143,962 | 245,375 |
| 2014 | С | 0% | 98,573 | 59,714 | 26,382 | 86,096 |
| 2015 | С | 0% | 82,429 | 51,134 | 34,600 | 85,734 |
| 2016 | BN | 5% | 9,204 | 72,154 | 174,374 | 246,528 |
| 2017 | W | 100% | 911,307 | -50,009 | 174,490 | 124,481 |

Table 5-2: Historic Surface Water Deliveries by USBR Water Contract Year (1989-2017)

Table 5-3: Projected 2070 Climate Change Surface Water Deliveries by USBR Water Contract Year (2020-2070)

Historic Water Year	Projected Water Year	Water Year Type ¹	CVP Allocation ² (TAF)	COA Benefit ³ (TAF)	Total CVP Delivery (TAF)	Supplemental WWD & W.U. Transfers ⁴ (TAF)	Total Imported Water (TAF)
-	2016	BN	9,000	-	9,000	247,000	256,000
-	2017	W	911,000	-	911,000	124,000	1,036,000
1963	2018	W	592,000	48,000	640,000	143,000	783,000
1964	2019	D	50,000	85,000	135,000	151,000	286,000
1965	2020	W	327,000	48,000	375,000	196,000	571,000
1966	2021	BN	289,000	67,000	356,000	196,000	552,000
1967	2022	W	874,000	48,000	921,000	218,000	1,139,000
1968	2023	BN	371,000	67,000	438,000	196,000	634,000
1969	2024	W	821,000	48,000	869,000	218,000	1,087,000
1970	2025	W	352,000	48,000	400,000	196,000	596,000
1971	2026	W	281,000	48,000	329,000	196,000	525,000
1972	2027	BN	2,000	67,000	69,000	151,000	220,000
1973	2028	AN	353,000	72,000	425,000	196,000	621,000
1974	2029	W	446,000	48,000	494,000	196,000	690,000
1975	2030	VV C	525,000	48,000	572,000	143,000	715,000
1976	2031	C	151,000	74,000	226,000	151,000	377,000
1977	2032		1,000	74,000	76,000	196,000	680,000
1978	2033	BN	379,000	67,000	484,000	196,000	642,000
1980	2034		427 000	72 000	499,000	196,000	695,000
1981	2035	D	400,000	85,000	486,000	196,000	682,000
1982	2030	W	693.000	48.000	741.000	143,000	884,000
1983	2038	W	1.190.000	48.000	1.238.000	98.000	1.336.000
1984	2039	W	483,000	48,000	530,000	143,000	673,000
1985	2040	D	275,000	85,000	360,000	196,000	556,000
1986	2041	W	331,000	48,000	378,000	196,000	574,000
1987	2042	D	110,000	85,000	195,000	151,000	346,000
1988	2043	С	2,000	74,000	76,000	151,000	227,000
1989	2044	D	2,000	85,000	87,000	151,000	238,000
1990	2045	С	2,000	74,000	76,000	151,000	227,000
1991	2046	С	2,000	74,000	76,000	151,000	227,000
1992	2047	С	1,000	74,000	76,000	151,000	227,000
1993	2048	AN	477,000	72,000	549,000	143,000	692,000
1994	2049	C	230,000	74,000	304,000	196,000	500,000
1995	2050	W	464,000	48,000	512,000	143,000	655,000
1996	2051	VV	845,000	48,000	893,000	218,000	1,111,000
1997	2052	VV NA/	347,000	48,000	394,000	196,000	590,000
1998	2053	VV	1,189,000	48,000	1,237,000	98,000	1,335,000
2000	2054		494,000	72 000	560.000	1/3 000	703.000
2000	2055		2 000	85,000	87,000	151 000	238,000
2001	2050	D	2,000	85,000	317 000	196 000	513 000
2002	2058	AN	389,000	72 000	461 000	196,000	657,000
2004	2059	BN	282.000	67.000	349.000	196.000	545.000
2005	2060	AN	455.000	72.000	528.000	143.000	671.000
2006	2061	W	1,189,000	48,000	1,237,000	98,000	1,335,000
2007	2062	D	203,000	85,000	288,000	196,000	484,000
2008	2063	С	2,000	74,000	76,000	151,000	227,000
2009	2064	D	2,000	85,000	87,000	151,000	238,000
2010	2065	BN	312,000	67,000	379,000	196,000	575,000
2011	2066	W	352,000	48,000	400,000	196,000	596,000
2012	2067	BN	327,000	67,000	394,000	196,000	590,000
2013	2068	D	110,000	85,000	195,000	151,000	346,000
2014	2069	С	2,000	74,000	76,000	151,000	227,000
2015	2070	С	1,000	74,000	76,000	151,000	227,000
Annual Average		351,000	66,000	416,000	170,000	586,000	
Percent of Allocation			29%	6%	35%	14%	49%

1. Sacramento Valley Water Year Type

2. Projected from Coordinated Long-Term Operation of the Central Valley Project and State Water Project

3. Estimated from 2018 Ammendment to Coordinated Operation Agreement

4. Estimated from Historic Supplemental Water Supply based on CVP Allocation

1966 2000 W 099,810 55% 0 3.4,47 1566 2021 W 1.266,971 1.01,5% 50,000 0 0 1564 2023 W 1.266,971 1.01,5% 50,000 50,000 0 1564 2023 W 1.327,877 1.045,8 0 0 0 1577 2025 W 400,147 1.05% 0 0 0 1577 2027 BN 4.21,85,22 1.95% 0,00 1.00 50,000 1577 2020 W 477,620 65% 50,000 1.405 51,405 1577 2030 W 773,923 62% 50,000 1.00 0 0 1577 2031 AN 698,172 66% 50,000 1.05,000 1.00 1587 2034 BN 55,578 1.04% 50,000 1.05,000 1.00 1588 2038 W <t< th=""><th>Historic Water Year</th><th>Projected Water Year</th><th>Water Year Type¹</th><th>CVP Allocation² (AF)</th><th>Percent of CVP Contract</th><th>Supplemental Imports for Recharge³ (af)</th><th>Flood Flows⁴ (af)</th><th>Total Imports for Recharge Projects (af)</th></t<>	Historic Water Year	Projected Water Year	Water Year Type ¹	CVP Allocation ² (AF)	Percent of CVP Contract	Supplemental Imports for Recharge ³ (af)	Flood Flows⁴ (af)	Total Imports for Recharge Projects (af)
1966 2021 9N 719,866 60% 50,000 50,000 1967 2022 W 1,228,747 104% 50,000 38,87 1868 2023 W 1,237,477 104% 50,000 38,87 88,87 1300 2025 W 402,776 38,66 0 0 0 1397 2025 W 407,796 38,66 0 0 0 1397 2028 AN 273,564 55% 50,000 1,405 50,000 1397 2028 AN 723,564 55% 50,000 1,405 50,000 1397 2028 AN 696,149 59% 0 4,02 47,022 1397 2032 C 73,787 66% 0 0 0 1397 2032 AN 696,149 59% 0 1,583 1,583 1398 2041 N 57,787 66% 0	1965	2020	W	659,610	55%	0	36,407	36,407
1967 2022 W 1,206,371 100% 50,000 100,000 1968 2024 W 1,237,477 104% 50,000 82,357 1970 2025 W 40,01,477 50% 0 0 0 1971 2026 W 42,7,475 13% 0 0 0 1977 2026 W 42,7,526 13% 50,000 1,00 0 1977 2028 AN 72,864 61% 50,000 1,00 0 1975 2030 W 772,902 65% 50,000 36,379 86,339 1976 2031 C 52,297 44% 0 0 0 1977 2034 KN 759,728 65% 0 1,38,33 1,383 1976 2033 AN 769,129 65% 50,000 0 0 0 1977 2034 BN 72,327,47 56% 50	1966	2021	BN	719,866	60%	50,000	0	50,000
1988 2023 014 537.3/4 44% 0 0 0 1969 2024 W 60.147 104% 50.000 38.357 88.357 1971 2025 W 60.147 50.000 0 0 1972 2027 BW 221.52 13% 0 0 0 1972 2028 AW 773.62 65% 50.000 1,405 51,405 1974 2030 W 773.225 62% 50.000 1,405 51,405 1975 2031 C 72,777 64% 0 0 0 1976 2033 AW 698,149 59% 0 1,335 158 1976 2034 BW 97,778 164% 50,000 1,335 158 1981 2036 AW 75,919 644% 50,000 50,000 100,000 1981 2036 W 760,135% 144% <td< td=""><td>1967</td><td>2022</td><td>W</td><td>1,206,971</td><td>101%</td><td>50,000</td><td>50,000</td><td>100,000</td></td<>	1967	2022	W	1,206,971	101%	50,000	50,000	100,000
1969 2024 W 1237,747 104% 50,000 38,357 88,357 1370 2025 W 60,147 50% 0 0 0 1371 2026 W 427,75% 30% 0 0 0 1373 2028 AN 723,664 65% 50,000 0 50,000 1374 2029 W 772,022 65% 50,000 1,055 55,000 1375 2030 W 773,925 62% 50,000 36,379 86,379 1377 2033 AN 698,479 59% 0 47,002 47,002 1377 2034 BN 50,778 50% 0 1,833 158,33 1380 2035 AN 765,178 50,000 50,000 100,000 1381 2036 D 514,264 43% 0 0 0 1384 2040 D 514,264 45%	1968	2023	BN	532.524	45%	0	0	0
1979 2025 W 600,1/7 50% 0 0 0 1971 2026 W 427,76 36% 0 0 0 1972 2028 AN 723,564 64% 50,000 1,465 51,405 1975 2020 W 772,522 65% 50,000 1,405 51,405 1976 2031 C 52,027 46% 0 0 0 1977 2032 C 75,787 6% 0 47,002 47,002 1978 2034 RW 59,787 6% 0 0 0 0 1978 2035 AN 75,919 64% 50,000 0 0 0 0 1988 2035 AN 74,192 62% 50,000 50,000 100,000 1984 2039 W 1,283 10% 0 0 0 0 0 0 0 0	1969	2024	W	1.237.747	104%	50.000	38.357	88.357
1971 2025 W 4427,786 36% 0 0 0 1972 2027 BN 723,602 65% 50,000 35,379 1974 2028 W 773,602 65% 50,000 35,379 35,379 1976 2031 C 572,997 64% 0 0 0 1977 2032 C 75,787 6% 0 47,002 47,002 1978 2034 BN 597,878 50% 0 47,002 47,002 1978 2035 BN 597,878 50% 0 47,002 47,000 1980 2035 D 652,916 64% 50,000 50,000 100,000 1981 2038 W 1,227,755 104% 50,000 50,000 100,000 1984 2033 W 741,152 62% 50,000 50,000 100,000 1985 2041 W 60,388 <	1970	2025	W	600.147	50%	0	0	0
1972 2027 BN 221,852 19% 0 0 0 1973 2028 AN 723,664 65% 50,000 1,05 55,405 1974 2029 W 773,620 65% 50,000 36,379 86,379 1976 2033 C 75,787 6% 0 0 0 1977 2032 C 75,787 6% 0 4,7002 47,002 1978 2034 BN 597,878 50% 0 1,583 1,583 1980 2035 AN 755,919 64% 50,000 50,000 100,000 1981 2038 W 1,028,055 91% 50,000 50,000 100,000 1984 2043 W 1,028,055 15% 0 0 0 0 1985 2041 W 1,028,055 15% 0 0 0 0 1986 2041 W	1971	2026	W	427 796	36%	0	0	0
1973 2028 AN 723,664 6154 50,000 0 50,000 1374 2029 W 772,002 65% 50,000 36,379 56,379 1375 2030 W 733,325 62% 50,000 36,379 66,379 1376 2031 C 522,007 44% 0 0 0 1377 2033 AN 668,140 55% 0 47,002 47,002 1379 2033 AN 765,191 64% 50,000 50,000 100,000 1381 2036 D 612,916 52% 0 0 0 1382 2038 W 1,237,55 104% 50,000 50,000 100,000 1384 2039 W 740,192 62% 50,000 50,000 100,000 1384 2043 C 76,018 65% 0 0 0 1385 2044 D 1237,7	1972	2027	BN	221.652	19%	0	0	0
1974 2029 W 777,2602 65% 50,000 1,465 51,405 1975 2030 W 733,325 62% 50,000 3,379 86,379 1976 2032 C 75,787 6% 0 0 0 1978 2033 AN 698,491 55% 0 47,002 47,002 1979 2035 AN 765,919 64% 50,000 1,583 1,583 1980 2035 AN 765,919 64% 50,000 0 0 1981 2036 W 10,88,035 91% 50,000 50,000 100,000 1982 2037 W 10,88,035 91% 50,000 50,000 100,000 1984 2038 W 12,37,755 104% 50 0 0 0 1985 2040 D 51,4264 43% 0 0 0 0 1986 2043	1973	2028	AN	723 664	61%	50,000	0	50,000
1975 2030 W 739,325 62% 50,000 36,379 66,379 1976 2031 C 52,207 44% 0 0 0 1977 2032 C 57,787 6% 0 47,002 47,002 1979 2034 BN 695,199 64% 50,000 50,000 100,000 1980 2035 AN 765,919 64% 50,000 50,000 100,000 1981 2036 D 612,916 52% 0 0 0 0 1982 2037 W 1,08,035 91% 50,000 50,000 100,000 1983 2048 D 512,616 65% 0 0 0 1985 2041 W 604,368 51% 0 0 0 0 1986 2041 W 604,368 51% 0 0 0 0 1986 2040	1974	2029	W	772 602	65%	50,000	1 405	51 405
1200 0.0 120,00 120,00 120,00 120,00 120,00 1977 2031 C 75,787 6% 0 0 0 1978 2033 AN 698,149 59% 0 47,002 47,002 1979 2034 BN 597,878 50% 0 1,583 1,583 1980 2035 AN 75,919 64% 50,000 50,000 100,000 1981 2038 D 612,916 52% 0 0 0 0 1982 2037 W 1,088,035 91% 50,000 50,000 100,000 1984 2039 W 74,0192 62% 50,000 100,000 100,000 1984 2041 W 604,368 51% 0 0 0 0 1986 2041 W 604,368 51% 0 0 0 0 1987 2042 D	1975	2025	W/	739 325	62%	50,000	36 379	86 379
1977 2032 C 75,787 6% 0 0 0 1978 2033 AN 668,149 59% 0 47,002 47,002 1979 2034 BN 597,878 59% 0 1,883 1,583 1980 2035 AN 765,919 64% 50,000 50,000 100,000 1981 2036 D 612,916 52% 0 0 0 0 1982 2037 W 1,088,035 91% 50,000 50,000 100,000 1984 2039 W 1,237,755 104% 50,000 50,000 100,000 1985 2040 D 514,264 43% 0 0 0 0 1985 2041 W 604,368 51% 0 0 0 0 1987 2042 D 127,825 15% 0 0 0 0 1998 204	1976	2031	C C	522 907	44%	0	0	0
1000 1000 1000 0 47,002 47,002 1973 2034 BN 597,878 50% 0 1,533 1,533 1980 2035 AN 575,919 64% 50,000 50,000 100,000 1981 2036 D 612,916 52% 0 0 0 1982 2037 W 1,08,055 91% 50,000 50,000 100,000 1983 2038 W 1,23,755 104% 50,000 50,000 100,000 1984 2040 D 514,264 43% D 0 0 0 1985 2041 W 60,4568 51% D 45,765 45,765 1987 2042 D 178,255 15% D 0 0 1989 2044 D 224,055 25% D 0 0 0 1989 2047 C 311,279 26%	1977	2031	C	75 787	6%	0	0	0
1979 2034 BN 597,678 50% 0 1,583 1,583 1980 2035 AN 755,519 64% 50,000 50,000 0 1981 2036 O 612,916 52% 0 0 0 1982 2037 W 1,088,035 91% 50,000 50,000 100,000 1984 2038 W 1,237,755 104% 50,000 50,000 100,000 1984 2039 W 740,152 65% 50,000 50,000 0 0 1985 2040 D 514,264 43% 0 45,765 45,765 1987 2042 O 178,255 15% 0 0 0 1988 2043 C 76,018 6% 0 0 0 0 1999 2044 C 247,039 21% 60 0 0 0 1991 2046	1978	2032	AN	698 149	59%	0	47 002	47 002
1980 2035 AN 755,919 64% 50,000 10.000 1981 2036 D 612,916 52% 0 0 0 1982 2037 W 1,088,035 91% 50,000 50,000 100,000 1984 2038 W 1,237,755 104% 50,000 50,000 100,000 1985 2040 O 514,264 43% 0 0 0 1986 2041 W 604,368 51% 0 45,765 45,765 1987 2042 D 178,255 15% 0 0 0 1988 2044 D 294,805 25% 0 0 0 0 1989 2044 D 294,805 25% 0 0 0 0 1991 2046 C 76,018 6% 0 0 0 0 1991 2047 C 311,279	1979	2033	BN	597 878	50%	0	1 583	1 583
1981 2036 D 61.916 52.00 10.000 0 1982 2037 W 1.088.035 91% 50.000 0 50.000 1984 2038 W 1.237.755 104% 50.000 50.000 100.0000 1984 2039 W 740.192 62% 50.000 50.000 100.0000 1986 2040 D 514.264 43% 0 0 0 1987 2042 D 173.255 15% 0 0 0 1988 2043 C 76.018 6% 0 0 0 1989 2044 D 294.805 25% 0 0 0 1990 2045 C 76.018 6% 0 0 0 1991 2046 C 311.279 26% 0 0 0 1992 2048 AM 783.711 66% 50.000 18.915<	1980	2035	AN	765 919	64%	50,000	50,000	100.000
1982 2037 W 1,287,755 104% 50,000 0 50,000 1983 2038 W 1,237,755 104% 50,000 50,000 100,000 1984 2039 W 740,192 62% 50,000 50,000 100,000 1985 2040 D 514,264 43% 0 0 0 1986 2041 W 604,368 51% 0 0 0 1988 2043 C 76,018 6% 0 0 0 1989 2044 D 294,805 25% 0 0 0 1989 2044 D 294,805 25% 0 0 0 1991 2045 C 76,018 6% 0 0 0 1991 2045 C 394,138 33% 0 0 0 0 1994 2051 W 1,07,211 91%	1981	2035	D	612 916	52%	0	0	0
1983 2038 W 1,237,755 104% 50,000 50,000 100,000 1984 2039 W 740,192 62% 50,000 50,000 100,000 1985 2040 W 644,368 51% 0 45,765 45,765 1987 2042 D 178,255 15% 0 0 0 1988 2044 D 75,018 6% 0 0 0 1989 2044 C 76,018 6% 0 0 0 1990 2045 C 76,018 6% 0 0 0 1991 2046 C 247,039 21% 0 0 0 1992 2047 C 311,279 26% 0 0 0 1995 2050 W 10,77,821 91% 50,000 18,915 68,915 1995 2051 W 1,077,821 91% 50,000	1982	2030	W	1 088 035	91%	50,000	0	50,000
1000 1000 10000 10000 10000 1984 2039 W 740,192 62% 50,000 50,000 100,000 1985 2040 D 514,264 43% 0 0 0 1986 2041 W 604,368 51% 0 0 0 1987 2042 D 178,255 15% 0 0 0 1988 2043 C 76,018 6% 0 0 0 1999 2044 D 294,805 25% 0 0 0 0 1999 2046 C 347,039 21% 0 0 0 0 1991 2046 AN 733,71 66% 50,000 29,405 50,000 19 1994 2049 C 394,138 33% 0 0 0 0 1995 2050 W 1,237,316 104% 50,000 </td <td>1983</td> <td>2038</td> <td>W/</td> <td>1 237 755</td> <td>104%</td> <td>50,000</td> <td>50,000</td> <td>100.000</td>	1983	2038	W/	1 237 755	104%	50,000	50,000	100.000
1000 1000 1000 1000 10000 10000 1985 2040 D 514,264 43% 0 45,765 45,765 1987 2042 D 178,255 15% 0 0 0 1988 2043 C 76,018 6% 0 0 0 1990 2045 C 76,018 6% 0 0 0 1991 2046 C 24,039 21% 0 0 0 1992 2047 C 311,279 26% 0 0 0 1993 2088 AN 783,771 66% 50,000 29,405 79,405 1994 2049 C 394,138 33% 0 0 0 0 1995 2050 W 1077,821 91% 50,000 18,915 68,915 1997 2052 W 607,566 51% 0 0 0	1984	2030	W/	740 192	62%	50,000	50,000	100,000
1986 2041 W 60,388 51% 0 45,755 45,765 1987 2042 D 178,255 15% 0 0 0 1988 2043 C 76,018 6% 0 0 0 1999 2044 D 294,805 25% 0 0 0 1990 2045 C 76,018 6% 0 0 0 1991 2046 C 247,039 21% 0 0 0 1992 2047 C 311,279 26% 0 0 0 1993 2048 AN 783,771 66% 50,000 18,915 66,915 1995 2050 W 78,7104 66% 50,000 18,915 66,915 1996 2051 W 10,77,821 91% 50,000 18,915 66,915 1997 2052 W 607,566 51% 0	1985	2035		514 264	13%	0	0	0
13.00 20.04 0 178,255 115% 0 0 1,7,05 0,705 1988 2043 C 76,018 6% 0 0 0 1989 2044 D 294,805 25% 0 0 0 1990 2045 C 76,018 6% 0 0 0 1991 2046 C 247,039 21% 0 0 0 1992 2047 C 311,779 26% 0 0 0 1993 2048 AN 783,714 66% 50,000 18,915 68,915 1994 2050 W 1,077,821 91% 50,000 18,915 68,915 1995 2051 W 1,077,821 91% 50,000 27,872 77,872 1996 2053 AN 56,993 48% 0 0 0 0 2000 2055 AN 56,993	1985	2040		604 368	51%	0	45 765	45 765
13.97 20.42 10 10,23.5 13.98 0 0 0 1988 2043 C 76,018 6% 0 0 0 1990 2045 C 76,018 6% 0 0 0 1991 2046 C 247,039 21% 0 0 0 1992 2047 C 311,279 26% 0 0 0 1993 2048 AN 783,771 66% 50,000 0 0 1994 2049 C 394,138 33% 0 0 0 1995 2050 W 1,077,821 91% 50,000 18,915 68,915 1997 2052 W 607,566 51% 0 0 0 1998 2053 W 1,237,316 104% 50,000 27,872 7,872 2000 2055 AN 56,993 48% 0 0 <td>1980</td> <td>2041</td> <td></td> <td>178 255</td> <td>15%</td> <td>0</td> <td>43,703</td> <td>45,705</td>	1980	2041		178 255	15%	0	43,703	45,705
13989 2044 D 294,05 0.0 0 0 0 1990 2045 C 76,018 6% 0 0 0 1991 2046 C 247,039 21% 0 0 0 1991 2047 C 311,279 26% 0 0 0 1993 2048 AN 783,771 66% 50,000 0 50,000 1994 2049 C 394,138 33% 0 0 0 0 1995 2050 W 787,104 66% 50,000 18,915 68,915 1997 2052 W 607,566 51% 0 50,000 50,000 1998 2053 W 1,237,316 104% 50,000 27,872 77,872 2000 2055 AN 566,93 40 0 0 0 2001 2055 AN 618,489 52%	1987	2042	C	76.018	6%	0	0	0
1990 2044 C 75,018 2.5% C 0 0 0 1991 2046 C 247,039 21% 0 0 0 1992 2047 C 311,279 26% 0 0 0 1993 2048 AN 783,771 66% 50,000 0 0 1994 2049 C 394,138 33% 0 0 0 1995 2050 W 787,104 66% 50,000 18,915 68,915 1996 2051 W 1,077,821 91% 50,000 41,808 91,808 1999 2054 W 1,237,316 10% 50,000 41,808 91,808 1999 2054 W 73,869 62% 50,000 42,872 77,872 2000 2055 AN 686,993 48% 0 0 0 2001 2055 AN 684,99	1988	2043		204 805	25%	0	0	0
1990 2045 C 10,115 0.05 0 0 0 0 1991 2047 C 311,279 26% 0 0 0 0 1993 2048 AN 783,771 66% 50,000 0 0 0 1994 2049 C 394,138 33% 0 0 0 0 1995 2050 W 787,104 66% 50,000 18,915 68,915 1996 2051 W 1,077,821 91% 50,000 18,915 68,915 1997 2052 W 607,566 51% 0 50,000 18,915 68,915 1998 2053 W 1,237,316 104% 50,000 27,872 77,872 2001 2055 AN 566,93 48% 0 0 0 2001 2055 BN 614,3523 35% 0 627 627 2	1989	2044	C	76 018	6%	0	0	0
1992 2047 C 11,739 21,73 0 0 0 0 1992 2047 C 311,729 26% 0 0 0 0 1993 2048 AN 783,771 66% 50,000 0 0 0 1994 2049 C 394,138 33% 0 0 0 0 1995 2050 W 787,104 66% 50,000 29,405 79,405 1996 2051 W 10,07,821 91% 50,000 18,915 668,915 1997 2052 W 60,5566 51% 0 50,000 21,872 77,872 2000 2055 AN 566,993 48% 0 0 0 0 2001 2056 D 201,435 17% 0 0 0 0 2002 2057 D 413,523 35% 0 627 627	1990	2045	C	2/17 039	21%	0	0	0
1931 2037 C 31,71 66% 50,000 0 0 1994 2049 C 394,138 33% 0 0 0 0 1995 2050 W 787,104 66% 50,000 29,405 79,405 1996 2051 W 1,077,821 91% 50,000 18,915 668,915 1997 2052 W 607,566 51% 0 50,000 27,872 77,872 1998 2053 W 1,237,316 104% 50,000 27,872 77,872 2000 2055 AN 566,993 48% 0 0 0 0 2001 2056 D 201,435 17% 0 0 0 0 0 2004 2058 AN 618,489 52% 0 0 0 0 2004 2059 BN 672,277 56% 0 0 0 0	1997	2040	C	311 279	21%	0	0	0
1995 1040 NN 10371 50% 50% 0 0 0 1994 2049 C 394,138 33% 0 0 0 0 1995 2050 W 787,104 66% 50,000 29,405 79,405 1996 2051 W 1,077,821 91% 50,000 18,915 68,915 1997 2052 W 607,566 51% 0 50,000 50,000 1998 2054 W 1,237,316 104% 50,000 27,872 77,872 2000 2055 AN 56,6993 48% 0 0 0 2001 2056 D 201,435 17% 0 0 0 2002 2057 D 413,523 35% 0 627 627 2003 2058 AN 672,277 56% 0 0 0 2005 2600 AN 522,	1993	2048		783 771	66%	50,000	0	50,000
1995 2050 W 737,104 66% 50,000 29,405 79,405 1996 2051 W 1,077,821 91% 50,000 18,915 66,915 1997 2052 W 607,566 51% 0 50,000 50,000 1998 2053 W 1,237,316 104% 50,000 41,808 91,808 1999 2054 W 739,869 62% 50,000 27,872 77,872 2000 2055 AN 566,933 48% 0 0 0 0 2001 2056 D 413,523 35% 0 627 627 2003 2058 AN 618,489 52% 0 0 0 0 2004 2059 BN 672,277 56% 0 0 0 0 2005 2060 AN 527,751 44% 0 0 0 0 2064	1994	2049	C C	394 138	33%	0	0	0
1995 2050 N 107,821 91% 50,000 18,915 68,915 1997 2052 W 607,566 51% 0 50,000 41,808 91,808 1998 2053 W 1,237,316 104% 50,000 41,808 91,808 1999 2054 W 739,869 62% 50,000 27,872 77,872 2000 2055 AN 566,993 48% 0 0 0 2001 2056 D 201,435 17% 0 0 0 2002 2057 D 413,523 35% 0 627 627 2003 2058 AN 618,489 52% 0 0 0 2004 2059 BN 672,277 56% 0 0 0 0 2005 2060 AN 527,751 44% 0 0 0 0 2006 2061 W	1995	2050	W	787 104	66%	50,000	29.405	79.405
1990 2011 W 607,566 51% 0 50,000 50,000 1997 2052 W 607,566 51% 0 50,000 41,808 91,808 1999 2054 W 739,869 62% 50,000 27,872 77,872 2000 2055 AN 566,993 48% 0 0 0 2001 2056 D 201,435 17% 0 0 0 2002 2057 D 413,523 35% 0 627 627 2003 2058 AN 618,489 52% 0 0 0 2004 2059 BN 672,777 56% 0 0 0 2005 2060 AN 52,751 44% 0 0 0 2006 2061 W 1,237,316 104% 50,000 0 0 2008 2063 C 76,018 6%	1996	2050	W/	1 077 821	91%	50,000	18 915	68 915
1998 2053 W 1,237,316 104% 50,000 41,808 91,808 1999 2054 W 739,869 62% 50,000 27,872 77,872 2000 2055 AN 566,993 48% 0 0 0 2001 2056 D 201,435 17% 0 0 0 2002 2057 D 413,523 35% 0 627 627 2003 2058 AN 618,489 52% 0 0 0 2004 2059 BN 672,277 56% 0 0 0 2005 2060 AN 52,751 44% 0 0 0 2006 2061 W 1,237,316 104% 50,000 0 0 2008 2063 C 76,018 6% 0 0 0 2010 2065 BN 492,274 41% 0 <t< td=""><td>1997</td><td>2051</td><td>W/</td><td>607 566</td><td>51%</td><td>0</td><td>50,000</td><td>50,000</td></t<>	1997	2051	W/	607 566	51%	0	50,000	50,000
1936 100 1000 1000 1000 1000 1000 1000 1999 2054 W 739,869 62% 50,000 27,872 77,872 2000 2055 AN 566,993 48% 0 0 0 2001 2056 D 201,435 17% 0 0 0 2002 2057 D 413,523 35% 0 627 627 2003 2058 AN 618,489 52% 0 0 0 0 2004 2059 BN 672,277 56% 0 0 0 0 2005 2060 AN 527,751 44% 0 0 0 0 2006 2061 W 1,237,316 104% 50,000 0 0 0 2008 2063 C 76,018 6% 0 0 0 0 2010 2065	1998	2052	W/	1 237 316	104%	50,000	41 808	91 808
1000 2004 AN 1000 1000 1000 1000 2000 2055 AN 566,993 48% 0 0 0 2001 2056 D 201,435 17% 0 0 0 2002 2057 D 413,523 35% 0 627 627 2003 2058 AN 618,489 52% 0 0 0 2004 2059 BN 672,277 56% 0 0 0 2005 2060 AN 527,751 44% 0 0 0 2006 2061 W 1,237,316 104% 50,000 0 50,000 2008 2063 C 76,018 6% 0 0 0 2009 2064 D 201,435 17% 0 0 0 2010 2065 BN 492,274 41% 0 0 0	1999	2053	W/	739 869	62%	50,000	27 872	77 872
2000 2005 AN 300,333 400 0 0 0 0 2001 2056 D 201,435 17% 0 0 0 0 2002 2057 D 413,523 35% 0 627 627 2003 2058 AN 618,489 52% 0 0 0 2004 2059 BN 672,277 56% 0 0 0 2005 2060 AN 527,751 44% 0 0 0 2006 2061 W 1,237,316 104% 50,000 0 0 2007 2062 D 291,483 24% 0 0 0 0 2008 2063 C 76,018 6% 0 0 0 0 2010 2065 BN 492,274 41% 0 0 0 0 2011 2065 BN <td< td=""><td>2000</td><td>2055</td><td>AN</td><td>566 993</td><td>48%</td><td>0</td><td>0</td><td>0</td></td<>	2000	2055	AN	566 993	48%	0	0	0
2001 2002 2003 2005 D 413,523 35% O 627 627 2003 2058 AN 618,489 52% O O O O 2004 2059 BN 672,277 56% O O O O 2005 2060 AN 527,751 44% O O O O 2006 2061 W 1,237,316 104% 50,000 O O O 2007 2062 D 291,483 24% O O O O 2008 2063 C 76,018 6% O	2000	2055	D	201 435	17%	0	0	0
Loon Loon Loon Loon Loon Loon Loon Loon 2003 2058 AN 618,489 52% 0 0 0 0 2004 2059 BN 672,277 56% 0 0 0 0 2005 2060 AN 527,751 44% 0 0 0 0 2006 2061 W 1,237,316 104% 50,000 0 0 0 2007 2062 D 291,483 24% 0 0 0 0 2008 2063 C 76,018 6% 0 0 0 0 2009 2064 D 201,435 17% 0 0 0 0 2010 2065 BN 492,274 41% 0 0 0 0 2011 2066 W 600,147 50% 0 0 0 0 0	2001	2057	D	413 523	35%	0	627	627
1000 1000 <th< td=""><td>2002</td><td>2058</td><td>AN</td><td>618 489</td><td>52%</td><td>0</td><td>0</td><td>0</td></th<>	2002	2058	AN	618 489	52%	0	0	0
Loci Loci <thloci< th=""> Loci Loci <thl< td=""><td>2004</td><td>2059</td><td>BN</td><td>672 277</td><td>56%</td><td>0</td><td>0</td><td>0</td></thl<></thloci<>	2004	2059	BN	672 277	56%	0	0	0
1000 1000 1000 1000 1000 1000 2006 2061 W 1,237,316 104% 50,000 0 50,000 2007 2062 D 291,483 24% 0 0 0 0 2008 2063 C 76,018 6% 0 0 0 0 2009 2064 D 201,435 17% 0 0 0 0 2010 2065 BN 492,274 41% 0 0 0 0 2011 2066 W 600,147 50% 0 50,000 50,000 2012 2067 BN 640,249 54% 0 0 0 0 2013 2068 D 178,255 15% 0 0 0 0 2014 2069 C 127,664 11% 0 0 0 0 2015 2070 C	2005	2060	AN	527 751	44%	0	0	0
2007 2062 D 291,483 24% 0 0 0 2008 2063 C 76,018 6% 0 0 0 2009 2064 D 201,435 17% 0 0 0 2010 2065 BN 492,274 41% 0 0 0 2011 2066 W 600,147 50% 0 0 0 2012 2067 BN 640,249 54% 0 0 0 2013 2068 D 178,255 15% 0 0 0 0 2014 2069 C 127,664 11% 0 0 0 0 2015 2070 C 311,279 26% 0 0 0 0	2005	2061		1 237 316	104%	50,000	0	50,000
1007 1002 10 1001 10 10 10 10 2008 2063 C 76,018 6% 0 0 0 2009 2064 D 201,435 17% 0 0 0 2010 2065 BN 492,274 41% 0 0 0 2011 2066 W 600,147 50% 0 50,000 50,000 2012 2067 BN 640,249 54% 0 0 0 2013 2068 D 178,255 15% 0 0 0 0 2014 2069 C 127,664 11% 0 0 0 0 2015 2070 C 311,279 26% 0 0 0 0 0	2000	2062	D	291 483	24%	0	0	0
2009 2064 D 201,435 17% 0 0 0 2010 2065 BN 492,274 41% 0 0 0 0 2011 2066 W 600,147 50% 0 50,000 50,000 50,000 2012 2067 BN 640,249 54% 0 0 0 0 2013 2068 D 178,255 15% 0 0 0 0 2014 2069 C 127,664 11% 0 0 0 0 2015 2070 C 311,279 26% 0 0 0 0	2007	2063	C	76.018	6%	0	0	0
2010 2065 BN 492,274 41% 0 0 0 0 2011 2066 W 600,147 50% 0 50,000 50,000 2012 2067 BN 640,249 54% 0 0 0 2013 2068 D 178,255 15% 0 0 0 2014 2069 C 127,664 11% 0 0 0 2015 2070 C 311,279 26% 0 0 0 0	2000	2005		201 435	17%	0	0	0
2010 2005 2011 2006 W 600,147 50% 0 50,000 50,000 2012 2067 BN 640,249 54% 0 0 0 0 2013 2068 D 178,255 15% 0 0 0 0 2014 2069 C 127,664 11% 0 0 0 0 2015 2070 C 311,279 26% 0 0 0 0 0	2005	2065	RN	492 274	Δ1%	0	0	0
2011 2000 W 600,147 50% 0 50,000 60,000 <th< td=""><td>2010</td><td>2005</td><td></td><td>600 147</td><td>50%</td><td>0</td><td>50.000</td><td>50.000</td></th<>	2010	2005		600 147	50%	0	50.000	50.000
2011 2007 2007 2007 2007 2007 2008 D 178,255 15% 0 <th< td=""><td>2011</td><td>2000</td><td>RN</td><td>640.249</td><td>54%</td><td>0</td><td>0</td><td>0</td></th<>	2011	2000	RN	640.249	54%	0	0	0
2014 2069 C 127,664 11% 0 0 0 0 2015 2070 C 311,279 26% 0 0 0 0	2012	2007		178 255	15%	0	0	0
2011 2000 C 127,004 1170 0 0 0 0 2015 2070 C 311,279 26% 0 0 0 0 Appual Average 573,876 48% 15,696 13,205 37,054	2013	2000	C C	127 664	11%	0	0	0
Annual Average E72.976 490/ 45.000 42.005 20.00	2014	2000	C C	311 279	26%	0	0	0
	2013			572 076	100/	15 696	12 265	27.051

Table 5-4: Amount of Injected Surface Water Specified in No Climate Change and 2030 Climate Change Projections(2020-2070)

1. Sacramento Valley Water Year Type

2. Total CVP Allocation (Includes COA and Reassignment Contracts)

3. District Imports for Recharge Projects. Equals 50,000 AF When CVP Allocation Greater than 60% of Contract Amount (1,190,000 AFY)

4. Calculated from projected flows at the James Bypass. Flood flows cannot be stored so are limited to 35,600 AF per month based on max injection rate of 650 GPM in 400 wells in months when they are available. Conveyance through CVP facilities limited to 50,000 AF per year (FONSI 17-023).

Historic Water Year	Projected Water Year	Water Year Type ¹	CVP Allocation ² (AF)	Percent of CVP Contract	Supplemental Imports for Recharge ³ (af)	Flood Flows⁴ (af)	Total Imports for Recharge Projects (af)
1965	2020	W	374,871	32%	0	35,922	35,922
1966	2021	BN	356,173	30%	0	0	0
1967	2022	W	921,125	77%	50,000	50,000	100,000
1968	2023	BN	437,908	37%	0	631	631
1969	2024	W	868,955	73%	50,000	50,000	100,000
1970	2025	w	399.841	34%	0	337	337
1971	2026	W	328.661	28%	0	0	0
1972	2027	BN	69.018	6%	0	0	0
1973	2028	AN	425.316	36%	0	107	107
1974	2029	W	493,729	41%	0	9.166	9.166
1975	2030	W	572 340	48%	50,000	37 652	87 652
1976	2031	C	225 699	19%	0	0	0
1977	2032	C	75 549	6%	0	0	0
1978	2033	AN	483 631	41%	0	50,000	50 000
1979	2034	BN	446 102	37%	0	10 375	10 375
1980	2035	AN	498 718	42%	0	50,000	50,000
1981	2036	D	485 543	41%	0	0	0
1982	2030	W	740 697	62%	50,000	0	50,000
1983	2038	W	1 237 924	104%	50,000	50,000	100.000
1984	2030	W	530 338	45%	50,000	50,000	100,000
1985	2035		360,090	30%	0	0	100,000
1985	2040	W	378 374	32%	0	50.000	50.000
1980	2041		105 227	16%	0	0	0
1987	2042	C C	76 019	£%	0	0	0
1988	2043		0,018	70/	0	0	0
1989	2044	C C	75 927	6%	0	0	0
1990	2045	C C	75,857	6%	0	0	0
1991	2040	C	70,018	6%	0	0	0
1992	2047		5,570	16%	50.000	0	50.000
1993	2046	AN	349,402	40%	50,000	0	50,000
1994	2049	С М/	505,990	20%	50.000	25 610	0 95 610
1993	2050	VV	802 626	45%	50,000	35,019	05,019
1996	2051	VV	892,620	75%	50,000	45,935	95,935
1997	2052	VV NA	394,269	33%	U F0 000	50,000	50,000
1998	2053	VV	1,236,979	104%	50,000	48,496	98,496
1999	2054	VV	542,049	40%	50,000	27,374	77,374
2000	2055	AN	500,147	47%	50,000	1 071	50,000
2001	2050	D	87,218	7%	0	1,871	1,871
2002	2057		317,321	27%	0	1,593	1,593
2003	2058		461,180	39%	0	0	0
2004	2059	BIN	549,094	29%	50,000	0	50,000
2005	2060		527,540	44%	50,000	0	50,000
2006	2061	vv	1,236,979	104%	50,000	0	50,000
2007	2002		288,009	24%	0	0	0
2008	2063		70,018	D%	0	0	0
2009	2004	DN	87,218	/%	0	0	0
2010	2065	BN	379,241	32%	0	99	99
2011	2066	W	399,841	34%	0	50,000	50,000
2012	2067	BN	394,020	33%	0	0	0
2013	2068	D	195,227	16%	0	0	0
2014	2069	C	/6,018	6%	0	0	0
2015	2070	С	75,570	6%	0	0	0
	Annual Average	2	416,441	35%	13,725	13,827	27,552

Table 5-5: Amount of Injected Surface Water Specified in No Climate Change and 2070 Climate Change Projections(2020-2070)

1. Sacramento Valley Water Year Type

2. Total CVP Allocation (Includes COA and Reassignment Contracts)

3. District Imports for Recharge Projects. Equals 50,000 AF When CVP Allocation Greater than 60% of Contract Amount (1,190,000 AFY)

4. Calculated from projected flows at the James Bypass. Flood flows cannot be stored so are limited to 35,600 AF per month based on max injection rate of 650 GPM in 400 wells in months when they are available. Conveyance through CVP facilities limited to 50,000 AF per year (FONSI 17-023).

Figure 7-1 Baseline Average Subbasin Land Surface System Inflows 2020-2070

Figure 7-2 Baseline Average Subbasin Land Surface System Outflows 2020-2070

Figure 7-3 Baseline Average Subbasin Groundwater Budget Inflows 2020-2070

Figure 7-4 Baseline Average Subbasin Groundwater Budget Outflows 2020-2070

Figure 7-5 Baseline Cumulative Change in Groundwater Storage 2020-2070

Luhdorff & Scalmanini Consulting Engineers

Figure 7-6 PMA No. 2 Average Subbasin Land Surface System Inflows 2020-2070

Luhdorff & Scalmanini Consulting Engineers Figure 7-8 PMA No. 2 Average Subbasin Groundwater Budget Inflows 2020-2070

Figure 7-10 PMA No. 2 Cumulative Change in Groundwater Storage 2020-2070

Figure 7-11 PMA No. 3 Average Subbasin Land Surface System Inflows 2020-2070

Figure 7-13 PMA No. 3 Average Subbasin Groundwater Budget Inflows 2020-2070

Figure 7-16 PMA No. 3 Cumulative Change in Groundwater Storage 2020-2070

Figure 7-17 Difference in Simulated Groundwater Storage and Net Lateral Flow in Relation to Groundwater Injection (2020-2070)

Figure 7-18 PMA No. 4 Average Subbasin Land Surface System Inflows 2020-2070

Figure 7-20 PMA No. 4 Average Subbasin Groundwater Budget Inflows 2020-2070

Figure 7-22 PMA No. 3 Cumulative Change in Groundwater Storage 2020-2070

Figure 7-23 Difference in Relative Groundwater Storage in Relation to Pumping Reduction (2020-2070)

Appendix A:

Simulated and Observed Groundwater Levels

LUHDORFF & SCALMANINI CONSULTING ENGINEERS

0

-50

-100 1988

1992

1996

•

2000

Observed

2004

Simulated

2008

2012

2016

LUHDORFF & SCALMANINI CONSULTING ENGINEERS

