

31S-29E-28C (RMW-193)

APPENDIX K

Revisions to KRGSA and Plan Area Boundaries

K-1. REVISIONS TO KRGSA AND PLAN AREA BOUNDARIES

After the publication of the Draft GSP in August 2019, the Kern River Groundwater Sustainability Agency (KRGSA) Board of Directors approved the addition of certain parcels of land to be included in the both the KRGSA and the KRGSA GSP Plan Area. Specifically, six new areas were added to the KRGSA as highlighted on **Figure K-1**. For purposes of this appendix, these new areas approved for inclusion in the KRGSA and KRGSA Plan Area are referred to herein as the *KRGSA new lands*.

The KRGSA new lands were originally under the authority of Kern County for the purposes of SGMA and included in the Kern Groundwater Authority (KGA) GSA. At the end of 2018, the County decided to terminate its SGMA participation in the Kern County Subbasin and withdrew from the KGA. Subsequently, the KGA advised un-districted lands (previously covered by the County) to reach out to adjoining districts/GSAs to seek SGMA coverage. This prompted the landowners/managers of the KRGSA new lands to seek SGMA coverage through the KRGSA.

When the County was a member of the Kern Groundwater Authority (KGA), lands under its jurisdiction were included in the Basin Setting information in the Draft KGA GSP. To avoid numerous and unnecessary revisions to two GSPs relating to these new lands, the main body of the KRGSA GSP – including text, tables, and figures – refers to the previous Plan Area boundaries only. This **Appendix K** has been developed to provide supplemental information on the KRGSA new lands to ensure compliance with SGMA and consistency with the KRGSA GSP.

Although the KRGSA GSP does not officially address all KRGSA new lands directly (except in this appendix), the GSP recognizes that new lands have been added and incorporates them into the analysis by reference (see **Section 2** of the KRGSA GSP, p. 2-1, 4th paragraph). In addition, most of the analyses in the KRGSA GSP are sufficiently broad to include these adjacent KRGSA new lands, recognizing that the new lands represent only small adjustments (less than one percent increase of area) around the edges of the southern Plan Area (**Figure K-1**).

K-1.1 KRGSA New Lands

These six additional KRGSA new lands consist of a parcel or group of parcels that are adjacent to, or surrounded by, the southern Plan Area boundaries. As shown on **Figure K-1**, three areas occur in the southwestern Plan Area and three areas lie in the east-southeastern Plan Area. In the southwest, Lakeview Farms, Buena Vista Farms, and AJ Bos represent irrigated agricultural lands. Lands in the east-southeast are mostly associated with residential, industrial, and commercial land uses, the largest of which consists of Lamont Public Utilities District (PUD) (**Figure K-1**). All KRGSA new lands lie adjacent to the KRGSA Agricultural Management Area (MA) (see **Figure 5-1¹**); accordingly, these lands are

¹ Figures and Tables in this appendix are labeled K-1, K-2, etc. Figures and tables without the "K" designation refer to those within the main body of the KRGSA GSP unless specified as occurring in other documents.

incorporated into that MA. However, sustainable management criteria for some of these lands were more closely aligned with those in the Urban MA, as described in subsequent sections below. Collectively, the KRGSA new lands add approximately 1,840.64 acres² to the previous KRGSA Plan Area, as listed in **Table K-1**.

Table K-1: KRGSA New Lands

Additional Lands	APNs	Primary Land Use	Area (acres)	KRGSA Location
Lakeview Farms	184-030-46	Agriculture	273.54	Agricultural MA;
				southwest
Buena Vista Farms	184-030-52	Agriculture	450.25	Agricultural MA;
				southwest
AJ Bos	184-120-30	Agriculture	78.8	Agricultural MA;
				southwest
Grimmway Farms	188-250-09	Cal-Organic Farms	4.14	Agricultural MA;
		Storage Facility		southeast
Sunset Elementary	189-220-01;	Sunset Elementary	80.02	Agricultural MA;
School	189-220-49;	School, Arvin		southeast
	189-220-50;	Migrant Center,		
	189-220-51;	Residential		
	189-220-53;	Housing, Historic		
	189-220-57;	Sunset Camp		
	189-220-56			
Lamont PUD	Numerous	Residential,	953.89	Agricultural MA;
		Commercial, minor		southeast
		agriculture		
TOTAL ACRES			1,840.64 acres	
Oth	Other Minor Boundary Adjustments in GIS			
Total Area to add to KRGSA and Plan Area			1,847.16 acres	

In addition to the new lands described above, a few minor adjustments have been made to the KRGSA outer boundary to conform more closely to parcel lines or other jurisdictional boundaries in a few areas. These minor "clean-up" adjustments added a little more than 6 acres to the KRGSA. In total, the new lands and adjustments add about 1,847 acres to the KRGSA and KRGSA Plan Area (**Table K-1**). When added to the previous KRGSA Plan Area of 230,830 acres, the current revised KRGSA Plan Area shown on **Figure K-1** covers about 232,677 acres (approximately 363.6 square miles) as listed in **Table K-2**.

² Based on Kern County parcel data.

Table K-2: Revised KRGSA Plan Area Acreage

Areas	Acres ³	Square Miles	
Previous KRGSA Plan Area	230,830.20	360.7	
Additional Areas Added	1,847.16	2.9	
Current KRGSA Plan Area	232,677.36	363.6	

As indicated by the two tables above, the KRGSA new lands increase the total Plan Area by less than one percent.

K-1.2 Maples Management Area Coordination with KRGSA GSP

Additional lands adjacent to the southwestern KRGSA include an "arm" of about 4,360 acres, referred to as the Maples Service Area (Maples S.A. on **Figure K-1**). The Maples S.A. is a non-contiguous service area of the Buena Vista Water Storage District (BVWSD). BVWSD has formed a groundwater sustainability agency (GSA), referred to as the Buena Vista GSA (BVGSA), and has designated the entire Maples S.A. as a separate Management Area (MA) as defined by SGMA. Although located completely outside of the KRGSA, the Maples MA is surrounded on the north, south, and east by the KRGSA Plan Area (**Figure K-1**).

BVGSA has prepared a GSP for its entire district boundary including both its larger Buttonwillow Service Area (designated the Buttonwillow MA) and the Maples MA. However, given the close proximity of the Maples MA to the KRGSA Plan Area, BVWSD GSA has decided to align the sustainable management criteria in the Maples MA with those established for the surrounding areas of the KRGSA (GEI Consultants, 2019). As stated in the BVGSA GSP, "adherence to the guidelines of the KRGSA will avoid a situation where a small island of land under the jurisdiction of the BVGSA complicates SGMA compliance on the part of the KRGSA." This arrangement is acknowledged in this **Appendix K** to the KRGSA GSP.

The Maples MA remains a portion of the BVGSA and is not being incorporated into the KRGSA or the KRGSA Plan Area; rather, the Maples MA is only mirroring the sustainable management criteria established in the KRGSA for consistency purposes. As such, the descriptions and analyses required for a GSP covering the Maples MA are included in the BVGSA GSP and are not repeated here. However, portions of the KRGSA GSP provide additional local information on the Maples MA (e.g., groundwater elevation contour maps in **Appendix G**).

As shown by **Figure 6-1** in this KRGSA GSP, the current GSP monitoring network includes several wells adjacent to the boundary of the relatively narrow Maples MA and provides representative water levels for monitoring the Maples MA. In addition, water levels in two landowner irrigation wells (M01 and M02) located in the Maples MA will continue to be monitored under the CASGEM program.

³ Acreage and square miles are calculated using Geographical Information Software (GIS) and are approximate.

K-1.3 Approach to Revisions to the KRGSA and Plan Area Boundaries

As shown above, the KRGSA new lands represent small amounts of acreage around the edges of the Agricultural MA and previous KRGSA boundaries. As such, technical descriptions and analyses relating to the previous Plan Area would also generally apply to the new lands. Most of the information and analyses in this KRGSA GSP are considered sufficiently inclusive to cover the revised Plan Area. Even for maps and figures where data are limited to the previous KRGSA Plan Area boundaries, most of the descriptions provided in the KRGSA GSP are sufficiently broad to also apply to the KRGSA new lands.

For Lamont PUD, data and information are already directly incorporated into the KRGSA GSP. Because much of the Lamont PUD service area had already been included in the previous Plan Area, agency information for Lamont PUD was included throughout the KRGSA GSP. That information is referenced specifically in subsequent sections of this **Appendix K**. The 954 acres added for Lamont PUD accounts for more than one-half of the total acreage added by the KRGSA new lands.

In addition to relevant information in various KRGSA GSP analyses, the KRGSA new lands are also addressed in the KGA GSP in the form of regional maps and information on Plan Area and Basin Setting (KGA, August 2019). To document this coverage, selected figures and tables from the KRGSA GSP and the KGA GSP are listed in **Table K-3** below with a focus on the Plan Area and Basin Setting.

Table K-3: Selected Content from the KRGSA GSP and the KGA GSP covering KRGSA New Lands

Topics	KRGSA GSP Figures/Tables	KGA GSP Figures/Tables	
Jurisdictional Boundaries	Figures 1-2, 2-2, 2-3	Figures 1-1, 2-1	
Well Density Maps	Figures 2-11 – 2-14		
Geologic and Structural Setting	Figures 3-1 – 3-5	Figures 2-9, 2-12 – 2-14,	
		2-16, 2-17	
Topography	Figure 3-7	Figure 2-20	
Soils	Figure 3-8	Figures 2-21, 2-22	
Surface Water / Canals / Recharge	Figure 3-11	Figures 2-23, 2-24	
Oilfields	Figure 3-13	Figure 2-34	
Base of Fresh Water / Subbasin	Figure 3-15	Figures 2-15A, 2-15B	
Bottom			
Aquifers / Hydraulic Properties	Figure 3-23	Tables 2-2 – 2-4; Figure	
		2-18	
Groundwater Levels and Flow	Figures 3-25 – 3-27; Appendix G	Figures 2-25, 2-26, 2-28	
Water Quality	Figure 3-32	Table 2-5, Figures 2-31 –	
		2-33	
Interconnected Surface Water	Figure 3-40; No NCCAG mapped	No NCCAG mapped areas	
	areas on KRGSA new lands	on KRGSA new lands	
Subsidence/Critical infrastructure	Figure 3-37	Figures 2-36 – 2-38B	

Local KRGSA Water Budgets	Figures 4-5 and 4-7; covers	
(historical, current, and projected)	Lamont, Grimmway and Sunset	
	School parcels	
C2VSimFG-Kern Model Water	Figure 4-4; see also Attachment 1	
Budgets (historical, current,	– all KRGSA new lands included in	
projected)	the Subbasin water budgets.	
GSP Monitoring Network	Figure 6-1	Figure 3-1

In addition to the GSP content listed in **Table K-3**, land use plans (e.g., Kern County General Plan), well permitting requirements (administered by Kern County), and other County-wide or Subbasin-wide documents and information included in the KRGSA GSP also pertain to all of the KRGSA new lands.

To supplement the regional information provided in **Table K-3** above, additional local information on land use and water use is included in this **Appendix K** for the KRGSA new lands, as needed. The application of the KRGSA sustainable management criteria and GSP monitoring is also considered. The information provided in this **Appendix K** is considered part of the KRGSA GSP and has been incorporated by reference in **Section 2**.

K-2. KRGSA NEW LANDS – SOUTHWESTERN PLAN AREA

KRGSA new lands in the southwestern Plan Area include approximately 802.6 acres on three parcels that are used primarily for irrigated agriculture (**Figure K-2** and **Table K-1**). The two parcels for Lakeview Farms and Buena Vista Farms are separated by a parcel containing the Alejandro Canal, which is owned by BVWSD and is not a part of the KRGSA new lands. The Kern County Buena Vista Aquatic Recreational Area lies to the southwest of the Lakeview Farms and Buena Vista Farms parcels. The recreational area consists of two man-made lakes constructed on the surficial clays of the former Buena Vista paleo-lakebed. The lakes are used for boating, fishing, camping, and other activities and are maintained with Kern River water and supplemental groundwater pumped by Kern County.

The southwestern KRGSA new lands are adjacent and are being added to the large KRGSA Agricultural MA (approximately 132,282 acres), where cropping patterns and irrigation practices are similar. Therefore, groundwater conditions analyzed for sustainable management criteria are also similar. Supplemental technical information, sustainable management criteria, and nearby GSP monitoring wells are presented in this section for the KRGSA new lands in the southwest.

K-2.1 ESTIMATED WATER USE

The KRGSA new lands were included in the Subbasin-wide water budget analyses for historical, current, and projected water budgets developed with the C2VSimFG-Kern local model. (Subbasin-wide water budget modeling and results are included in **Attachment 1**.) Accordingly, the GSP water budget requirements have already been met for these lands. To provide additional local information on groundwater extractions for future water budget analyses using a checkbook method, irrigation water use was estimated for these lands focusing on the GSP historical Study Period (WY 1995 – WY 2014) and the current Study Period (WY 2015).

According to crop maps published by the Kern County Department of Agriculture and Measurement Standards, and corroborated with selected historical aerial photographs, the lands associated with Lakeview Farms and Buena Vista Farms were not fully developed for agriculture until the mid-2000s. Agriculture on the AJ Bos parcel appears to have been developed as of 1995 to 1997. Prior to these time periods, lands appeared to be undeveloped and contained native vegetation only. Although a small consumptive use is associated with native vegetation, water use is estimated only for the years in which crops were grown.

The primary crop types grown on the KRGSA new lands over time include alfalfa (AJ Bos and Lakeview Farms parcels only), wheat, corn, oats, grain and hay. Additional field crops including sorghum and sudan were also grown on the parcels. Because of the similar water requirements for various field crops, several crop types were grouped together. ET data were generated for three crop categories: miscellaneous field, corn, and alfalfa.

This water use analysis applies a monthly evapotranspiration (ET) value for each crop to the acreage on which it is grown over time. ET values were derived from the METRIC⁴ dataset that was provided by the ITRC to the Kern County Subbasin for application in the C2VSimFG-Kern local model. Monthly ET values for each crop were summed by water year for the historical Study Period (WY 1995 – 2014) and the current Study Period (WY 2015). Results are presented in **Table K-4**.

Table K-4: Crop Consumptive Use Estimates

	Primary Crops and Annual Crop ET (AFY)					
Water	Lakevie	w Farms	Buena Vista Farms		AJ Bos	
Year	AFY	Crop	AFY	Crop	AFY	Crop
1995	0	Native	0	Native	251	Corn
1996	0	Native	0	Native	251	Corn
1997	0	Native	0	Native	251	Corn
1998	0	Native	0	Native	216	Misc. Field
1999	0	Native	0	Native	188	Misc. Field
2000	0	Native	0	Native	280	Alfalfa
2001	0	Native	0	Native	279	Alfalfa
2002	0	Native	0	Native	294	Alfalfa
2003	0	Native	0	Native	281	Alfalfa
2004	0	Native	0	Native	296	Alfalfa
2005	0	Native	1,203	Corn	260	Alfalfa
2006	742	Misc. Field	1,221	Misc. Field	214	Misc. Field
2007	856	Misc. Field	1,408	Misc. Field	246	Misc. Field
2008	946	Misc. Field	1,556	Misc. Field	272	Misc. Field
2009	921	Misc. Field	1,516	Misc. Field	265	Misc. Field
2010	789	Misc. Field	1,299	Misc. Field	227	Misc. Field
2011	794	Alfalfa	1,270	Misc. Field	222	Misc. Field
2012	792	Alfalfa	1,319	Misc. Field	231	Misc. Field
2013	981	Alfalfa	1,338	Misc. Field	0	No data
2014	949	Alfalfa	1,478	Misc. Field	259	Misc. Field
1995-	388		681		239	
2014	388		091		239	
Crop Ave ¹	858		1,358		239	
2015	810	Misc. Field	1,333	Misc. Field	233	Misc. Field

¹ This average only includes the years that crops were grown for each of the parcels.

As indicated on Table K-4, average water use for the three parcels averages about 1,308 AFY (sum of 388, 681, and 239 AFY) over the entire historical Study Period (including years not farmed) and totals

⁴ Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) refers to an algorithm for deriving ET from satellite imagery as developed and applied by the Irrigation Technology and Research Center (ITRC) at California Polytechnic State University, San Luis Obispo, California.

2,376 AFY (sum of 810, 1,333, and 233) for current conditions. The average increases to about 2,455 AFY for the total 802.6 acres (about 3 AF/acre) using only years when crops were grown.

The projected water budget analysis in **Section 4.7.2** of the KRGSA GSP identified potential future deficits (see **Table 4-14**) using the more conservative checkbook method; the additional demand in **Table K-4** would add to those potential deficits. However, Phase One projects, one of which has already been implemented in the Agricultural MA, are sufficient to meet deficits for both baseline and 2030 climate change conditions (**Section 7.1**). As explained in **Section 7**, if the more severe 2070 climate change conditions are indicated, additional Phase Two projects can be implemented to protect the KRGSA Plan Area against future overdraft conditions. As such, the additional irrigation water use associated with these parcels is not expected to create un-met demands or undesirable results with respect to the reduction of groundwater in storage.

K-2.2 Sustainable Management Criteria and GSP Monitoring

As explained in **Section 5.3** of the KRGSA GSP, the definition of undesirable results and selection of MTs and MOs for the Agricultural MA have been determined for all relevant sustainability indicators. These definitions and criteria are also applicable to the KRGSA new lands. As summarized on **Table 5-2**, the western Agricultural MA has established a MT for water levels at 50 feet below the historic low level (as typically recorded in 2015-2016). The MO is defined as the average between the high water level during the historical Study Period (typically 1998) and the MT. These values define an operational range of water levels for the southwestern Plan Area that allows for a future multi-year drought and coordinates with surrounding water districts.

Numeric values for the MTs and MOs have been established at two representative monitoring wells in the southwestern MA – 31S/26E-16PO1 and 31S/26E-32B – as shown on **Figure 6-1**. Those two wells are the closest GSP wells to the KRGSA new lands and are located within about 1.2 miles to 3.4 miles from each of the three new parcels (see **Figures 6-1** and **K-2**). These wells, along with all other components of the GSP monitoring network, will provide sufficient GSP monitoring in the area to identify undesirable results should they occur.

K-2.3 Projects and Management Actions

As mentioned above, the KRGSA GSP Phase One project being implemented in the Agricultural MA – the Water Allocation Plan (WAP) – will provide benefits to the KRGSA new lands in the southwest. Additional recharge associated with the WAP is expected to occur along KDWD's Buena Vista, Stine, and Farmers Canals, allowing for local maintenance of water levels in the southwest. Those canals are within two to four miles of the KRGSA new lands.

All of the management actions in **Section 7** will apply to the KRGSA new lands, including compliance with a well meter installation program, groundwater extraction reporting, cooperation with GSP monitoring program, as needed, and other requirements, as identified by the KRGSA.

K-3. KRGSA NEW LANDS – SOUTHEASTERN PLAN AREA

The KRGSA new lands in the southeastern Plan Area total about 1,038 acres for inclusion in the eastern KRGSA Agricultural MA (**Figures K-1** and **K-3**). More than 90 percent of this acreage consists of the Lamont PUD service area, which provides water and wastewater services for a variety of residential, agricultural, commercial, and industrial land uses (see aerial photograph on **Figure K-3**). In addition to Lamont PUD, the southeastern KRGSA new lands include a 4-acre parcel with an agricultural storage facility owned by Grimmway Farms and an 80-acre group of parcels occupied by a school and other land uses (**Table K-1** and **Figure K-3**).

K-3.1 WATER BUDGET ANALYSIS

All of the southeastern KRGSA new lands were included in both the local KRGSA water budgets and the Subbasin-wide water budgets as analyzed with the C2VSimFG-Kern local model. The area of the local KRGSA water budget zone for the southern Plan Area is presented on **Figure 4-4b** in the KRGSA GSP. That figure clearly shows the inclusion of the KRGSA new lands associated with Lamont PUD, Sunset School, and Grimmway Farms. Although not inside of the KRGSA at that time, the new lands were included in the KRGSA model zone, in part because of the model element size and also because the model was set up to calculate urban demand independently for the southern Plan Area based on population. It would have been more difficult to remove these relatively small areas from the KRGSA model zone budget than simply to include them in the KRGSA water budget analysis. Model water budget analyses and results for the KRGSA Plan Area are provided in **Section 4.5** (historical and current water budgets) and **Section 4.7** (projected water budgets) of the KRGSA GSP. Subbasin-wide water budget results are included in **Attachment 1**.

K-3.2 LAMONT PUD LANDS

As mentioned in **Section K-1.3** above, most of the Lamont PUD service area was included in the previous Plan Area. Because of this overlap, and also because wastewater from the Lamont WWTP is used to irrigate lands in the KRGSA, it was decided to include all of the Lamont PUD water budget components in the KRGSA water budgets for both the checkbook and numerical model methods. Accordingly, detailed water information and data were provided by Lamont PUD for incorporation into the KRGSA GSP.

In brief, Lamont PUD serves water from seven municipal wells distributed evenly throughout the service area. Most of the wastewater is processed at a nearby recycling facility with a portion being provided to KRGSA landowners for irrigation of non-food crops. More detailed information on Lamont PUD water and wastewater activities and water budget components are provided throughout the KRGSA GSP as summarized on **Table K-5** below.

Table K-5: Information on Lamont PUD in the KRGSA GSP

Activities/Water Budget Component	KRGSA Section	KRGSA GSP Table/Figure
Wastewater/recycled water	Section 2.4.4	Table 2-1
Water service/purveyors	Section 2.4.5.6	Figure 2-4
Well Density Maps		Figures 2-11, 2-12, 2-13
Surface Water Drainageways	Section 3.2.4.4	
Water Quality	Section 3.3.4; 3.3.4.56	Figure 3-32
Groundwater Pumping	Sections 4.3.1; 4.3.2.7;	
Historical and Current Water Budget	Sections 4.5	Figure 4-4b
Projected Water Budgets/ Baseline Conditions	Section 4.7; 4.7.1;	Figure 4-8
Coordinating Agency in Agricultural MA		Table 5-1
Benefits of GSP Project – Water Allocation Plan	Section 7.1.1	
Inclusion in Management Actions/well metering	Section 7.2.3	

K-3.3 SUNSET ELEMENTARY SCHOOL AND ADJACENT LANDS

The addition of these lands includes 7 parcels totaling about 80.02 acres (**Table K-1**). The western portion contains lands associated with the Sunset Elementary School, one of two public schools in the Kern County Vineland Elementary School District. The parcels also contain the Arvin Migrant Center run by the Kern County Housing Authority and the Historic Sunset Camp⁵. As indicated by the aerial photograph on **Figure K-3**, the parcels are only sparsely populated and much of the land remains undeveloped.

K-3.4 GRIMMWAY FARMS

This small 4-acre parcel is owned by Grimmway Farms (Cal Organics) as an agricultural storage facility. According to Grimmway Farms Land Manager, the facility employs seven full-time employees with some part-time employees added during certain times of the year. Grimmway purchased the site in the 1980s and used it for fresh carrot packaging into the 1990s. Currently, the facility is primarily used for storage of packaging materials for other Grimmway sites. The facility is supplied by a groundwater well that serves employee restrooms and provides fire protection. Wastewater is managed with an onsite septic system.

⁵ Also referred to as the Sunset Labor Camp; built by the Works Progress Administration (WPA) in 1936 to house migrant workers during the Great Depression. Contains several historic buildings on the National Register of Historic Places.

K-3.5 Sustainable Management Criteria and GSP Monitoring

As explained in **Section 5.3** of the KRGSA GSP, the definition of undesirable results and selection of MTs and MOs for the Agricultural MA have been determined for all relevant sustainability indicators. In addition, the approach for MTs and MOs varies throughout the Agricultural MA based on local conditions. Local considerations include the need for higher MTs/MOs to be maintained in small water system wells/residential wells to protect groundwater quality and potential land subsidence, while allowing lower MTs/MOs in banking in south and western agricultural areas. The location and land use of the eastern KRGSA new lands – especially in Lamont PUD – are more closely aligned with those in Greenfield CWD and represent a transition from primarily agricultural to small water systems. This area of adjustment also extends to the north as the Agricultural MA transitions to the Urban MA. Accordingly, MTs/MOs in the eastern Agricultural MA adjacent to and north of Lamont have been adjusted to match those used in Greenfield CWD and the Urban MA.

As summarized on **Table 5-2** in the GSP, and based on the conditions described above the KRGSA has decided to adjust the definition of undesirable results in the eastern Agricultural MA for two sustainability indicators – chronic lowering of water levels and degraded water quality. This adjustment is made to increase protection for local domestic wells and small water systems in disadvantaged communities (DACs) including Lamont PUD and Fuller Acres Mutual Water Company (north of Lamont), among others.

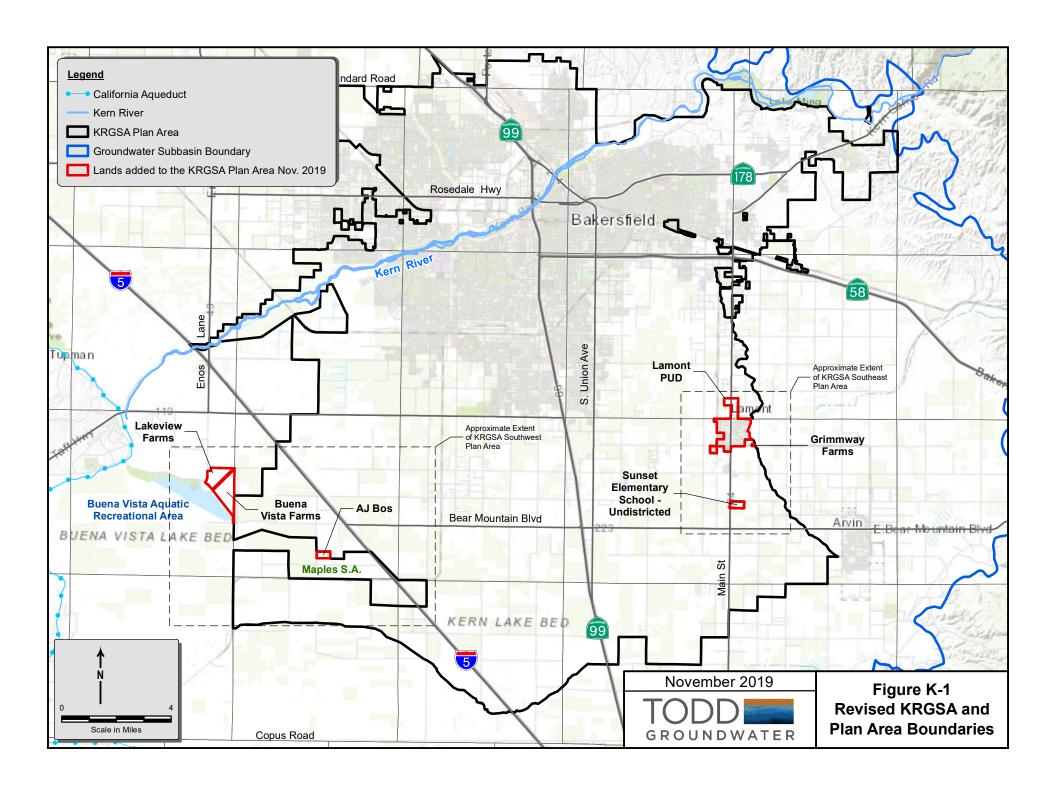
For both the chronic lowering of water levels and degraded water quality indicators, the MT for this portion of the Agricultural MA was previously defined as 50 feet below the historic low water level (typically observed in 2015-2016), allowing agricultural wells to continue to draw water levels down in multi-year droughts. However, Lamont PUD and small water systems to the north have raised concerns regarding water quality, especially for arsenic. At a KRGSA Community Workshop on October 15, 2019, Lamont PUD and Fuller Acres Mutual Water Company expressed concerns about lowering water levels in the Lamont/Fuller Acres area. To respond to these concerns, MTs have been re-defined to the historic low water level (without the 50 feet adjustment) in GSP monitoring wells adjacent to and north of Lamont PUD in the Agricultural MA. This reflects a consistent approach used for Greenfield CWD and for the transition to the Urban MA in the north. Although screen intervals in local water supply wells appear to be sufficiently deep to accommodate lowered water levels, those levels may impact groundwater quality. The MO is defined as the average between the high water level during the historical Study Period (typically 1998) and the MT, representing average historical water levels. These values define an operational range of water levels for portions of the eastern Plan Area that recognizes the number of small water systems and drinking water wells in this DACs area.

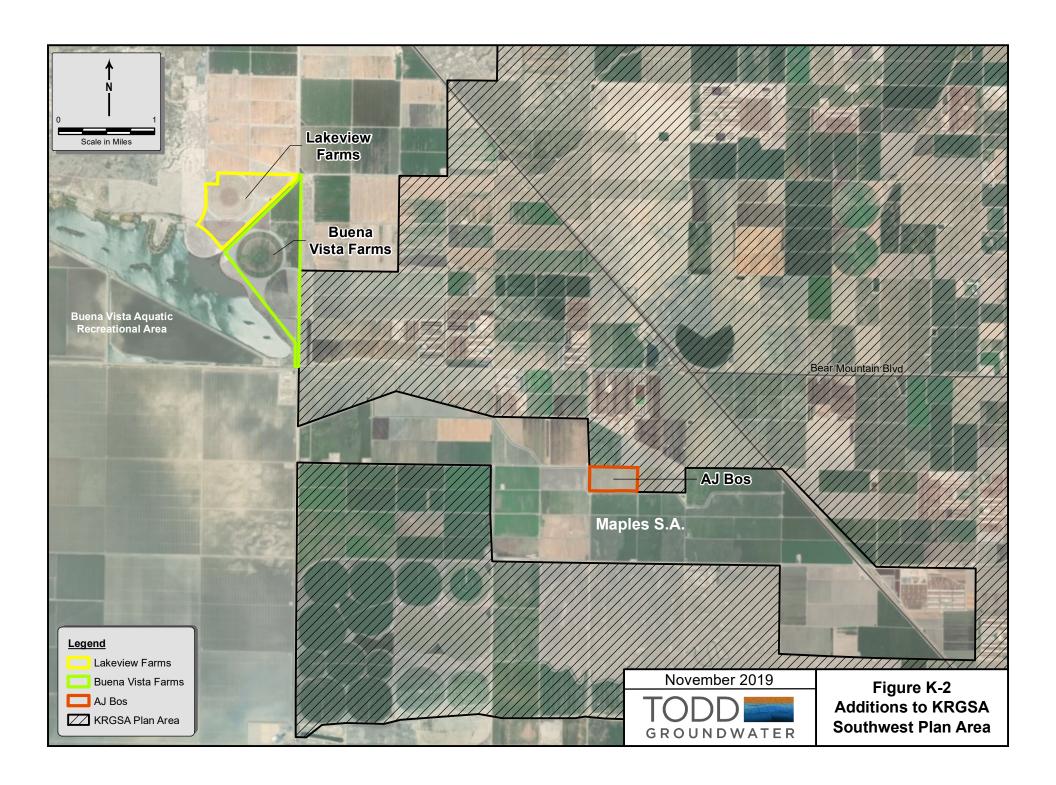
For several wells located in the area of the largest historical subsidence, the water level selected for the MT is higher than in adjacent agricultural areas and is limited to 20 feet below the historic low level. Similar to the other MOs in the Agricultural MA, the MO for the subsidence indicator is defined as the average between the high water level during the historical Study Period (typically 1998) and the MT. Those wells are generally south-southwest of Lamont PUD.

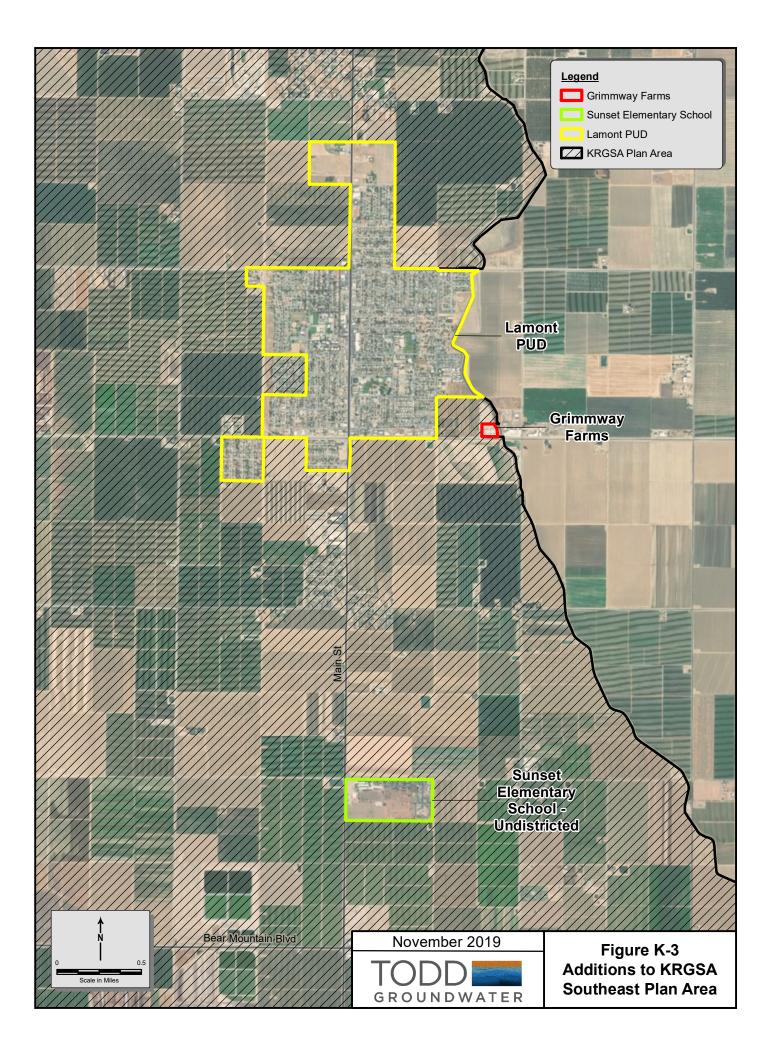
Numeric values for the MTs and MOs have been established at four representative monitoring wells in the southeastern Agricultural MA – 30S/28E-35L01, 30S/29E-31C, 31S/28E-14D, and 31S/29E-30J01, as shown on **Figure 6-1**. The two northern wells – 30S/28E-35L01 and 30S/29E-31C, are the wells closest to the Lamont PUD as well as DACs to the north including Fuller Acres. For those two wells, MTs have been adjusted to the historic low water level as described above. The two additional wells also have relatively high MTs currently for mitigating potential subsidence. These four wells are the closest GSP wells to the southeastern KRGSA new lands and surround Lamont PUD, Grimmway Farms, and the Sunset School property (see **Figures 6-1** and **K-2**). Additional subsidence monitoring will occur about one mile south of the Sunset School property at an existing GPS station as explained in **Section 6.2.6.2** (see **Figure 6-4**). Ongoing subsidence will also be monitored with online InSAR data, as explained in **Section 6.2.6.3** and illustrated on **Figure 6-4**.

These wells, along with all other components of the GSP monitoring network, will provide sufficient GSP monitoring in the area to identify undesirable results should they occur. Lamont PUD has offered to also provide a GSP monitoring network well; data from this well and/or other wells in this area will be reviewed for possible incorporation into the program as part of the Management Action to improve groundwater monitoring (see **Section 7.2.8**).

K-3.6 Projects and Management Actions


As described in **Section 7.1.1**, a GSP project (Water Allocation Plan) being implemented in the Agricultural MA will provide benefits to the southeastern KRGSA new lands. Additional recharge and decreased groundwater pumping should allow for local maintenance of water levels, as needed.


All of the management actions in **Section 7** will apply to the KRGSA new lands, including compliance with the KDWD well meter installation program, groundwater extraction reporting, cooperation with GSP monitoring program, as needed, and other requirements, as identified by the KRGSA. Current requirements were discussed in two Grower Outreach meetings in KDWD (November 19 and 20). A community workshop on the KRGSA GSP was held in Lamont on October 15, 2019.


K-4. CONCLUSIONS

As described in this **Appendix K**, the following conclusions can be made regarding the KRGSA new lands:

- KRGSA new lands, as adopted by the KRGSA Board of Directors, are incorporated into the KRGSA GSP by reference in Section 2 (page 2-1) and by the material presented in this **Appendix K**.
- Additions to the KRGSA and KRGSA Plan Area represent relatively minor adjustments only (increase of less than one percent of the previous Plan Area).
- Most of the remaining GSP-required information relevant to these new lands is already included in the KRGSA GSP or in the KGA GSP; additional supplemental information is provided in this Appendix K.
- All of the KRGSA new lands are already included in the historical, current, and projected water budgets developed for the entire Kern County Subbasin using the C2VSimFG-Kern local model.
- KRGSA new lands in the southeast are also included in the local (checkbook method) KRGSA historical, current, and projected water budgets as presented in the KRGSA GSP.
- Any additional historical or future deficits associated with the KRGSA new lands are either already accounted for in the GSP or are relatively small and will be readily addressed by the KRGSA with the implementation of Phase One GSP projects (see GSP Section 7.1).
- Current sustainable management criteria and GSP monitoring sites are applicable to almost all
 of the KRGSA new lands. MTs and MOs are adjusted in two wells adjacent to and north of
 Lamont PUD to provide additional protection against chronic lowering of water levels and
 degraded water quality in the DACs of Lamont and Fuller Acres.
- Current KRGSA GSP monitoring sites are sufficient to monitor the KRGSA new lands and provide the ability to monitor for MOs, MTs, and to avoid undesirable results. However, additional monitoring wells on the KRGSA new lands may be incorporated in the future. This need will be evaluated as part of the Management Action to improve the GSP monitoring network.
- All Management Actions associated with the KRGSA GSP will be applicable to the KRGSA new lands.
- Inclusion of the KRGSA new lands in the KRGSA and KRGSA Plan Area is consistent with the KRGSA GSP.
- The Maples MA is covered by the BVGSA GSP; its location surrounded by the KRGSA on the north, south, and east – indicates that coordinating with the KRGSA GSP for sustainable management criteria is reasonable.

ATTACHMENT 1

SGMA Water Budget Development using C2VSimFG-Kern in support of the Kern County Subbasin Groundwater Sustainability Plans (GSPs)

January 7, 2020

MEMORANDUM

To: Mark Mulkay, Kern River GSA

Patty Poire, Kern Groundwater Authority GSA

From: Michael Maley, Todd Groundwater

Charles Brush, Hydrolytics LLC

Re: SGMA Water Budget Development using C2VSimFG-Kern in support of the

Kern County Subbasin Groundwater Sustainability Plans (GSPs)

1. Introduction

In compliance with the Sustainable Groundwater Management Act (SGMA), the multiple Groundwater Sustainability Agencies (GSAs) of the Kern County Subbasin (Figure 1) have successfully coordinated on the development of Groundwater Sustainability Plans (GSPs). The Kern County Subbasin, the largest in the State, was designated as critically-overdrafted by the California Department of Water Resources (DWR). Water management in the Kern County Subbasin is complex. It involves more than 30 water districts/systems, contains large groundwater banking projects of State-wide importance, and provides large quantities of groundwater to support both large urban centers and one of the top agricultural-producing areas in the country. In addition, most agencies are involved in conjunctive management of local surface water, imported state and federal water, and groundwater.

Within this complex water management setting, GSAs recognized that a numerical modeling tool would be needed to meet GSP regulations for assessment of historical, current, and future projected water budgets that are developed on a Subbasin-wide basis (§357.4(b)(3)). The California Central Valley Groundwater-Surface Water Simulation Model (C2VSim) is anticipated to be DWR's primary tool for evaluating water management in the Central Valley and is specifically referenced in the GSP regulations for application to GSP water budgets (§354.18(f)); therefore, C2VSim was selected by the GSAs for GSP compliance.

This technical memorandum describes the process and approach for selection, revisions, and application of the C2VSim to the Kern County Subbasin. The memorandum documents the development of Subbasin water budgets and presents the results. This document is being prepared as an attachment to Subbasin GSPs and as an attachment to the Kern County Subbasin GSAs' coordination agreement.

1.1 Background

During late 2016 and 2017, Subbasin GSAs held a series of meetings and workshops to evaluate potential modeling tools for GSP application. Although numerous existing models had been developed by various entities in the Subbasin over time, none of those models covered the entire Subbasin or incorporated all of the local water budget components necessary to meet GSP requirements.

During the time that the Subbasin was evaluating various modeling alternatives, DWR was in the process of updating the regional C2VSim model through water year (WY) 2015. In particular, the GSP regulations stated that DWR would provide the C2VSim model "for use by Agencies in developing the water budget." Todd Groundwater developed an approach for review, revisions, and application of the C2VSim model to the Kern County Subbasin. In March 2017, the Kern River GSA (KRGSA), on behalf of the Subbasin GSAs, entered into a contract with Todd Groundwater to conduct the proposed scope of work. The Kern Groundwater Authority (KGA), on behalf of the Subbasin GSAs, also retained Woodard & Curran to conduct a peer review of the Todd Groundwater C2VSim model revisions and application for the Kern County Subbasin.

DWR released the C2VSim Fine Grid Public Beta model (C2VSimFG-Beta) on May 18, 2018 (CNRA, 2018). An initial model review indicated that the C2VSimFG-Beta generally had good historical precipitation, streamflow, land use and crop acreage for the entire Central Valley. Historical water supply and demand data were also generally good in the Sacramento Valley and San Joaquin River hydrologic regions; however, data were considered less reliable in the Tulare Lake hydrologic region including Kern County. To address this concern, Todd Groundwater – working with all Subbasin GSAs –revised the Kern County portion of C2VSimFG-Beta for WY1985 to WY2015. This revised version of C2VSim for the Kern County Subbasin, referred to herein as the C2VSimFG-Kern model, was used to develop historical, current and projected-future water budgets in accordance with the requirements in the GSP regulations.

The Central Valley portion of Kern County contains two groundwater subbasins, the Kern County Subbasin (5-022.14) and the White Wolf Subbasin (5-22.18) based on DWR Bulletin 118 (DWR, 2016A). All of the agencies that deliver water in White Wolf Subbasin also deliver water in the Kern County Subbasin and participated in the C2VSim revision. The White Wolf Subbasin portion of C2VSimFG-Beta model was included in this update to ensure coordination of groundwater conditions between the two subbasins. These are considered separate groundwater basins under SGMA with the Kern County Subbasin listed by DWR as critically-overdrafted with a GSP deadline of January 30, 2020, whereas the White Wolf Subbasin is listed as medium priority with a GSP deadline of January 30, 2022. Therefore, only the model results for the Kern County Subbasin are evaluated and reported here.

1.2 General Approach

The current C2VSim model has a detailed finite element mesh that closely follows local hydrologic features. As a regional model, the C2VSimFG-Beta may over-generalize local conditions within the Kern County Subbasin so as to be inconsistent with local site-specific data and knowledge. To address this concern, the managed water supply and demand inputs were updated to better represent the local water balance. To do this, the more general assumptions in C2VSimFG-Beta were replaced with local data and knowledge that are regionally or locally significant over the WY1995 to WY2015 Hydrology Period. Local managed water supply input data (e.g., surface water deliveries, land use, irrigation demand, return flows, and groundwater banking) were collected and applied to C2VSim. Improvement of Kern County data focused on incorporating:

- Surface water delivery volumes, application areas and use by water district,
- Groundwater banking recharge, recovery and application of recovered water,
- Irrigation demand from recent analyses of remote sensing data of evapotranspiration in the Kern County Subbasin based (ITRC, 2017),
- Urban demand for the Subbasin focusing on Metropolitan Bakersfield, and
- Data on other water sources and demands of local significance to individual districts/GSAs.

Compiling the data needed for the model revision required a coordinated effort from the Subbasin GSAs (**Figure 1**) to provide locally derived data on managed water supply and demand that was used to revise the C2VSimFG-Beta for the Kern County Subbasin. The Subbasin GSAs also coordinated on selection of consistent study periods for the C2VSimFG-Kern water budget analyses. Based on technical considerations and a review of regional data, the following study periods were selected:

- Historical Water Budget WY1995 through WY2014 (Section 3.2), and
- Current Water Budget WY2015 (Section 3.2),
- Projected Water Budget WY2021 through WY2070 using 50 years of hydrologic data based on historical data (Section 6.1).

Todd Groundwater also coordinated data collection and model revision efforts with a Technical Peer Review Team and local agencies to ensure input data were accurately represented in the model. Tabulated input data, model files and model-derived water budgets were provided to the Technical Peer Review Team for review of accuracy and appropriateness. Model input data and results were also provided to Kern County Subbasin water districts and local water purveyors for their review. Comments and data issues were reconciled and incorporated into the revised C2VSimFG-Kern model.

1.3 Acknowledgements

These regional model revisions were enhanced by the participation of the many agencies that provided local water budget input data. Todd Groundwater worked with the member agencies, and their consultants, including the Kern River GSA, Kern Groundwater Authority GSA, Henry Miller Water District GSA, Olcese Water District GSA, and Buena Vista GSA to coordinate acquisition of input data from other agencies in formats that could be easily incorporated into the C2VSim model. On-going review of interim model results by these agencies, including local zonal water budgets, groundwater hydrographs and other model results, helped ensure that the revised model reproduced local mass balance estimates across the Subbasin.

Woodard & Curran conducted an on-going peer review of model input files at the request of the GSAs in the Kern County Subbasin. Todd Groundwater worked with Woodard & Curran throughout the historical model revision process. The C2VSimFG-Kern input files for the Kern County Subbasin revised historical simulation were provided to DWR for incorporation into future C2VSim public releases.

Dr. Charles Brush of Hydrolytics LLC was added to the Todd Groundwater modeling team. As an early developer of C2VSim for DWR, he provided his experience and expertise with the C2VSim. This collaborative effort provided further assurance that the significant model revisions could be managed in an efficient manner to meet the expedited schedule for water budget development.

3

2. C2VSIM

C2VSim uses DWR's modeling code *Integrated Water Flow Model* (IWFM) and covers the entire California Central Valley. Kern County is located at the far southern end of the Central Valley (**Figure 2**). C2VSim simulates the full hydrologic cycle, calculating water demands and tracking water movement through surface water and groundwater systems, and is therefore well suited to support GSP development.

2.1 C2VSim Background

DWR developed C2VSim to simulate water demands and supplies in the Central Valley. C2VSim is an application of DWR's IWFM software. IWFM is an integrated hydrologic model that simulates water flows on the linked land surface, unsaturated zone, groundwater, and surface water flow systems. A key feature of IWFM is DWR's agricultural and urban water supply and demand management module that dynamically simulates the delivery of both surface water and groundwater supplies based on both water availability and calculated water demands, as affected by usage and climatic conditions.

The C2VSim is derived from a series of Central Valley hydrologic models developed by DWR and other agencies beginning in the early 1990s. Each model in this series has incorporated significant improvements over the previous version (Brush, Dogrul and Kadir, 2013). The groundwater flow system is modeled in IWFM using the finite element method and uses a highly efficient solver developed at UC Davis. The IWFM Demand Calculator (IDC) and land surface simulation process were developed with input from California irrigation management professionals. Given DWR's emphasis on water management, detailed water budgets produced by C2VSim provide strong representations of the surface water and groundwater flow systems and make it a preferred platform for developing water budgets.

2.2 C2VSImFG-Beta Model

DWR's 2018 release of C2VSimFG-Beta includes historical input data for WY1922 to WY2015. C2VSimFG-Beta includes historical precipitation, stream inflow, land use and crop acreage for the entire Central Valley. These data include monthly precipitation and annual land use for each model element and estimated monthly evapotranspiration for each modeled land use type and agricultural crop. Historical surface water data include monthly surface water inflow for each river entering the model boundary and monthly surface water diversions and deliveries.

The C2VSimFG-Beta finite element grid divides the Central Valley into 32,537 model elements (**Figure 2**). Element areas are small near streams and in developed areas and expand to larger sizes in undeveloped areas. Element sizes average 407 acres and range from 4 to 1,770 acres. Central Valley rivers and streams are represented with a network of 110 stream reaches. Surface water and groundwater inflows from uplands along the model boundary are simulated with 1,033 small watersheds. Within the Kern County Subbasin, the land surface elevation varies from 208 feet above mean sea level (msl) in the north to 3,922 feet above msl in the foothills.

The groundwater aquifer system is represented with four aquifer layers and one regional confining layer. The aquifer thickness in the Kern County Subbasin varies from 857 to 9,054 feet and the deepest aquifer location is 8,752 feet below msl. The Central Valley aquifer is simulated with the following hydrostratigraphic layers, listed from top to bottom:

- Shallow, unconfined aquifer,
- Regional confining layer,
- Active confined aquifer (contains high level of pumping),
- Inactive confined aquifer (contains limited pumping), and
- Saline confined aquifer.

C2VSimFG-Beta includes annual land use and crop acreages and monthly precipitation, evapotranspiration, stream inflows, surface water deliveries and specified groundwater pumping rates for WY1922 to WY2015. C2VSimFG-Beta uses IDC to dynamically calculate distributed monthly water demands, allocate available water supplies to meet these demands, and calculate unmetered groundwater pumping necessary to satisfy unmet demands. C2VSimFG-Beta produces detailed monthly water budgets for arbitrary sets of elements grouped into zones.

Water demands are calculated dynamically for each model element using the IWFM Demand Calculator (IDC) for agricultural, urban, native and riparian land use types. Agricultural demand is calculated based on annual crop type distribution mapping and user-specified evapotranspiration rates for 20 irrigated crop types and managed seasonal wetlands at the Kern National Wildlife Refuge. Agricultural water demand is determined based on a soil moisture balance that uses local soil properties to assess the amount of applied water (precipitation and specified surface water applications) available to meet the crop demand. If water demands in an element are not satisfied from these sources, the C2VSim model calculates the groundwater pumping needed to eliminate any deficit.

Urban demands are calculated based on population and per-capita water demands. Water demands for native, undeveloped, fallow or riparian settings are calculated from monthly evapotranspiration rates and the amount of precipitation. If water demands in an element are not satisfied, no applied water is provided to these areas, and the vegetation is assumed to be in a stressed state. Runoff of precipitation in developed and undeveloped areas within the Subbasin and surrounding small watersheds is calculated using methodology included in IWFM that is based on the Soil Conservation Service Curve Method (NRCS, 2004).

C2VSimFG-Beta was released after a preliminary model calibration. The distribution of aquifer parameters was based on a texture analysis of lithologic well logs compiled by the US Geological Survey (USGS, 2009) from Well Completion Reports submitted to DWR by well drillers. The texture analysis interpolated the percentage of coarse-grained material at each well location and depth of the C2VSimFG-Beta mesh. Aquifer parameters were then calculated for the model mesh based on the percentage of coarse-grained material and estimated properties for pure coarse- and fine-grained materials. Transmissivities were estimated using specific capacity tests, where available. Soil properties for each model element were derived from digitized soil maps published by the US Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS, 2018).

3. Kern County Revisions

C2VSimFG-Beta input files were revised to incorporate locally-derived managed water supply and demand data to better represent the local water budgets for the Kern County Subbasin. Additional revisions were made to C2VSimFG-Beta model to address issues that were identified with the physical representation of the Kern County Subbasin. The result of these Kern County specific modifications is a local version of C2VSimFG-Beta that is referred to here as C2VSimFG-Kern. The following provides a summary of the model modifications.

3.1 C2VSimFG-Kern Model

C2VSimFG-Kern input files incorporate locally-derived historical data for the Kern County and White Wolf subbasins to better represent local water conditions. These are two separate groundwater subbasins in the Kern County portion of the San Joaquin Groundwater Basin. The Kern County Subbasin is listed as critically-overdrafted by DWR with a GSP deadline of January 30, 2020, whereas the White Wolf Subbasin is listed as medium priority by DWR with a GSP deadline of January 30, 2022. C2VSimFG-Kern was not changed for areas outside of the Kern County Subbasin.

Historical surface water diversion, water bank recharge and water bank withdrawal information were collected from local GSAs, management areas, water agencies and purveyors. Urban land use was restricted to developed areas, and urban populations and per-capita water demands were updated. Model structure (elements, streams, stratigraphy, etc.) was not modified. Model parameters were not calibrated, although some model parameters were adjusted to improve model performance in specific geographic areas.

3.2 Simulation Time Period

GSP requirements indicate a need to identify an average hydrologic study period for purposes of the groundwater analyses in the basin-wide water budgets. In order to select a consistent study period, the Kern County Subbasin GSAs agreed upon an historical hydrologic study period covering WY1995 through WY2014 (October 1, 1994 through September 30, 2014). The selection of the historical hydrologic study period was based on a variety of technical criteria including:

- Covers at least 10 years consistent with GSP regulations (§354.18(c)(2)(B)),
- Contains 10 years characterized as above normal or wet years based on precipitation; also contains 10 years of below normal or dry years, including four critically dry years,
- 100 percent of the long-term average streamflow conditions on the Kern River, as indicated by an average annual Kern River Index of 100 percent (Figure 4),
- About 104 percent of long-term average precipitation (NOAA Bakersfield Meadows Field Airport Station),
- Widely-available high-quality data available across the Subbasin,
- Time period with current water management practices, intensive groundwater banking operations, and more recent land use patterns,
- Begins in a time of relatively stable water levels (October 1994), and
- Overlaps a time period with consistently developed basin-wide contour maps by Kern County Water Agency (KCWA).

For the historical water budget, it is desirable to define a base period when natural hydrology represents average conditions. C2VSimFG-Kern incorporates this 20-year base period of WY1995 through WY2014 with a 10-year spin-up period (WY1985 to WY1994).

Kern County water agencies provided locally-derived water budget data for WY1993 to WY2015 for this study so that data input extended beyond the historical base period. Additional water budget data prior to WY1993 were also collected where available and input into the model.

The simulation period for C2VSimFG-Kern was set to WY1986 to WY2015 (October 1, 1985 through September 30, 2015), allowing a 10-year spin-before the start of the historical base period. The C2VSimFG-Beta simulation period ran from October 1973 through September 2015 (WY1974 to WY2015). The period from October 1973 to September 1985 was not included in the simulation due to concerns about lack of comparable data from these earlier periods.

3.3 Data Compilation

Participating agencies compiled water budget input data sets (using their staff, consultants or other resources) and provided them to Todd Groundwater. Where appropriate, Todd Groundwater developed data templates that conformed to IWFM model data needs and used them to facilitate obtaining input data from local agencies. This included monthly data for the following:

- Surface water imports and diversions (inflows and outflows) by source, conveyance and application area,
- Groundwater banking and managed aquifer recharge by water district or agency,
- Groundwater recovery pumping of groundwater bank recharge for export from the basin,
- Groundwater recovery pumping of managed aquifer recharge for local use,
- Urban area population and per capita water use, and
- Crop evapotranspiration (ET) rates based an analysis of satellite data (ITRC, 2017).

In addition, groundwater banking data were compiled for the large Kern Fan banking projects. Recently developed crop ET rates derived from remote sensing data were used to develop monthly crop ET rates for agricultural crops. Urban land use was restricted to developed areas, urban populations and percapita water demands were updated, and urban wastewater recharge operations were added.

3.4 Surface Water

Kern County surface water diversions in C2VSimFG-Beta were grouped by project or water source, and some surface water deliveries were applied to large regions rather than to individual districts. In addition, some local surface water deliveries were missing from C2VSimFG-Beta. For C2VSimFG-Kern, the 43 Kern County surface water diversions from C2VSimFG-Beta were replaced with 113 surface water diversions developed with data provided by local agencies.

The Arvin-Edison WSD, Wheeler Ridge-Maricopa WSD and Tejon-Castaic WD overlie both the Kern County and White Wolf subbasins. Surface water deliveries for these districts were apportioned to either the Kern County and White Wolf subbasins, based on data provided by Arvin-Edison WSD and Wheeler Ridge-Maricopa WSD, so that surface water deliveries to those areas could be tracked separately for the water budgets.

3.4.1 River and Stream Inflow

Inflows to the Kern River and Poso Creek at the Subbasin boundary are based on historical gauge data. Kern River inflows at the First Point gauge and downstream gauges were verified and updated based on the annual Kern River Hydrographic Reports produced by the City of Bakersfield (COB, 1985-2015). C2VSimFG-Beta contained Poso Creek inflows for WY1961 to WY1986. Poso Creek inflows for WY1987 to WY2015, based from flow records for the Coffee Canyon and Trenton stream gauges, were added to C2VSimFG-Kern based on data provided by the local agencies.

3.4.2 Surface Water Diversions

Monthly surface water diversion data for WY1995 to WY2015 were collected for 21 agencies and recharge projects in Kern County. The data from each water district or agency included monthly surface water inflow by source and monthly surface water outflow by destination.

The monthly surface water inflow and outflow data collected for this study did not have sufficient detail to track this water and create an accurate historical water budget for each canal for each month. The data did provide sufficient information to identify monthly surface water diversions from each source and deliveries to each end use. Therefore,

- All diversions from the Kern River were exported from the model and treated as imports at delivery locations,
- Diversions from Poso Creek and the Kern River Flood Channel (or Main Drain) were diverted from the appropriate stream nodes, and
- All other surface water deliveries (State Water Project (SWP), Central Valley Project (CVP), oil field recovery water, etc.) were treated as imports.

Each C2VSim surface water diversion is linked to two groups of model elements: the elements of the end use and the elements receiving the recoverable losses. A single set of elements was used for both purposes in C2VSimFG-Kern. Model elements for agricultural, urban and refuge deliveries were selected by overlaying the model grid on delivery areas maps. Model elements for recharge diversions were selected by overlaying the model grid on recharge basin maps.

Monthly water delivery data for the SWP, CVP and Kern River were also provided by the agencies. Monthly turnout-level deliveries for the SWP were also compiled from the monthly SWP Report of Operations published by DWR. Monthly CVP deliveries were compiled from the USBR Report of Operations. Monthly Kern River flow and diversions were compiled from Kern River Hydrographic Reports. Water agencies in the Kern County Subbasin trade and wheel water in real time to maximize water utilization, minimize waste and energy consumption, and meet immediate water needs. Water delivery reports from water suppliers (such as the CVP and SWP) generally identify the owner of delivered water, not where it was actually delivered.

Some surface water conveyances discharge water into stream or river channels for re-diversion downstream. A key part of the surface water system in Kern County is the Kern River. Kern River operations data were reviewed for calendar years 1970 to 2015. While **Table 1** summarizes surface water deliveries, **Table 2** summarizes Kern River diversions by turnout location as applied in C2VSimFG-Kern.

3.4.3 Surface Water Deliveries

Water flow through the Kern River and its associated canal system is very complex. Water is diverted from the Kern River into a parallel canal system at several locations, with some diverted water flowing

back to the river. Some water from the CVP and SWP are discharged into the Kern River for diversion downstream. Some water agencies are served from multiple diversion points along the Kern River. Several canals that receive water diverted from the Kern River also exchange water with other canals and receive some water from groundwater pump-in, so deliveries from many canals cannot be attributed to a single source. **Figure 5** shows the locations of the primary streams, regional surface water canals, and groundwater recharge locations in the Kern County Subbasin.

Each surface water diversion in C2VSim is allocated to a specified destination and water use. Five water use types are simulated in C2VSimFG-Kern: agricultural, urban, refuge, recharge and export. Agricultural and refuge diversions are applied to a group of model elements that corresponds to a surface water service area within a specific water agency or refuge. Urban diversions are allocated to an urban service area. Groundwater recharge diversions are allocated to the model element or elements where the receiving recharge basin is located. Three delivery fractions apportion each surface water diversion to application, loss to groundwater (recoverable loss), and loss to evaporation (non-recoverable loss). Table 1 summarizes the annual surface water deliveries for agricultural use by water district in Kern County. Table 3 summarizes surface water diversions for urban use, wastewater land disposal and wildlife refuge management in Kern County.

3.5 Groundwater Banking and Managed Aquifer Recharge Operations

In our preliminary discussions with the C2VSim developers at DWR, it was revealed that significant model uncertainty was related to incomplete data regarding groundwater banking and other managed aquifer recharge (MAR) operations in the Kern County Subbasin. Recognizing the importance of these groundwater banking projects for simulating groundwater conditions, the groundwater banking and MAR operations data was updated using the earliest available records.

3.5.1 Recharge and Recovery Data

A monthly time-series of recharge rates was determined for each recharge project. Recharge rates were allocated to individual recharge basins using the initial data whenever possible or were shared proportionally between basins based on historical rates. All Kern County recharge basin surface water deliveries were simulated as imports.

Recharge basin locations and recovery well locations were provided by each agency or project (**Figure 6**). The C2VSim finite element grid was overlaid onto a map of recharge basins to determine the model elements for each recharge location. Well location coordinates were added to C2VSimFG-Kern.

Monthly volumes for recharge at groundwater banking and managed aquifer recharge facilities were compiled for 16 agencies and projects (**Table 4**). This information originated from multiple sources, and included data provided by agencies, compiled from agency reports, and compiled from Kern River Hydrographic Reports. The data includes monthly recharge for years prior to 1995 for many projects. Several agencies and projects provided data for multiple recharge basins. Some groundwater wells used for recovery of banked water are also used for other purposes such as supplementing agricultural or urban surface water deliveries.

Recognizing that several of the large groundwater banking projects (especially those on the Kern Fan) pre-date the 20-year base period, and that future studies might simulate periods prior to 1985, all available historical data for groundwater banking operations was reviewed and updated. This included incorporating pre-1985 data for banking operations at

- Arvin-Edison WSD (1966-2015),
- Berrenda Mesa Project (1977-2015),
- Buena Vista WSD (1963-2015),
- City of Bakersfield 2800 Recharge Facilities (1973-2015),
- North Kern WSD (1956-2017), and
- Rosedale-Rio Bravo WSD (1980-2015).

3.5.2 Groundwater Recovery

Two types of recovery wells were added to the C2VSimFG-Kern. These include district-operated water wells that were used for out-of-district transfers or out-of-basin exports of groundwater, and wells used for recovering banked groundwater and distributing the pumped groundwater via the district's water conveyance system to provide water supply, typically for agricultural use, within the district. The locations of the specified groundwater recovery wells are shown on **Figure 6**. The specified groundwater recovery pumping input into C2VSimFG-Kern is summarized as follows:

- 229 time series for Kern County groundwater banking withdrawals were added,
- 313 simulated pumping wells and 225 pumping time series for local groundwater pumping by district-operated recovery wells were added, and
- Elemental agricultural, refuge and urban pumping was eliminated in areas where it has not historically occurred.

Recharge and withdrawal data for the Kern Fan banking projects, including the Kern Water Bank, Berrenda Mesa Project, Pioneer Project, and the City of Bakersfield 2800 Recharge Facilities were shared with the local banking authorities for verification. Banking data for district-specific groundwater banking projects were provided by these districts. A summary of the data input for groundwater recovery pumpage added to C2VSimFG-Kern is provided in **Table 5**.

3.5.3 Model Application

A separate diversion was created to deliver surface water to each recharge basin or set of geographically close jointly managed basins. A diversion time series of monthly application rates was then created for each recharge diversion from the available data. Each recharge diversion delivers water to the model elements coinciding with the receiving recharge basin(s). Recharge basins were simulated in C2VSimFG-Kern by setting the application delivery fraction to zero, the recoverable loss fraction to 94% and the evaporation loss to 6%.

Monthly groundwater recovery was generally provided by well field and destination (e.g., agriculture, urban, canal pump-in, or export). This information was used to develop a pumping time series for each well field and destination. Groundwater pumped for export from the Kern County Subbasin is summarized in **Table 6**. Recovery well locations and screen intervals were used to enter each recovery well into C2VSimFG-Kern. Recovery pumping time series were then allocated equally to all of the wells in each field.

Some well fields supply water to two different end uses, for example supplementing surface water deliveries within the district in some months and exporting water from the district in other months. This is handled in C2VSimFG-Kern by entering the well two times. Each entry is associated with a separate time series of pumping rates and delivery destination.

3.5.4 Groundwater Banking Obligations

The general operation of groundwater banking facilities is to recharge excess available surface water supplies during wet years by recharging to the groundwater and recovering this water by pumping in dry years when surface water supplies are limited. Groundwater banking programs store water in the Kern County Subbasin for use by local agencies and for export to out-of-basin entities.

For evaluating the groundwater sustainability, any water stored in the Kern County Subbasin that is contractually obligated to an out-of-basin entity does not contribute to the long-term groundwater sustainability because the owner of that water could call for its return at any time. However, this can be difficult to track because a common practice is to recover groundwater for local use to replace imported surface water that was sent to the out-of-basin entity.

C2VSimFG-Kern does not have a mechanism to track these complex contractual exchanges, so the tracking is done as a post processing step by assigning the portion of the groundwater recharge as an out-of-basin banking obligation.

The Kern County Subbasin GSAs provided the total out-of-basin banking obligation for their operations as of September 2014 for the historical assessment. As of September 2014, the out-of-basin banking obligation for the Kern County Subbasin totaled of 1,719,307 acre-feet, which, when averaged over the 20-year period, was 85,965 acre-feet per year (AFY). The 85,965 AFY is applied during post-processing of C2VSimFG-Kern historical water budget results.

3.6 Urban Water Demand

C2VSim calculates urban water demands for specified urban delivery zones, allocates specified surface water and groundwater supplies to meet these demands, and can optionally pump additional groundwater to satisfy unmet urban demands in each zone. Urban demands were represented with nine urban zones in C2VSimFG-Beta. These zones were reconfigured, and a tenth urban zone was added representing Metropolitan Bakersfield in C2VSimFG-Kern. Historical urban populations and per capita water use rates were reviewed and updated.

3.6.1 Urban Zones

C2VSimFG-Kern dynamically calculates urban water demands for urban zones using time-series data of urban populations and monthly per capita water use. The urban delivery zones of C2VSimFG-Beta were modified to better represent Kern County population centers, jurisdictional boundaries and urban water sources. Although Kern County urban water delivery systems are operated by many diverse entities, their water generally comes from two sources: surface water deliveries and agency-operated groundwater wells.

The nine Kern County urban zones in C2VSimFG-Beta for Kern County were numbered 97-105. The Urban Zone boundaries were adjusted, as shown on **Figure 7**, as follows:

- Portions of Urban Zones 97, 99, 100, and 102 in C2VSimFG-Beta were used to create Urban Zone 106 representing the Metropolitan Bakersfield area,
- Urban Zone 98 was extended southeast to near the Stockdale Highway to include unincorporated urban areas,
- The boundary of Urban Zone 99 was extended eastward to California State Route 65 to include small communities in this area, removing them from Urban Zone 100, and

• The northern boundary of Urban Zone 104 was moved north to correspond to the West Kern WD service area.

3.6.2 Urban Population and Per Capita Use

Historical annual urban populations for the urban zones were estimated using United States Census total population data from 1990, 2000 and 2010 (US Department of Commerce, 2018). Tabular historical census data and census block shapefiles were obtained from the IPUMS National Historical Geographic Information System Database (IPUMS 2018). These data were combined to produce maps of the geographic distributions of populations within Kern County. The historical populations for each Urban Zone were estimated by mapping census block centroids to the ten Urban Zones using ArcGIS. The 1990, 2000 and 2010 populations of each Urban Zone were then estimated as the sum of the populations of the associated census blocks. Populations for other years were estimated using interpolation and extrapolation. The population values by Urban Zone used for C2VSimFG-Kern are listed in **Table 7**.

3.6.3 Urban Water Use Specifications

Monthly historical urban water demands for Urban Zone 106 were calculated using water delivery data from the water purveyors in the Metropolitan Bakersfield area. Monthly historical urban water demands for the other urban zones in the Kern County Subbasin were estimated using available water use data from published urban water management plans for the communities served in those zones. The historical monthly water use in each zone was then divided by the historical population to obtain the monthly per capita urban water demand. Monthly historical per capita water demands for zones without urban water management data were estimated using the per capita water demand from zones with similar demographics.

The urban water use specifications indicate the portion of total urban water that is used indoors. In C2VSimFG-Kern, the portion used indoors becomes urban return flow, and the remainder is added to the urban root zone where it contributes to evapotranspiration and deep percolation. C2VSimFG-Beta included monthly urban water use specifications for each model subregion. The urban per capita water use was based on local water supply data and urban water management plans. **Table 8** lists the per capita water use data used for C2VSimFG-Kern.

3.6.4 Urban Wastewater

Urban wastewater for the Metropolitan Bakersfield area is treated at local wastewater treatment plants; however, wastewater disposal is primarily evaporation ponds or land disposal at locations outside of the Metropolitan Bakersfield area. C2VSimFG-Beta does not have a direct means to redirect wastewater to an outside location. Urban wastewater, based as the indoor use, is applied uniformly within the urban zone. To get around this limitation, application of wastewater for the Metropolitan Bakersfield area was turned off in C2VSimFG-Kern. The wastewater deliveries to evaporation ponds and land disposal areas from the wastewater treatment plants was assigned to the appropriate location using data provided by the plants. This conserved the water balance by not double counting wastewater, and it was applied at the appropriate locations for evaluating groundwater levels.

3.6.5 Model Application

Historical annual urban population estimates were placed in the C2VSimFG-Kern urban population input file. Historical monthly urban per capita water demand estimates for each urban zone were placed in the C2VSimFG-Kern urban per capita water use file. Urban demand was calculated by C2VSimFG-Kern and the water supply to meet these demands was met first by specified surface water and groundwater

pumping deliveries for urban use. The remaining water demand in each model element was met with groundwater pumped from the aquifer portion of that element.

3.7 Agricultural Crop Water Demand

C2VSim dynamically calculates agricultural crop water demands and allocates supplies to meet these demands for each model element. Agricultural demands are calculated for 20 crops using historical crop acreage data and crop evapotranspiration (ETc) rates. Crop water demands in each model element are first met with stored soil moisture, surface water deliveries and specified groundwater deliveries. If the agricultural demands are not satisfied, the model can optionally calculate the additional groundwater pumping required to satisfy the unmet demands and extract that water from the groundwater component of the model element.

C2VSimFG-Beta contained one set of monthly ETc rates for each model subregion that were applied to all years despite climatic variation. New monthly ETc rates for three model subregions (northeast, northwest, south) in Kern County were calculated for 1993-2015 using monthly remote sensing imagery and detailed annual crop maps. ETc for 1974-1992 were estimated from 1993-2015 values by using the values for similar water year types based on the San Joaquin Index. Satellite data were not available for 2012, so ITRC was unable to provide METRIC data for 2012. In C2VSimFG-Kern, 2013 was applied as an appropriate proxy for ETc data in 2012 because of their hydrologic similarity.

A remote sensing study of historical ETc rates across the entire Kern County Subbasin by the Irrigation and Training Research Center (ITRC, 2017) provided detailed basin-wide agricultural demands that corresponded to the WY1995 to WY2014 base period. These data were used to develop monthly ETc rates for the Kern County portion of the model.

3.7.1 ET Rates

The Irrigation Training and Research Center (ITRC) at California Polytechnic State University, San Luis Obispo, has developed a procedure to use remote sensing imagery from Landsat satellites to calculate historic ETc rates (ITRC, 2017). The Mapping of Evapotranspiration with Internal Calibration (METRIC) method was originally developed by Richard Allen of the University of Idaho. ITRC made several modifications to the original METRIC method to better match California data and conditions (named the ITRC-METRIC method). These modifications include using grass for reference evapotranspiration (ETo), incorporating a semi-automated calibration procedure and spatially interpolating ETo rates. An example of the METRIC ET data for the total annual ET in 2013 is provided in **Figure 8**.

ITRC used Landsat imagery for 1994-2015 (except 2012 when no imagery was available) and the ITRC-METRIC method to develop monthly raster maps of ETc at 30 x 30-meter resolution for the Kern County portion of the Central Valley (ITRC, 2017). The monthly ETc raster maps were used with annual DWR crop maps to calculate the average ETc by crop type for the three Kern County C2VSim subregions. ITRC-METRIC raster data were used to determine the exact areas of applied irrigation and total annual ETc. A raster pixel was assumed to be irrigated if the total annual ETc was greater than 20 inches.

The following data processing steps were used to determine monthly ETc rates for each crop and C2VSim subregion:

 Create irrigation coverages – ITRC-METRIC monthly ETc raster data were summed to calculate total annual ETc for each year for each raster location. The ArcGIS Reclassify tool was then used on each annual ETc raster to create a binary polygon coverage for each year for 1994-2015

- (except 2012), setting the attribute "IRR" to 1 if total annual ETc was over 20 in/year, and to 0 if total annual ETc was equal to or less than 20 in/year.
- Create land use coverages Annual DWR land use rasters were converted to polygon coverages
 with the attribute "Crop" set to the corresponding integer crop value used in C2VSimFG-Kern.
 The land use rasters were checked against GIS maps produced by the Kern County Agricultural
 Commissioner and errors in the DWR land use rasters were corrected. DWR land use maps for
 1994-1997 were missing large areas of data, so the 1998 land use map was used to approximate
 the land use for 1994-1997.
- Create monthly zone maps One zone shapefile was created for each month by using the
 ArcGIS Union tool to combine a shapefile of the three C2VSim subregions with the irrigation
 coverage (produced in step 1) and the land use coverage (produced in step 2). Each monthly
 zone polygon shapefile has three attributes: C2VSim subregion, binary irrigation indicator, and a
 land use crop value. The dissolve function was used to combine zones with identical parameters.
- Calculate average monthly ETc for each zone The ArcGIS Zonal Statistics by Table tool was
 used to calculate the average ETc value for each zone for each month. The individual pixels in
 each monthly ETc raster were averaged within each zone (produced in step 3). ITRC-METRIC
 data for 2013 were used in place of missing data for 2012.
- Combine tables The MS Access Append function was used to combine the monthly ETc tables into a master table of monthly ETc by crop and C2VSim subregion.
- Output data Data from the Access database was exported in a form consistent with the C2VSimFG-Kern input files. The output was also summarized to show the average monthly ETc for the irrigated area of each crop type in each model subregion.

The monthly ETc rates for the three Kern County subregions for WY 1993-2015 were then replaced with the monthly ETc rates calculated using ITRC-METRIC data. The annual ETc rates applied to C2VSimFG-Kern by crop are listed in **Table 9**.

3.7.2 Irrigation Periods

The C2VSim Irrigation Periods file contains monthly parameters for each crop and subregion that indicate whether or not the crop is irrigated in that month. C2VSimFG-Beta irrigation periods for the three Kern County subregions were adjusted to match crop irrigation practices from ITRC-METRIC water usage. Refuge irrigation periods for the three Kern County subregions were also adjusted to match Kern NWR practices. Simulated irrigation water usage for the C2VSimFG-Kern better reflects observed irrigation practices.

3.8 Model Modifications

In general, the scope of work was to revise the managed water supply and demand for the Kern County Subbasin. During the course of this revision, several issues were identified with the hydrogeological conceptual model and simulation parameters that affected the historical water budget. The following summarizes modifications made in C2VSimFG-Kern to improve the model performance. Other issues identified regarding the hydrogeological conceptual model, model setup and simulation parameters that were not addressed in C2VSimFG-Kern but are recommended to be modified for future model updates, are listed in Section 8.5. A summary of the changes that were made in C2VSimFG-Kern are provided below.

3.8.1 Streambed Parameters

In the Kern County Subbasin, the Kern River and Poso Creek are the two largest streams. Both have multiple stream gauges along their courses including ones near where they enter the Kern County Subbasin from the Sierra Nevada. These are the only two streams that are simulated in the model using the IWFM stream module. Both are predominantly losing streams where surface water recharges groundwater, except during limited periods near the major groundwater banking operations west of Bakersfield when multi-year periods of recharge operations produce high groundwater levels.

As a part of the C2VSimFG-Kern update, the simulated recharge from the Kern River and Poso Creek were compared to changes in stream gauge measurements and estimated streambed losses to evaluate how well the model was simulating streambed seepage. For much of the Kern River, the amount of streambed seepage is estimated based on daily weir information and is documented in the annual Kern River Hydrographic Reports. The streambed parameters used in C2VSimFG-Beta were not providing a comparable volume and distribution of seepage along the Kern River streambed. In dry years, streamflow as not getting far enough downstream whereas in wet years the seepage was too low. Similarly, the Poso Creek streambed seepage showed similar issues based on comparisons to differences in stream gauge data along its course.

To address this, the Kern River and Poso Creek streambed parameters were manually modified until a reasonable approximation of the measured streambed seepage was achieved by C2VSimFG-Kern. In general, the streambed conductance was lowered whereas the stream wetted perimeter was increased. This provided the best balance in matching the measured dry, average and wet years flows in both streams.

Part of this issue is that C2VSimFG-Beta uses a simple form of the stream module in the simulation. This approach appears to work sufficiently well for the continuously flowing streams in the northern parts of the Central Valley but is not sufficient for simulating the highly variable flows that occur on the Kern River and Poso Creek. It is recommended that future revisions to C2VSimFG-Kern further evaluate issues in simulating streamflow and seepage in the Kern River and Poso Creek (see Section 8.5). This may include incorporating more advanced streamflow simulation features that are available in IWFM but that have not been utilized in C2VSimFG.

3.8.2 Small Watershed Runoff

In reviewing the small watershed contributions, it was determined that the runoff was not representing the variable nature of runoff in an arid region. Although this was not part of the originally planned model revisions, it affected the model results. Todd Groundwater revised the corresponding model parameters to be more representative of the local arid conditions in Kern County.

Runoff of precipitation from the surrounding small watersheds was calculated within C2VSimFG-Kern using methodology included in IWFM that is based on the SCS Curve Method (NRCS, 2004). The C2VSimFG-Beta results showed a steady baseflow that contributed water to the Kern County Subbasin continuously and did not show the appropriate variation in runoff expected between wet, average and dry years in the arid environment.

Two major issues were identified and revised. First, the SCS curve number was changed to allow a higher percentage of runoff in wet years to capture the flashy nature of runoff from these watersheds during differing climatic conditions. Second, IWFM uses a localized soil moisture water budget; however, soil, ET and other parameters were set that allowed for the continuous outflow from the

basins. These were changed to more appropriate values that limited baseflow from the very small watersheds while allowing baseflow from the larger watersheds. Parameters were varied to better match estimated watershed runoff from a local USGS study (Nady and Larragueta, 1983).

3.8.3 Root Zone Parameters

Areas of overly high root zone hydraulic parameters led to high volumes of deep percolation that required additional groundwater pumping to meet the overall water demand for irrigation. This issue was noted by local water district staff who recognized that the groundwater pumping and deep percolation from preliminary model results were significantly higher than what was found in practice. A review found areas of overlying hydraulic conductivity and other hydraulic parameters that caused this high percolation rate. Two types of issues were found. First, very high parameters were found in parts of the basin that were not consistent with local soil data. Second, the root zone parameters for lakebed and other heavy clay soil areas were too high. These areas were manually adjusted to be more in line with observed conditions. A more rigorous development of root zone parameters should be considered in the future as this issue demonstrates that it is a sensitive parameter.

3.8.4 Land Use Modifications

The agricultural land use and crop type distribution in the model for early period (1974-1990 and 1992-1996) from C2VSimFG-Beta used a regional distribution and did not accurately represent historical practices. This resulted in agricultural water use being distributed across the entire Kern County Subbasin including areas that did not have irrigated agriculture. To correct for this, land use and crop type data were modified to conform with irrigated agricultural areas in the early 1990s. The crop types were adjusted to be consistent with the Kern County Agricultural Commissioner reports for these years. This included capturing the appropriate crop types present in the Kern County Subbasin in the periods from 1974 through 1996. For example, there was a higher percentage of cotton produced during that period and a lower percentage of nut trees, which became one of the major crop types in the 2010s.

3.8.5 Westside Pumping Limits

Western Kern County contains large areas with poor groundwater quality. As a result, little or no agricultural or urban groundwater pumping occurs in this area. To simulate this, groundwater pumping was turned off in C2VSim-Kern in most of the area with poor groundwater quality. However, in the Westside District Water Authority Management Area, limited groundwater pumping does occur. The poor-quality water is mixed with surface water to supplement the imported water supply. To simulate this condition, the groundwater pumping rate in the Westside District Water Authority Management Area was estimated to be 10% of the surface water deliveries, and the automated groundwater pumping adjustment in C2VSimFG-Kern was turned off for these areas.

Subsequent to the completion of the historical model, GSP developers in the Westside area refined their estimate of pumping used to mix with delivered surface water to about 3,000 AFY, which is considerably lower than that used in the historical model. The Westside GSP developers included a management action to further refine the estimated groundwater use in the Westside GSP water districts. Therefore, the original assumption was left in this version of the historical model. The Westside District Water Authority Management Area GSP identifies a management action to further evaluate the groundwater pumping in their area. The results of their evaluation will be included in in future model updates.

3.8.6 Kern Wildlife Refuge pumping

C2VSimFG-Beta enabled groundwater pumping in the model elements representing the Kern National Wildlife Refuge. The Kern National Wildlife Refuge Water Management Plan (USBR, 2011) indicates that

during the simulation time period, the refuge was sustained entirely on imported surface water and occasional diversions of Poso Creek flood waters. No groundwater was pumped at the refuge during the simulation period 1985-2015. Groundwater pumping was used at some time in the past. Groundwater pumping and automated groundwater pumping adjustment were turned off for all model elements in the Kern National Wildlife Refuge.

In addition to the Kern National Wildlife Refuge, former rice fields and other areas are currently used for sustaining ponds at private duck hunting clubs in the northwestern portion of the Kern County Subbasin. Water use data for these operations were not available during the development of the historical model. This water includes a combination of surface water and groundwater, and this volume is considered to be very small relative to the overall basin water use. GSP developers included a management action to further refine the estimated water use for these facilities that will be addressed in future updates.

3.9 C2VSimFG-Beta Modifications

Minor changes were made to the C2VSimFG-Kern hydrogeological conceptual model and natural water budget components and are listed in **Table 10**. The architecture of the model including layering, discretization, boundary conditions, and aquifer properties was not revised. Aquifer parameters were adjusted in several areas to better match observed historical conditions, especially in areas with high historic recharge volumes such as the Kern Fan. Extremely high soil hydraulic conductivities in a small set of elements were reduced to more reasonable values. Stream-bed conductance values were modified in some stream reaches to better match simulated stream gains and losses to observed values. Minor adjustments to small watershed parameters were also made to match surface runoff to observed values.

Due to the number of modifications that were identified with the hydrogeological conceptual model and aquifer parameters during the C2VSimFG-Kern update, it is recommended that a more rigorous model update be conducted that will update the hydrogeological conceptual model and aquifer parameters to be consistent with that presented in the Kern County Subbasin GSPs. In addition, further calibration of C2VSimFG-Kern is recommended to update aquifer parameters in the Kern County Subbasin. Future calibration is further discussed in Section 8.5.

4. HISTORICAL AND CURRENT WATER BUDGETS FROM C2VSIMFG-KERN

C2VSimFG-Kern was used to develop historical (WY1995 to WY2014) and current (WY2015) water budgets for the Kern County Subbasin. The following summarizes the simulated water budgets from C2VSimFG-Kern. A summary of these results is provided below.

4.1 Historical and Current Water Budget

The simulated historical and current water budgets based on C2VSimFG-Kern are presented in **Tables 11A** and **11B** and are presented graphically on **Figures 9**. **Figure 10** presents the average annual historical water budget for the Kern County Subbasin. The results for the historical water budget are summarized under the following categories that are defined as:

- **Deep Percolation** Precipitation and applied water that reaches the groundwater after simulated transport across the unsaturated zone. The simulated historical 20-year average is a net inflow of 669,398 AFY.
- Managed Recharge and Canal Seepage- Combined groundwater recharge from managed aquifer recharge operations, groundwater banking, and seepage from canals and other conveyance. The simulated historical 20-year average for Managed Recharge and Canal Seepage is a net inflow of 583,598 AFY. On Figure 10, this total is subdivided between out-ofbasin groundwater banking obligations (85,965 AFY) and the remaining local recharge of 497,633 AFY.
- **Net Groundwater-Surface Water (GW/SW) Interactions** Net volumetric exchange of surface water and groundwater between the aquifer and streams: Positive represents a net groundwater recharge, and negative represents a net groundwater discharge to the stream. The simulated historical 20-year average is a net inflow of 98,606 AFY.
- **Small Watershed Inflow** Runoff, small stream inflow and subsurface inflow from the small watersheds and areas surrounding the groundwater basin. The simulated historical 20-year average is a net inflow of 48,760 AFY.
- **Groundwater (GW) Pumping** Total groundwater pumping by wells. Groundwater banking recovery pumping is specified as fixed input values and agricultural and municipal pumping is calculated by C2VSimFG-Kern based on demand minus surface water diversions. The simulated historical 20-year average is a net outflow of 1,590,373 AFY.
- Subsurface Flow with Adjacent Groundwater (GW) Basins Net subsurface groundwater flow to and from the Kern County Subbasin with adjoining groundwater basins: negative is a net flow out of the Subbasin and positive is a net flow into the Subbasin. The simulated historical 20-year average is a net outflow of 87,102 AFY.
- Change in Groundwater Storage Sum of the inflow components (positive numbers) plus the
 outflow components (negative numbers): positive is an increase in storage typified by a rise in
 groundwater levels whereas a negative is a decrease in storage typified by a decline in
 groundwater levels. The simulated historical 20-year average is a decline in groundwater
 storage of 277,114 AFY.

The simulated change in groundwater storage varies over the 20-year historical period and is closely related to climatic conditions and surface water supply availability (**Figure 11**). During the periods

WY1995 to WY1999, WY2005 to WY2006 and WY2011, the groundwater storage volume was stable to increasing and correlates to the above average rainfall and surface water availability during these times. During the periods WY2000 to WY2004, WY2007 to WY2010 and Y2012 to WY2015, groundwater storage volume decreased, correlated to periods of drought and low surface water availability. The simulated historical groundwater recharge also reflects this climatic pattern with high deep percolation to groundwater and steep increases in managed aquifer recharge and canal seepage during the above average rainfall periods and lower groundwater recharge during the drought years (**Figure 12**).

Groundwater pumping for agriculture shows a general increasing trend from WY1995 to WY2014; however, groundwater pumping is lower in above average rainfall years and higher during droughts (**Figure 13**). This general increasing trend follows a comparable decreasing trend in surface water deliveries over this same period. As shown on **Figure 14**, surface water deliveries show a general decreasing trend from WY1995 to WY2014; however, the surface water deliveries are higher in the above average rainfall years and lower during the droughts.

4.2 Sustainable Yield

Section 354.18(b)(7) of the GSP Regulations requires that an estimate of the basin's sustainable yield be provided in the GSP (or in the coordination agreement for basins with multiple GSPs). SGMA defines "sustainable yield" as:

"the maximum quantity of water, calculated over a base period representative of longterm conditions in the basin and including any temporary surplus, that can be withdrawn annually from a groundwater supply without causing an undesirable result."

SGMA does not incorporate sustainable yield estimates directly into sustainable management criteria. Sustainable yield is referenced in SGMA as part of the estimated basinwide water budget and as the outcome of avoiding undesirable results. Basinwide pumping within the sustainable yield estimate is neither a measure of, nor proof of, sustainability. Sustainability under SGMA is only demonstrated by avoiding undesirable results for the six sustainability indicators.

4.2.1 Determination of Sustainable Yield

To determine the sustainable yield for the Kern County Subbasin, the results of the C2VSimFG-Kern model were used with two methods to estimate the amount of groundwater pumping that would avoid the undesirable result of a reduction in groundwater storage over the historical base period 1995 to 2014. The results are shown in **Table 12** and are summarized below:

- Sustainable Yield from Groundwater Pumping The model results produced an average annual
 groundwater pumping in the Kern County Subbasin of 1,590,373 AFY with a decline in
 groundwater storage of 277,114 AFY. Subtracting the groundwater storage decline from
 groundwater pumping produced a sustainable yield of approximately 1,313,000 AFY.
- Sustainable Yield from Groundwater Recharge The model results produced an average annual groundwater recharge in the Kern County Subbasin of 1,400,362 AFY. The subsurface outflow from the GSA was estimated to be 87,102 AFY. Subtracting these outflow losses from the groundwater recharge produced a sustainable yield of approximately 1,313,000 AFY.

Sustainable yield estimates are part of SGMA's required basinwide water budget. In general, the sustainable yield of a basin is the amount of groundwater that can be withdrawn annually without causing undesirable results. This sustainable yield estimate can be helpful for evaluating the projects and programs needed to achieve sustainability. Although the SGMA regulations require a single value of sustainable yield calculated basinwide, it should be noted that the sustainable yield can be changed by implementation of recharge projects, variations in climate, or changes in stream flow conditions.

Using WY1995 to WY2014 as the base period, C2VSimFG-Kern results show declining groundwater levels and long-term reduction of groundwater storage. During this period, average annual inflow to the aquifer is 1,400,362 AFY, and outflow is 1,677,476 AFY (**Table 11A**). This yields an average annual deficit of 277,114 AFY. Based on these historical C2VSimFG-Kern results, the sustainable yield of the basin is approximately 1,313,000 AFY, with an estimated level of uncertainty on the order of plus or minus 10% to 20%.

4.2.2 Native Yield

Although not a SGMA requirement, the native yield is being used by Kern County GSAs for determining a portion of the groundwater allocation within the basin. The native yield is comparable to the sustainable yield except that the only recharge that is included in the calculation is the natural, unallocated portion of the groundwater recharge. For the Kern County Subbasin, this includes the groundwater recharge derived from precipitation and runoff from unallocated streams. The Kern River and Poso Creek, however, are allocated streams where specific agencies or parties have rights to specific volumes of flow.

The C2VSimFG-Kern model results over the historical base period WY1995 to WY2014 was again used for estimation of native yield. The model results were used to determine the amount of precipitation recharge over irrigated agricultural areas and the native/urban/undeveloped areas. The total and average annual volume of precipitation that percolates to groundwater during the WY1995 to WY2014 base period are listed in **Table 13**. The basinwide contribution is the relative proportion of the runoff along the basin margins from small, unallocated watersheds and inflow from the surrounding basin margin (from areas not defined as DWR groundwater basins). The results of this assessment based on the C2VSimFG-Kern results are shown in **Table 13** and are summarized below:

- The volume of precipitation that recharges the groundwater in the irrigated agricultural areas is 77,780 AFY.
- The volume of precipitation that recharges groundwater in the other areas is 132,981 AFY.
- The volume of inflow from unallocated small watersheds that recharges the groundwater in the irrigated agricultural areas is 48,760 AFY.

Totaling these inputs results in a native yield for the Kern County Subbasin of 259,520 AFY. The annual contribution per acre of approximately 0.144 acre-feet per acre is estimated by dividing the average annual contribution by the total area of the Kern County Subbasin (**Table 13**).

Similar to the sustainable yield, the native yield at this time is based on the available data. However, as data gaps are eliminated and management actions/plans are implemented, the native yield could change, and any changes to native yield will be included in future GSP amendments.

4.2.3 Application of Sustainable and Native Yield

In general, the sustainable yield of a basin is the amount of groundwater that can be withdrawn annually without causing undesirable results. The native yield is comparable to the sustainable yield except that the only recharge that is included in the calculation is the natural, unallocated portion of the groundwater recharge. The following estimates of the Kern County Subbasin sustainable and native yields are derived from the C2VSimFG-Kern historical model results for the purpose of supporting GSP assessment of the types and magnitude of projects and programs needed to achieve sustainability.

The C2VSimFG-Kern estimates of sustainable and native yield presented here are based on available data and the current level of model calibration. Therefore, these estimates are considered appropriate as guides to SGMA planning. However, the C2VSimFG-Kern sustainable and native yield estimates are initial water budget estimates that are not intended for determination of individual landowner allocations or groundwater rights. Additional technical and legal analysis, along with stakeholder involvement, is necessary to fully quantify the sustainable and native yields.

5. Approach for Projected Future Water Budgets

Projected future Baseline water budgets for the Kern County Subbasin were developed using the C2VSimFG-Kern. These projected water budgets establish expected Baseline conditions to evaluate the impacts of GSP implementation. Three predictive scenarios were developed for the Kern County Subbasin, each representing a different expected future hydrologic condition, by adapting C2VSimFG-Kern as follows:

- Future Baseline Conditions: Repeat historical hydrology with expected future water supply,
- 2030 Climate Conditions: Adjust historical hydrology for 2030 climatic conditions and expected water supply, and
- 2070 Climate Conditions: Adjust historical hydrology for 2070 climatic conditions and expected water supply.

Projected future water budgets were developed for Baseline conditions and expected 2030 Climate Conditions and 2070 Climate Conditions over a 50-year planning and implementation horizon. These scenario models provide a basis of comparison for evaluating proposed sustainability management actions and projects over the SGMA planning and implementation horizon.

5.1 Assumptions

C2VSimFG-Kern was modified to incorporate projected future hydrology and land use using analog data from the historical C2VSimFG-Kern model. This approach meets GSP requirements using:

- A 50-year time-series of historical precipitation, evapotranspiration and stream flow information as the future Baseline hydrology conditions,
- The most recent land use, METRIC-based evapotranspiration, crop coefficient and urban population growth information as the Baseline condition for estimating future water demands,
- The most recent water supply projections as the Baseline condition for estimating future surface water supply,

- DWR Climate Change Guidance and Data Sets to incorporate estimated climate change conditions for the Kern County Subbasin,
- Specialized analysis of the Kern River watershed and estimated runoff volumes under climate change conditions,
- Specialized analysis of CVP deliveries to Kern County under climate change conditions incorporating implementation of the San Joaquin River Restoration Program, and
- Specialized analysis of SWP deliveries to Kern County under climate change conditions incorporating implementation of the OCAP Biological Opinion and recent changes in Table A and Article 21 allocations.

5.2 Projected Future SGMA Projects

Projected water budgets for the Kern County Subbasin were developed using the C2VSimFG-Kern to evaluate the performance of proposed management actions with respect to achieving groundwater sustainability. Participating agencies provided a list of projected future management actions to be implemented between WY2021 and WY2040. These projects were simulated under Baseline conditions, 2030 Climate Conditions and 2070 Climate Conditions through WY2070 using the C2VSimFG-Kern.

Proposed future projects and management actions were provided by GSAs. The types of proposed SGMA projects and management actions are summarized as follows:

- Demand Reduction is the volume of water reduced by changing the land use; these include:
 - Agricultural demand reduction projects through incentives or actions to reduce crop water use.
 - o Fallowing of agricultural land and conversion of agricultural land to recharge basins, and
 - o Conversion of agricultural land to urban land.
- New Supply groups together planned increases in imported water supplies; these include:
 - Increased surface water imports generally resulting from projected water purchases,
 - New water conveyance facilities including pipelines and reservoirs to increase flexibility,
 and
 - Expansion of surface water delivery areas to reduce groundwater usage.
- Other Supply groups together proposed projects to increase local water supplies; these include:
 - Recharging treated waste waters derived from both urban areas and oil production operations; increased recharge occurs in both existing and new locations,
 - Increased stream flow diversions; these include exercising riparian water rights and diverting flood flows,
 - Reallocation of water; generally reducing sales of surface water and banked groundwater and using this water within the agency, and
 - Brackish groundwater in areas not currently overdrafted will be treated and mixed with surface water to augment surface water supplies.

Some management actions are implemented gradually over many years, with savings increasing each year over the implementation period. Some management actions are implemented only in certain years (wet years, for example). The anticipated average-annual water supply benefit of the proposed SGMA projects and management actions steadily increases over the 20-year period from WY2021 to WY2040 to represent the implementation of the Kern County Subbasin GSPs. This increasing trend, as shown as

the average-annual water supply benefit over five-year increments on **Figure 15**, is summarized as follows:

- about 116,000 AFY over the first five-year period (WY2021-WY2025),
- about 216,000 AFY over the second five-year period (WY2026-WY2030),
- about 343,000 AFY over the third five-year period (WY2031-WY2035), and
- about 361,000 AFY over the fourth five-year period (WY2036-WY2040).

The anticipated water supply benefit of the proposed SGMA projects and management actions included in the C2VSimFG-Kern projected future simulations is 422,000 AFY over the period from WY2041 to WY2070. Benefits of implementing these projects and management actions over the 20-year implementation period are summarized in **Figure 15**.

6. PROJECTED FUTURE BASELINE DEVELOPMENT

Projected water budgets are required by GSP regulations to represent future conditions over a 50-year GSP planning and implementation horizon. A Baseline condition was developed that projects water supply, demand and operations based on current land use and expected water supply availability over 50 years. The Baseline then serves as a basis of comparison for evaluating proposed sustainability management actions and projects for achieving sustainability over the planning and implementation horizon. Each predictive scenario model simulates the 50-year planning and implementation period WY2021 to WY2070. Development of the projected future Baseline conditions is summarized below.

6.1 Projected Future Time Period Development

WY1995 to WY2014 was chosen as a historical hydrology period because detailed demand and supply data are available for this period, and most Subbasin water delivery infrastructure was fully developed by the middle of this period. The average Kern River inflow for this period is also very close to the long-term average Kern River inflow.

The projected future simulation period is based on repeating the WY1995 to WY2014 historical study period. This period is only 20 years long, so a 50-year sequence of historical hydrology was developed by repeating data from this period in the sequence as shown in **Table 14**. The development of this sequence is summarized as follows:

- Simulation period WY2021 to WY2032 used the historical period WY2003 to WY2014,
- Simulation period WY2033 to WY2052 used the historical period WY1995 to WY2014, and
- Simulation period WY2053 to WY2070 used the historical period WY1995 to WY2012.

This sequence was developed to match long-term average flows on the Kern River, and to ensure that the Baseline does not end in an extreme drought or extreme wet year. By starting the projected future simulation time sequence with WY2003, the 50-year hydrology period has approximately 100 percent of the long-term average streamflow conditions on the Kern River, as indicated by an average annual Kern River Index of 100 percent. The sequence includes the appropriate range of hydrologic conditions including extremely wet years and extended periods of drought.

C2VSimFG-Kern simulation results for the last timestep of the historical simulation (September 30, 2015) were used as initial conditions for all projected future simulations, including initial conditions for the root zone, saturated and unsaturated aquifer zones, and small watersheds. Since the historical C2VSimFG-Kern simulation period ends with WY2015, all projected future scenarios also include estimated hydrology for WY2016 to WY2020. Model input data for WY2016 to WY2020 was developed by repeating model input data for recent years based on correlation with the San Joaquin Index (DWR, 2019).

6.2 Development of Key Baseline Data Sets

Key required components for the Projected Future Baseline, as summarized in the DWR *Water Budget Best Management Practices* guidance document (DWR, 2016B) include the following:

- The projected Baseline hydrology conditions were developed using 50-years of historical precipitation and streamflow following the sequence outlined in Section 6.1.
- Surface water supplies are based on available information from DWR and others to project future water imports from the SWP, CVC Friant-Kern Canal (FKC) and Kern River diversions. For the Kern River, recent diversion practices based on entitlements were used to develop water use consistent with the Baseline hydrology.
- WY2013 land use was used as current land use for all scenarios as drought conditions likely reduced agricultural production in WY2014 and WY2015.
- Consumptive use for agriculture and undeveloped lands was based on the recent land use and METRIC-based evapotranspiration. Following DWR guidance, METRIC data over the Baseline period was varied according to varying hydrologic conditions (e.g., water year type).
- Urban water demand was based on projections from recent urban water management plans to
 meet regulations for future water use. Urban demand was estimated in the model based on
 projected urban population growth and per capita water demand information (including recent
 regulatory guidance).
- Small watershed inflows used the same parameters as the historical C2VSimFG-Kern model; however, volumes varied based on changes in the precipitation and ET under the 2030 and 2070 climate change conditions.

Time-series input data were first developed for the Baseline scenario model for WY2021 to WY2070. Development of this time-series input data generally involved repeating time-series data from the historical C2VSimFG-Kern in the appropriate sequence. The following time-series data were developed for each scenario:

- Precipitation rates,
- Evapotranspiration rates,
- Surface water inflow rates,
- Surface water diversion and delivery rates, and
- Specified groundwater pumping rates.

Baseline scenario model time-series data files were then modified following DWR guidelines to produce time-series input data for the 2030 Climate Conditions and 2070 Climate Conditions scenario models. C2VSim input data were modified only in Kern County. C2VSim input data for areas outside of Kern County were not modified.

The baseline data sets were incorporated into the model files to develop the projected future water demand and supply under Baseline, 2030 Climate and 2070 Climate conditions. A summary of the development of the projected future water demand and supply is discussed below.

6.3 Projected Future Water Demand

The projected future water demand was developed using fixed WY2013 land use areas with historical evapotranspiration rates for the Baseline and modified evapotranspiration rates for the 2030 and 2070 climate scenarios and increasing urban populations.

6.3.1 Agricultural Water Demand

Evapotranspiration rates for the Baseline scenario model were developed by repeating input evapotranspiration rates from C2VSimFG-Kern in the appropriate sequence. DWR provided monthly change factors for ETo values under 2030 and 2070 central tendency climatic conditions on a 6 km x 6 km VIC grid for calendar years 1915 through 2011. The VIC grid IDs for each C2VSim subregion in the Kern County Subbasin Zone of Interest were identified and area weighted monthly ETo change factors were calculated for each subregion. Baseline scenario ETc rates for each subregion were then multiplied by the appropriate area-weighted ETo change factors to produce time-series ETc rates for the 2030 Climate Conditions and 2070 Climate Conditions scenarios. Factors for calendar years 1959-1961 were used as analogs for calendar years 2012-2014.

6.3.2 Urban Water Demand

Urban water demand calculations include an indoor component and an outdoor component. Indoor urban water demands are based on the urban population and monthly per capita water demand. Future urban populations for Kern County urban areas were estimated using California Department of Finance population projections. Future per capita urban water demands were estimated using projections from urban water management plans and California urban water conservation regulations, including SB 606 and AB 1668. Future outdoor urban water demands are based on ETc rates, which were modified as described in the Agricultural Water Demand section above.

6.3.3 Groundwater Banking Recovery

Future groundwater banking recovery rates were developed by repeating historical recovery rates in the appropriate sequence. No adjustments were made to Baseline rates or to rates for 2030 and 2070 climatic conditions.

6.4 Projected Future Water Supply

Projected future precipitation, stream inflow and surface water import time series were developed following DWR guidelines. Baseline future water supplies were developed by repeating historical values in the appropriate sequence. Surface water diversions were then adjusted to account for operational changes. Baseline water supplies were then modified to simulate 2030 and 2070 central tendency climatic conditions.

6.4.1 Precipitation Rates

Precipitation rates for the Baseline scenario model were developed by repeating input precipitation rates from C2VSimFG-Kern in the appropriate sequence. DWR provided monthly change factors for precipitation under 2030 and 2070 central tendency climatic conditions on a 6 km x 6 km VIC grid for calendar years 1915 through 2011. The VIC grid ID for each C2VSim element in the Kern County Subbasin Zone of Interest was identified and the Baseline scenario precipitation rates were multiplied by

the appropriate factors to produce time-series precipitation rates for the 2030 Climate Conditions and 2070 Climate Conditions scenarios. Factors for calendar years 1959-1961 were used as analogs for calendar years 2012-2014.

6.4.2 Surface Water Inflow Rates

Surface water inflow rates for Poso Creek and White River for the Baseline scenario model were developed by repeating input inflow rates from C2VSimFG-Kern in the appropriate sequence. DWR provided unimpaired streamflow change factor datasets for Central Valley streams, and an Excel spreadsheet tool to modify basin unimpaired streamflow using these change factors. The unimpaired streamflow change factors and spreadsheet were used to modify Baseline inflows to produce 2030 Climate Conditions and 2070 Climate Conditions scenario time series inflows for Poso Creek and White River.

Surface water inflow rates for Kern River at First Point for the Baseline scenario model were developed by repeating historical inflow rates from C2VSimFG-Kern in the appropriate sequence. Flows on the Kern River are regulated, so the unimpaired streamflow method was not appropriate for estimating future flows under 2030 and 2070 climatic conditions. Projected Kern River flows at First Point under 2030 and 2070 central tendency conditions were estimated by GEI (2018) for calendar years 1956-2010 hydrology. This analysis considered the impacts of changed runoff in each sub-watershed contributing to the Kern River to develop revised streamflow estimates for Kern River at First Point. Future scenario Kern River at First Point flows for calendar years 2011-2014 were estimated using flows for analog years with similar annual flows and monthly flow pattern. Analog years 1986, 1991, 1990 and 1961 respectively were used for 2011-2014 in the future scenarios.

6.4.3 Surface Water Deliveries

Surface water delivery rates for the Baseline scenario model were developed by first repeating input surface water delivery rates from the C2VSimFG-Kern in the appropriate sequence, and then modifying selected data sets. Surface water deliveries from in-basin sources such as Oil Field Recovery were held constant at WY2015 rates for all future scenarios.

The Kern County Subbasin is served by both the CVP and the SWP. Recent changes in CVP and SWP operations and their impacts on future surface water supplies are reflected in surface water diversion rates for the three scenarios. Future CVP deliveries will be affected by implementation of the San Joaquin River Restoration Program (SJRRP) that included the 2008 U.S. Fish & Wildlife Service biological opinion (BO) on the Long-Term Operational Criteria and Plan (OCAP) for coordination of the CVP and SWP. Future SWP deliveries will be affected by operational changes implemented between 2004 and 2008 including the OCAP BO, reduced Table A contract amounts and reduced Article 21 deliveries. DWR provided projected future deliveries from the CVP and SWP for WY1922 to WY2003, derived from CalSim-II modeling conducted for the Water Supply Investment Program (WSIP) (California Water Commission, 2016). DWR's CVP projections as provided do not fully incorporate these SJRRP operational changes. DWR's SWP delivery projections do not include the OCAP BO operational constraints, the reduced Table A amounts and reduced Article 21 water.

Future CVP delivery projections developed by the Friant Water Authority (FWUA) were used in place of DWR's CVP projections. FWUA (2018) used CalSim-II to develop projected surface water deliveries with SJRRP implementation under hydrological conditions representing the Current Baseline, 2030 and 2070 climate conditions by delivery class for WY1922 to WY2003, and estimated allocations to each CVP contractor. The 2015.c data set was used for Baseline scenario CVP deliveries, the 2030.c data set was

used for 2030 Climate Conditions scenario CVP deliveries, and the 2070.c data set was used for the 2070 Climate Conditions scenario CVP deliveries. CVP deliveries for WY2004 to WY2014 were estimated using deliveries for analog years WY1951 to WY1961; these analog years have a similar distribution of water availability.

The SWP projections provided by DWR for WY1995 to WY2003 and historical deliveries for WY2004 to WY2014 were modified to incorporate the impacts of SWP operational changes in the three scenarios. 2019 SWP Table A contract amounts were used to allocate these SWP deliveries to individual districts. In summary:

- Baseline Hydrologic Conditions
 - WY1995 to WY2003 conditions are based on 2030-Level CALSIM increased by 3.03 %,
 - WY2004 to WY2007 conditions are based on historical data adjusted for OCAP BO, and
 - WY2008 to WY2014 conditions are based on historical data with the assumption that
 OCAP BO adjustments are already factored into the data.
- 2030 Climate Change Hydrologic Conditions
 - o WY1995 to WY2003 conditions are based on the 2030-Level CALSIM Projection,
 - WY2004 to WY2007 conditions are based on OCAP BO adjustment reduced by 3.03 %, and
 - o WY2008 to WY2014 conditions are based on historical data reduced by 3.03%.
- 2070 Climate Change Hydrologic Conditions
 - WY1995 to WY2003 conditions are based on the 2070-Level CALSIM Projection,
 - WY2004 to WY2007 conditions are based on OCAP BO adjustment reduced by 8.09%, and
 - WY2008 to WY2014 conditions are based on historical data reduced by 8.09%.

Within the Kern County Subbasin, water users engage in complex real-time water trading and wheeling activities to maximize water utilization, minimize waste and energy consumption, and meet immediate water needs. It would be difficult to project future surface water deliveries in the Kern County Subbasin without the use of a surface water allocation model that simulates these water trading and wheeling activities. Therefore, for this modeling effort, monthly future scenario agricultural, urban and recharge deliveries from sources originating outside the basin were estimated by adjusting historical deliveries by the ratio of (total scenario inflows)/(total historical inflows) for each month, where total inflows are the sum of CVP deliveries, SWP deliveries and Kern River at First Point. In addition, Kern River at First Point flows above historical flows under the 2030 Climate Conditions and 2070 Climate Conditions scenarios were proportionally added to selected recharge deliveries. This method is deemed adequate for subbasin-level future scenario analyses.

Some future scenario data sets did not cover the entire period from October 1994 through September 2014. In these cases, data from an analog historical period with similar water availability was used to fill in the missing data. The analog years for each data type are summarized as:

- For CVP deliveries (CalSim-II data), WY1951 to WY1961 were used as analogs for missing WY2004 to WY2014 data; these analog years have a similar distribution of water availability.
- Projected future Kern River at First Point flows for calendar years 1986, 1991, 1990 and 1961 were used as analogs to missing calendar years 2011 through 2014; each of these analog years had a similar historical annual flow volume and monthly distribution.

 For climatic data adjustment factors, calendar years 1959-1961 were used as analogs to missing calendar years 2012-2014.

6.5 Development of Climate Change Conditions

Input data for the C2VSimFG-Kern were modified to simulate three future climatic scenarios. Historical precipitation, evapotranspiration, land use, population, surface water inflow and surface water delivery rates were replaced with projected future values for WY2016 to WY2070 for Future Baseline Conditions. The Future Baseline Conditions for WY2021 to WY2070 were then modified to simulate 2030 Climate Conditions and 2070 Climate Conditions. Water management agencies in the Kern County Subbasin provided a broad suite of proposed water management and conservation projects to increase water supplies and reduce water management demands. These projects are added to the C2VSimFG-Kern to assess the long-term impacts of these projects under the Baseline, 2030 Climate Conditions and 2070 Climate Conditions scenarios.

Projected water budgets under Future Baseline Conditions, 2030 and 2070 Climate conditions are used to evaluate the potential effects of future Baseline and extended dry conditions with respect to achieving sustainability. DWR published a *Modeling Best Management Practices* Guidance Document (DWR, 2016B) that outlines DWR recommendations for developing and running predictive scenarios. The C2VSimFG-Kern was modified following these recommendations to develop the Baseline scenario model. DWR also issued the *Guidance for Climate Change Data Use During Sustainability Plan Development* Guidance Document (DWR 2018A) that outlines how DWR recommends that climate change be addressed under SGMA. Baseline scenario data sets were modified using DWR climate change data sets for Kern County following procedures outlined in the guidance documents to develop the 2030 Climate Conditions and 2070 Climate Conditions scenario models. The adjustment factors for Baseline, 2030 Climate Change and 2070 Climate Change for SWP deliveries were developed based on consistent CalSim operations studies at current, 2030 and 2070 climate levels developed for Bay Delta Conservation Plan evaluation and provided by DWR Bay Delta Office staff. The WSIP studies provided on DWR's SGMA web site were not used due to the unavailability of a Baseline study with assumptions consistent with the 2030 and 2070 climate change studies.

6.6 Groundwater Banking Assumptions

Groundwater banking operations are simulated in the C2VSimFG-Kern with surface water diversions to recharge basins and specified pumping rates for groundwater extractions. All surface water deliveries were adjusted under the Baseline, 2030 Climate Conditions and 2070 Climate Conditions scenarios. Surface water deliveries to recharge basins were first adjusted by the same ratio as other surface water deliveries, then increased if Kern River flows were greater than historical flows. Specified pumping rates for groundwater extraction were not modified.

The out-of-basin banking obligations were assumed to follow a similar pattern where groundwater banking recharge would be affected by the limitation on surface water deliveries, but that banking recovery would remain similar to historical volumes. Therefore, the historical groundwater banking obligations were adjusted under the Baseline, 2030 Climate Conditions and 2070 Climate Conditions scenarios by the same percentage as the surface water deliveries; however, the groundwater banking recovery was assumed to remain the same. Based on the historical banking obligations and using that as a foundation going forward, no banking partner has ever requested the full amount of the water banked at any particular time even in the most recent drought years. All the banking obligation

agreements require limitations on amounts to be requested and delivered as well as "leave in" amounts that remain in the Kern County Subbasin. This historical management of banking obligations provides the Kern County Subbasin more flexibility for use of water as well as delivery of the obligations. For the projected future scenarios, the out-of-basin banking obligations were calculated as follows:

- For the Baseline scenarios, the out-of-basin banking obligations were calculated as 69,632 AFY based on surface water deliveries of about 81% of historical deliveries.
- For the 2030 Climate scenarios, the out-of-basin banking obligations were calculated as 67,913 AFY based on surface water deliveries of about 79% of historical deliveries.
- For the 2070 Climate scenarios, the out-of-basin banking obligations were calculated as 64,474 AFY based on surface water deliveries of about 75% of historical deliveries.

Tracking of banked groundwater obligations was done using the same post processing process as applied to the historical groundwater assessment by assigning the portion of the groundwater recharge as an out-of-basin banking obligation.

7. PROJECTED FUTURE C2VSIMFG-KERN SIMULATION RESULTS

The C2VSimFG-Kern was run for three scenarios that estimate hydrologic conditions of Baseline, 2030 Climate Conditions and 2070 Climate Conditions scenarios both with and without the proposed SGMA projects and management actions for a total of six projected future scenarios.

7.1 Projected Future Water Budgets

C2VSimFG-Kern calculates water budget components each month of the simulation period for each future scenario. Projected future water budgets developed based on the C2VSImFG-Kern simulation results with the proposed SGMA management actions were then compared to results for the future scenarios without the management actions to assess how these changes enhance groundwater sustainability within the Kern County Subbasin.

The average annual value of each water budget component summarizes the impacts over 50 years with current water demands. The water budget results for the six Projected Future Scenarios are presented in **Tables 16 through 21**, and include averages over three different periods, which include:

- **WY2021 to WY2040** Implementation Period representing the 20-year period required by the SGMA regulations to implement projects and management actions to achieve sustainability.
- WY2041 to WY2070 Sustainability Period representing the 30-year hydrologic period following the Implementation Period to assess the long-term sustainability of the proposed projects and management actions with variable climatic conditions including periods with above average rainfall and extended droughts.
- **WY2021 to WY2070** Simulation Period representing the entire 50-year projected future hydrologic conditions.

Changes to surface water diversions under the proposed projects and management actions included monthly increases or reductions to 37 model diversions and the addition of 7 new diversions. Ten new groundwater pumping wells were added to simulate a new groundwater pumping program. Agricultural

land use was converted to native vegetation in ten management areas, and to urban land use in three management areas. The projects and management actions included in the C2VSimFG-Kern scenarios with SGMA projects are described in the individual GSPs and management area plans. These changes were applied to a series of six C2VSimFG-Kern scenarios for Baseline, 2030 Climate Conditions and 2070 Climate Conditions both with and without SGMA projects. The results of these simulations are summarized in **Table 15** below.

Baseline simulation results indicate that the Kern County Subbasin has an average annual overdraft of 324,326 AFY. By implementing the proposed projects and management actions, the Subbasin is forecasted to achieve sustainability by 2040 with an estimated 42,144 AFY of annual surplus. With adjustments to account for limitations in the simulation (discussed in Section 7.2.1), the adjusted change in storage increases to 85,578 AFY.

Collectively, the C2VSimFG-Kern simulation results indicate that the currently proposed SGMA projects and management actions, once fully implemented, provide a reasonable approach to achieve sustainable management of the groundwater basin and can be adaptively managed to meet future challenges as necessary. A brief summary of each of the six projected future water budgets from C2VSimFG-Kern is provided below.

Table 15: Summary of Simulated Change in Groundwater Storage Results over the 2041 to 2070 Sustainability Period

C2VSimFG-Kern Model Scenario	Change in Groundwater Storage (AFY)	
	C2VSimFG-Kern	Adjusted Model
	Model Results	Results
Historic	-277,114	-277,114
Baseline	-324,326	-324,326
Baseline with Projects	42,144	85,578
2030 Climate Change	-380,900	-372,120
2030 Climate with Projects	-12,861	46,829
2070 Climate Change	-489,828	-472,336
2070 Climate with Projects	-118,273	-45,969

7.1.1 Baseline Condition Water Budgets

The Baseline Scenarios simulate how the Kern County Subbasin aquifer would respond if the recent hydrology were repeated with current expected surface water availability and current land use. The Baseline Scenarios were run both with and without SGMA projects.

For the Baseline Scenario without SGMA Projects, the groundwater budget for WY2021 to WY2040 (**Table 16**) repeats the 20-year historical hydrologic period so it provides a direct comparison of the differences between the projected future Baseline without SGMA Projects and the historical condition. The primary difference between historical conditions and the projected future Baseline is a nearly 20% decrease in imported surface water deliveries primarily from the SWP due to the OCAP Biological

Opinion. This is replaced with additional groundwater pumping. As a result, total net aquifer outflows increase by about 20,200 AFY and total net aquifer inflows decrease by about 76,500 AFY. This is mostly because of increased groundwater pumping and decreased managed aquifer recharge due to a decline in imported SWP water. Over this period, the average groundwater pumping is 1,581,000 AFY, which includes agricultural pumping, urban pumping and exported water. This results in an additional loss of groundwater storage of about 56,300 AFY over the 50-year projected future Baseline period.

The Baseline Scenario with SGMA Projects simulates the proposed SGMA projects and management actions (Section 5.2) applied to the Baseline Scenario. No other changes were made except for the addition of the SGMA projects to provide a direct comparison of the relative benefits of about 422,000 AFY of proposed SGMA projects and management actions. The groundwater budget for the Baseline Scenario with SGMA Projects is provided in **Table 17**. Comparing the groundwater budget for WY2041 to WY2070 (**Table 17**) with the same period from the Baseline Scenario (**Table 16**) provides an evaluation of groundwater conditions after the SGMA projects and management actions have been fully implemented. As a result, total net aquifer inflows increase about 135,400 AFY due to increased managed aquifer recharge and deep percolation. The total net aquifer outflows decrease about 231,100 AFY due mostly to decreased groundwater pumping with agricultural demand reduction management actions.

The change in groundwater storage for the Baseline Scenario with SGMA Projects improves by about 366,500 AFY compared to the Baseline Scenario without SGMA Projects. This change results in a net gain in groundwater in aquifer storage over the WY2041 to WY2070 sustainability period of about 42,100 AFY. A comparison of the annual change in groundwater storage over the 50-year hydrologic period is presented in **Figure 16**. The time series shows that change in groundwater storage has stabilized to slightly increasing over the period from WY2041 to WY2070.

A comparison of the average annual water budget components for the two different Baseline Scenarios is presented in **Figure 17**. Over the WY2041 to WY2070 period, the average groundwater pumping of 1,354,000 AFY for the Baseline Scenario with SGMA Projects (which includes agricultural pumping, urban pumping and exported water) is over 270,000 AFY less than in the Baseline Scenario.

7.1.2 2030 Climate Change Water Budgets

The 2030 Scenarios simulate how the Kern County Subbasin aquifer would respond assuming hydrologic conditions representing a potentially drier climate and are based on the DWR Climate Change Guidance and Resource Guide (DWR, 2018A and 2018B). The 2030 DWR climate change factors were applied to the Baseline Scenario conditions. Additional adjustments were made to the imported surface water supplies from the SWP, CVP and Kern River, accounting for about an additional 2% decrease from the Baseline Conditions. The 2030 Climate Change Scenarios were run both with and without SGMA projects. Results for climate change budgets are illustrated in **Figures 18, 19, and 20**.

The groundwater budget for the 2030 Climate Scenario without SGMA Projects for WY2041 to WY2070 (**Table 18**) is compared the same period for the Baseline Scenario without SGMA Projects to assess the relative change due to the climate change assumptions. The results show a net increase in aquifer inflows of about 44,700 AFY, however, the aquifer net outflows increase by about 101,200 AFY. This is mostly attributed to the climate shift to earlier rainfall making more surface water available for managed aquifer recharge during the winter but less available for irrigation in the summer, resulting in higher groundwater pumping. The net change in groundwater storage is an additional decline of about 56,600 AFY due to the climate change impacts.

The 2030 Climate Scenario with SGMA Projects simulates the proposed SGMA projects and management actions (Section 5.2) applied to the 2030 climate change conditions. No other changes were made to this scenario. The groundwater budget for the 2030 Climate Scenario with SGMA Projects is provided in **Table 19**. Comparing the groundwater budget for WY2041 to WY2070 (**Table 18**) between the two 2030 Climate Scenarios, the total net aquifer inflows increase about 118,700 AFY due to increased managed aquifer recharge and deep percolation. The total net aquifer outflows decrease about 249,300 AFY due mostly to decreased groundwater pumping with agricultural demand reduction management actions.

The change in groundwater storage for the 2030 Climate Scenario with SGMA Projects improves by about 368,000 AFY. This change results in a net decline in groundwater in aquifer storage over WY2041 to WY2070 of about 12,900 AFY. A comparison of the annual change in groundwater storage over the 50-year hydrologic period is presented in **Figure 20**. The time series shows that change in groundwater storage has stabilized to slightly increasing over the period from WY2041 to WY2070, but at a level below the results for the Baseline Scenario with SGMA Projects.

A comparison of the average annual water budget components for the two 2030 Climate Scenarios is presented in **Figure 18**. Over this period, the average groundwater pumping of 1,444,000 AFY for the 2030 Climate Scenario with SGMA Projects, which includes agricultural pumping, urban pumping and exported water, is over 290,000 AFY less than in the 2030 Climate Scenario without SGMA Projects.

7.1.3 2070 Climate Change Water Budgets

The 2070 Scenarios simulate how the Kern County Subbasin aquifer would respond assuming hydrologic conditions representing a potentially very dry climate and are based on the DWR Climate Change Guidance (DWR, 2018A and 2018B). The 2070 DWR climate change factors were applied to the Baseline Scenario Conditions. Additional adjustments were made to the imported surface water supplies from the SWP, CVP and Kern River, and these accounted for an additional 6% decrease from the Baseline Conditions. The 2070 Climate Change Scenarios were run both with and without SGMA Projects.

The groundwater budget for the 2070 Climate Scenario without SGMA Projects over WY2041 to WY2070 (**Table 20**) is compared the same period for the Baseline Scenario without SGMA Projects to assess the relative change due to the climate change assumptions. The results show a net increase in aquifer inflows of about 66,100 AFY, however, the net aquifer outflows increase by about 231,600 AFY. This is mostly attributed to an even greater climate shift to earlier rainfall making more surface water available for managed aquifer recharge during the winter but less available for irrigation in the summer resulting in higher groundwater pumping. The net change in groundwater storage is an additional decline of about 165,500 AFY due to the climate change assumptions.

The 2070 Climate Scenario with SGMA Projects simulates the proposed SGMA projects and management actions (Section 5.2) applied to the 2070 climate change conditions. No other changes were made to this scenario. The groundwater budget for the 2070 Climate Scenario with SGMA Projects is provided in **Table 21**. Comparing the groundwater budget for WY2041 to WY2070 (**Table 20**) between the two 2070 Climate Scenarios, the total net aquifer inflows increase about 106,300 AFY due to increased managed aquifer recharge and deep percolation. The total net aquifer outflows decrease about 265,300 AFY due mostly to decreased groundwater pumping due to agricultural demand reduction management actions.

The change in groundwater storage for 2070 Climate Scenario with SGMA Projects improves by about 371,600 AFY. This change results in a net decline of groundwater in aquifer storage over WY2041 to WY2070 of about 118,300 AFY. A comparison of the annual change in groundwater storage over the 50-year hydrologic period is presented in **Figure 20**. The time series shows that change in groundwater storage has stabilized to slightly increasing over the period from WY2041 to WY2070, but at a level below the results for the Baseline and 2030 Scenarios with SGMA Projects.

A comparison of the average annual water budget components for the two different 2070 Climate Scenarios is presented in **Figure 19**. Over this period, the average groundwater pumping of 1,559,000 AFY for the 2070 Climate Scenario with SGMA Projects, which includes agricultural pumping, urban pumping and exported water, is over 307,000 AFY less than in the 2070 Climate Scenario without SGMA Projects.

7.2 Projected Future Sustainability Assessment

To assess the sustainability of the proposed GSP plans, the C2VSimFG-Kern model future scenario input files were modified to incorporate all the proposed SGMA projects and management actions.

7.2.1 Change in groundwater storage

Groundwater sustainability for the Kern County Subbasin was assessed using annual changes in groundwater storage. As discussed in Section 7.1, the decline in groundwater storage of the three future Baseline scenarios is significantly mitigated by the implementation of the proposed SGMA projects and management actions. An assessment of the projected future groundwater storage change for the six projected future scenarios is summarized in **Table 22**.

The Change in Groundwater Storage presented in **Table 22** provides the net difference in aquifer inflows and outflows without consideration of subsurface flow to and from adjacent groundwater basins. This provides a measure of the natural and managed water supply within the groundwater basin without being influenced either positively or negatively by the subsurface flow. For the Kern County Subbasin, the net operational flow differs from the change in groundwater storage by about 50,000 to 75,000 AFY for the scenarios without SGMA projects, indicating that most of the groundwater storage change is due to conditions within the basin.

The Adjustments to Groundwater (GW) Storage Change are made to account for limitations in either the underlying conceptual model of C2VSimFG-Kern or the setup of the projected future scenarios. The two adjustments made to the projected future water budgets include:

- Adjustment for Excess Basin Outflows is the difference in simulated basin outflow that is
 attributed to addition of SGMA projects in Kern County without comparable SGMA projects
 added to adjacent basins. Adjustment assumes that this difference is due to limitation of the
 simulation, and that this difference would remain in Kern County Subbasin when SGMA projects
 from adjacent basins are included in the simulation.
- Adjustment for Excess Kern River Outflow is the increase in simulated groundwater outflows to the Kern River relative to Baseline condition that are attributed to SGMA projects and climate change. The model is not optimized for river management. Because the Kern River is a highly managed system, the assumption is that in practice this water would be recovered for beneficial use and not allowed to flow from the basin.

These adjustments resulted in an overall improvement in the change in groundwater storage for the projected future water budgets. For the scenarios that include the SGMA Projects, the change in groundwater storage improves by 43,400 AFY (Baseline), 59,700 AFY (2030 Climate Change), and 72,300 AFY (2070 Climate Change). As a result of these adjustments, the adjusted change in groundwater storage for the three scenarios with SGMA Projects varied as follows:

- the Baseline Scenario with SGMA Projects changes from an increase of 42,100 AFY to an increase of 85,600 AFY.
- the 2030 Climate Scenario with SGMA Projects changes from a decline of 12,900 AFY to an increase of 46,800 AFY.
- the 2070 Climate Scenario with SGMA Projects changes from a decline of 118,000 AFY to a
 decline of 46,000 AFY.

These adjustments indicate areas of improvement for C2VSimFG-Kern. Future updates to the model will address how to better simulate these conditions directly to limit the use of post-simulation adjustments.

7.2.2 Sustainability Assessment

As defined by SGMA, the sustainable yield of a basin is the amount of groundwater that can be withdrawn annually without causing undesirable results. Although the SGMA regulations require that a single value of sustainable yield must be calculated basinwide, it should be noted that the sustainable yield can be changed with implementation of recharge projects, variations in climate, or changes in stream flow conditions. For the projected future scenarios, both the climate and the managed water supply operations are significantly affected which would lead to a change in the sustainable yield for the basin.

For the sustainability assessment, the sustainable yield was recalculated using the method described in Section 4.2, and the results are presented in **Table 23**. Without the SGMA projects and management actions, the percentage of the Average Annual Difference to the total groundwater pumping provides context to compare the significance of the level of groundwater pumping for the basin. For the scenarios without SGMA projects and management actions, the groundwater pumping exceeds the sustainable yield on the order of 25% to 34% (**Table 23**). However, with the proposed SGMA projects and management actions, the groundwater pumping is less than the sustainable yield of the Subbasin for the Baseline and 2030 climate scenarios and is within 3% of the sustainable yield for the 2070 climate scenario (**Table 23**). This assessment indicates that the proposed SGMA projects and management actions for the Kern County Subbasin are of sufficient magnitude that, if fully implemented, would lead to groundwater sustainability for the Kern County Subbasin after WY2040.

7.2.3 Minimum Thresholds and Measurable Objectives

Another requirement of SGMA is for groundwater levels not to cross their minimum thresholds to the extent that undesirable results would occur in the basin, and moreover, that proposed SGMA projects and management actions would lead to meeting the measurable objectives. The Kern County Subbasin GSAs have defined 186 representative monitoring well (RMW) locations spread across the Kern County Subbasin. A minimum threshold and measurable objective have been assigned each of the 186 locations, and the hydrographs for all 186 locations are provided in **Attachment A**. The RMW locations are shown on **Figure 21**.

The C2VSimFG-Kern results were used to assess whether the simulated groundwater levels would meet the minimum threshold and measurable objective for each monitoring well. Because C2VSimFG-Kern is

not fully calibrated, the results are presented as relative change (which does not require calibration) instead of simulated groundwater levels using the superposition method. Future change in groundwater level was determined for each of the 186 locations for each of the six projected future simulations. The change was calculated from the simulated March 2015 groundwater levels from the model. The change in groundwater level was then applied to the measured March 2015 groundwater level at the monitoring location. The result was to superimpose the simulated change in groundwater levels from the projected future C2VSimFG-Kern scenarios relative to the measured March 2015 groundwater level.

Figure 22 provides four representative examples of the simulated hydrographs using this method. Hydrographs of the simulated groundwater levels relative to the minimum thresholds and measurable objectives for all 186 locations were provided to the various GSAs and water districts for inclusion in their respective GSPs. In general, across most areas of the basin, groundwater levels fall near or below the minimum thresholds without the SGMA projects but are typically above the minimum threshold for the simulations that include the SGMA projects.

The groundwater hydrographs for some locations, especially along the eastern and western basin margins, show an unusual pattern that is likely influenced by issues with the hydrogeological conceptual model incorporated into C2VSimFG-Kern for these locations. The hydrographs for these areas are not considered to be representative of actual conditions that would physically occur. This is a limitation to the model. It is recommended that a more rigorous model update be conducted to revise the hydrogeological conceptual model to be consistent with that presented in the Kern County Subbasin GSPs. In addition, further calibration of C2VSimFG-Kern is recommended to update aquifer parameters in the Kern County Subbasin. The recommendations for revisions to the hydrogeological conceptual model and additional calibration are further discussed in Section 8.5.

8. Validation of C2VSimFG-Kern Performance

The C2VSimFG-Kern performs well within the central part the Kern County Subbasin. The model does not perform as well east of the Friant-Kern Canal or west of the California Aqueduct. The geologic and hydrogeologic conceptual models within the central part of the Kern County Subbasin appear to be generally realistic. The geologic and hydrogeologic conceptual models appear to be very poor in the areas where the model does not perform well.

8.1 C2VSimFG-Kern Validation

One of the concerns for the modeling is the overall calibration of C2VSimFG-Beta in Kern County. As discussed above, the assumption is that C2VSimFG-Beta was developed using reasonable care in developing the geologic framework and developing a consistent regional methodology for determining aquifer properties. An identified weakness of the C2VSimFG-Beta is the quality of data used in developing the overall water balance such as the extent of the groundwater banking operations in Kern County. The issues with the water balance are considered the primary contributing factor affecting the calibration of the C2VSimFG-Beta; the hydrogeologic conceptualization is reasonably accurate for a regional planning analysis.

To address these concerns, a validation analysis was performed for C2VSimFG-Kern by comparing simulations results to field measured groundwater level data collected during the Study Period and comparing those to a similar set of residuals from the C2VSimFG-Beta model. The statistical results of

this analysis should be comparable, if not better, for C2VSimFG-Kern compared to the C2VSimFG-Beta results.

The analysis used 42,058 groundwater levels measurements collected from 558 monitoring wells in the Kern County Subbasin. The data were collected by Kern County Water Agency, the Kern Fan Monitoring Committee, the DWR Water Data Library, and local agencies. For each location, the residual was calculated as the simulated groundwater level minus the measured groundwater level based on the well measurement data. A brief summary of the statistical measures used to evaluate the calibration results (shown on **Table 24**) is provided below:

- The residual mean is computed by dividing the sum of the residuals by the number of residual data values. The closer this value is to zero, the better the calibration especially as related to the water balance and estimating the change in aquifer storage. The residual mean of 17.3 feet for C2VSimFG-Kern is an improvement of 47% over the 32.6 feet from C2VSimFG-Beta.
- The absolute residual mean is the arithmetic average for the absolute value of the residual, so it provides a measure of the overall error in the model. The absolute residual mean of 37.4 feet for C2VSimFG-Kern is an improvement of 34% over the 56.8 feet from C2VSimFG-Beta.
- The residual standard deviation evaluates the scatter of the data. A lower standard deviation indicates a closer fit between the simulated and observed data. The standard deviation is 45.5 feet for C2VSimFG-Kern, which is an improvement of 16% over the 54.0 feet from C2VSimFG-Beta.
- The Root Mean Square (RMS) Error is the square root of the arithmetic mean of the squares of the residuals and provides another measure of the overall error in the model. The RMS Error is 50.0 feet for C2VSimFG-Kern, which is an improvement of 32% over the 73.5 feet from C2VSimFG-Beta.
- The correlation coefficient ranges from 0 to 1 and is a measure of the closeness of fit of the data to a 1 to 1 correlation. A correlation of 1 is a perfect correlation. The correlation coefficient of 0.76 for C2VSimFG-Kern is an improvement of 47% over the 0.52 from C2VSimFG-Beta.
- Another statistical measure is the ratio of the standard deviation of the mean error divided by the range of observed groundwater elevations. This ratio shows how the model error relates to the overall hydraulic gradient across the model. The ratio for C2VSimFG-Kern is 0.061 feet, which is an improvement of 34% over the 0.092 from C2VSimFG-Beta.

Considering these results in context with the overall range of measurements of 616 feet, the residual mean of 17.3 feet represents a relative percentage difference of less than 3%. For the absolute residual mean of 37.4 feet, the relative percentage difference is about 6%. Despite this improvement in model performance, the model is not considered fully calibrated. However, C2VSimFG-Kern is reasonably validated for assessing groundwater level changes on the subbasin scale for the purposes of SGMA planning.

8.2 Sensitivity Analysis

The C2VSimFG-Kern model was not formally calibrated. Some physical parameters were adjusted to improve model performance in specific areas. A sensitivity analysis was conducted on the adjusted model to understand how variations in model parameters affect model results. Eight physical parameter sets were systematically varied, and model results compared to the base model for a

selected group of groundwater hydrographs. C2VSimFG-Kern parameter sensitivities evaluated for Kern County Subbasin include:

- Horizontal hydraulic conductivity of aquifer (Kh)
- Vertical hydraulic conductivity of aquifer (Kv)
- Vertical hydraulic conductivity of Corcoran Clay aguitard (Kcorc)
- Streambed conductance of Kern River (Cstm)
- Specific storage of aquifer (Ss)
- Specific yield of aquifer (Sy)
- Soil hydraulic conductivity in root zone (Ksoil)
- Soil pore size distribution index in root zone (λ)

The Root Mean Squared Error between observed and simulated values was calculated for the original parameter set and after varying each parameter set upward and downward by a set factor. Results are presented in **Figure 23**. This sensitivity analysis shows that the hydrologic parameter values in the C2VSimFG-Kern model are generally within an acceptable range. A full model calibration would likely improve model performance.

8.3 Peer Review Process

Todd Groundwater worked with Woodard and Curran (W&C) throughout the model development process as W&C conducted an on-going peer review of model input files. W&C staff have developed several IWFM-based models and worked with DWR to develop C2VSimFG-Beta. Their reviews helped ensure that the model update used best practices when incorporating new data. The peer review process was documented in a series of meeting summaries to the KGA and KRGSA. The updated C2VSimFG-Kern input files for the Kern County Subbasin were shared with DWR for incorporation into future C2VSim public releases.

The more general assumptions in C2VSimFG-Beta were replaced with local data and knowledge that are regionally or locally significant for WY1995 to WY2015. This update employed a phased approach with regular peer reviews.

- 1) Phase 1 revisions address components of Regional Significance that require significant changes to the overall model input file structure. These include:
 - a) Surface water delivery volumes, application areas and use by water district,
 - b) Groundwater banking recharge, recovery and application of recovered water,
 - c) Evapotranspiration rates and irrigation demand based on ITRC METRIC data (ITRC 2017),
 - d) Urban population and per capita demand, including addition of an urban zone for Metropolitan Bakersfield, and
 - e) Addition of groundwater extraction wells for groundwater banking projects.
- 2) Interim Review
 - a) The Woodard & Curran Peer Review Team
 - b) Kern County Subbasin water districts and purveyor's local data review
 - c) Stakeholder input
- 3) Phase 2 revisions address components of Local Significance that generally require modifications of input data and parameters within the existing C2VSim model input file structure. These include:

- a) Local water sources and demands of significance to individual Districts/GSAs,
- b) District pumping for in-district delivery via surface water canals where significant,
- c) District recharge operations utilizing canals, stream channels, and basins,
- d) Wastewater disposal and land application, and
- e) Review and limited adjustment of model parameters.
- 4) Interim Review by same reviewers listed in item 2
- 5) Phase 3 revisions include addressing comments and incorporating new data from the Interim Reviews
- 6) Interim Review by same reviewers listed in item 2
- 7) Tabulate model-derived water budgets for Peer-Review and GSP Use

In each update phase, historical and current water budgets for zones representing water agency service areas were produced with the revised C2VSimFG-Kern model incorporating corrected local data. These water budgets were shared with participating agencies for review, to ensure that C2VSimFG-Kern correctly represented local water balances. Where necessary, participating agencies provided additional data which was incorporated into C2VSimFG-Kern.

8.4 Internal Review Process

Todd Groundwater and Hydrolytics LLC worked collaboratively on this model revision, water budget development and the projected future scenarios. Throughout this work, efforts were applied to improve data management to develop a systematic process for generating model input files. Using this approach, internal review could be conducted with each firm reviewing the contributions from the other. The goal was to accurately represent the data provided by the Kern County agencies in the model.

Due to schedule constraints, a thorough internal review of the projected future model scenarios was not completed prior to the submission of the Public Review Draft of the model results in August 30, 2019. A thorough review of all input for the projected future scenarios was conducted in September and October 2019. During this review, several issues were identified and corrected. As a result, the results in this report vary from those provided in the August 2019 Public Review Draft. Although the numbers changed, the overall conclusions from the C2VSimFG-Kern simulations remained essentially the same.

8.5 Recommendations for Future Improvements to C2VSimFG-Kern

The C2VSimFG-Kern performs well in the Kern County Subbasin, producing simulated water budget components that generally match historical values compiled by local agencies. C2VSimFG-Kern simulated groundwater levels provide a reasonable approximation of observed groundwater levels in the central part of the Kern County Subbasin. The model is well suited for estimating the impacts of management actions on the Subbasin groundwater storage and is also well suited as a planning tool in meeting compliance of SGMA.

During the model update, several outstanding issues were identified that should be addressed in future updates to C2VSimFG-Kern. The following actions and model improvements are recommended:

• Improve streamflow simulations of the Kern River and Poso Creek. Flows in the Kern River channel, including local stream-groundwater interactions, are not well replicated and surface water diversions are not dynamically simulated. Some rejected recharge occurs in the Kern Fan

area in very wet years, with significant outflow of groundwater to the Kern River especially in the Kern Fan banking area (i.e., rejected recharge). This has been an ongoing issue and needs to be addressed for the projected future water budgets so that banking recharge volumes can be better matched in the model. It is recommended that future revisions to C2VSimFG-Kern further evaluate issues in simulating streamflow and seepage in the Kern River and Poso Creek (see Section 8.5). This may include incorporating more advanced streamflow simulation features that are available in IWFM but that have not been previously utilized in developing C2VSim models by DWR. Changing the stream simulation feature may require development of a local Kern County Subbasin model.

- Improve the geologic and hydrogeologic conceptual model of the Kern County portion of the Central Valley. A hydrogeologic conceptual model is a framework for understanding where groundwater exists, where it flows, and how groundwater interacts with surface water bodies and the land surface. A geologic conceptual model provides a framework for understanding the geologic features that control groundwater movement. Quantitative analysis of Kern County Subbasin groundwater flow is severely hampered by the lack of detailed geologic and hydrogeologic conceptual models of the areas outside the central alluvial basin. Geologic and hydrogeologic conceptual models will provide a foundation for the quantitative analysis of the groundwater flow system, and the framework for modeling the system. Key steps are:
 - Develop detailed geologic and hydrogeologic conceptual models of the Kern County Subbasin.
 - Differentiate the four Principal Aquifers that have been identified in the Kern County Subbasin based on definitions from local management area GSPs.
 - o Identify the locations and characteristics of natural features that affect groundwater recharge and movement (faults, ridges, clays).
 - Understand water occurrence and movement in areas outside the central Kern County Subbasin.
 - Develop water quality maps (natural constituents and anthropogenic constituents).
 - o Modify the Kern County Subbasin model to conform to the updated conceptual models.
- Simulation of deep percolation and small watersheds. Unreasonably high deep percolation (return flows) of the applied water in some areas has led to unreasonably elevated pumping rates to compensate. One problem is high root zone hydraulic parameter values in certain areas that were identified and corrected to better reflect local soil conditions. Because the excess pumping was returning to groundwater, the change has little effect on the basin change in storage, but the pumping and deep percolation are now more in line with local estimates. Root zone hydraulic parameters should be redeveloped throughout the subbasin to assure model values are representative of actual values.
- Root Zone Parameters, Areas of overly high root zone hydraulic parameters led to high volumes
 of deep percolation that required additional groundwater pumping to meet the overall water
 demand for irrigation. A review found areas of overlying high soil hydraulic conductivity and
 other soil parameters produced percolation rate that were too high. These areas were manually
 adjusted to be more in line with observed conditions. A more rigorous development of root
 zone parameters should be considered in the future as this issue demonstrates that it is a
 sensitive parameter.

- Investigate development of a stand-alone Kern County Subbasin model. The C2VSim model provided by DWR and updated with local data is adequate for GSP preparation. However, this model may not meet all of the groundwater modeling needs of Kern County Subbasin stakeholders. In addition, running a full Central Valley simulation model imposes longer model run times and reduces model flexibility. Stakeholders should undertake a comprehensive study to develop a list of their integrated (groundwater and surface water) modeling needs, and then decide whether further improving C2VSimFG-Kern or developing a new integrated hydrologic model is the best way to address the Subbasin modeling needs. This decision should be made before the end of 2020 to allow sufficient time to develop a new model or improve C2VSimFG-Kern in time for use in development of the 2025 GSP.
- Adjust the finite element grid to honor water management boundaries. The C2VSimFG-Kern model grid is a randomly generated grid that does not conform to any local features other than natural surface water channels. This limits the spatial accuracy of model inputs and the precision and flexibility of water budget outputs. Adjusting the grid to match district and agency boundaries, historical delivery areas, water management units within districts, and geologic and hydrologic features would greatly enhance model capabilities.
- Quantify boundary flows. Significant uncertainty exists regarding the rates and timing of groundwater flows into the Kern County Subbasin from surrounding watersheds, and groundwater flows from the Kern County Subbasin to Kings and Tulare counties to the north. Reliable estimates of boundary flows will improve model performance in boundary areas.
- **Kern County Subbasin Boundary.** The GSAs in the basin should consider when DWR updates the Bulletin 118 in 2020 to investigate the "actual" Kern County Subbasin and to remove those peripheral lands where aquifer connectivity does not exist.
- Utilize more complex water management features of IWFM. The Kern Update process modified information within the existing C2VSimFG-Beta model structure to improve model performance within the Kern County Subbasin. The IWFM application has several features that could be further utilized to improve model performance.
 - Adjust the agricultural crops to better match the Kern County crop mix (for example, create separate crop categories for carrots, young and mature almonds, young and mature pistachios, etc.).
 - o Implement multi-cropping with semiannual or quarterly land use.
 - Some C2VSim data are organized by DWR subregions, which represent heterogeneous areas with homogeneous data. Developing Kern County Subbasin subregions and organizing model input data by these subregions may provide a better representation of local hydrologic conditions.
- Calibrate the improved model for the Kern County Subbasin. DWR did not fully calibrate the Kern County portion of the C2VSim model, owing to both poor historical input data and a lack of calibration data sets. The Kern Update process significantly improved the historical data in the model, developed some calibration data sets, and included limited adjustment of model parameters. The updated model performs adequately in the central part of the Kern County Subbasin and poorly in areas outside the central part of the basin. Once the above improvements are completed, the Kern County portion of the resulting model should be fully calibrated to ensure that it performs well throughout the Kern County Subbasin.

9. CONCLUSIONS

This brief summary provides an overview of the findings and conclusions of the modeling results for the Kern County Subbasin using C2VSimFG-Kern.

9.1 Findings of the C2VSimFG-Kern Application and Results

The subbasin-wide update of C2VSimFG-Kern incorporated data from many local agencies. Each participating agency provided data for their jurisdiction for use in improving the model. This included managed water supply data (e.g., surface water deliveries, land use, irrigation demand, return flows, and groundwater banking), stream and groundwater monitoring data, geologic data, and other relevant data. This information was compiled and used to improve C2VSimFG-Kern performance in the Kern County Subbasin.

The historical water budget analysis indicates that the Kern County Subbasin was in a state of overdraft equivalent to the long-term decline in groundwater storage from WY1995 to WY2014 of 277,144 AFY. Projected Future simulations indicate that the proposed SGMA projects and management actions in the Kern County GSPs are sufficient for the Kern County Subbasin to achieve sustainability under Baseline and 2030 Climate Change conditions.

C2VSimFG-Kern was used to evaluate the change in groundwater in storage for projected future conditions using a baseline condition that projects current water supply, water demand and land use over a 50-year period based on historical hydrology. The baseline was adapted following DWR climate change guidance to develop 2030 and 2070 climate change simulations. The proposed SGMA projects and management actions were compiled from all of the Kern County Subbasin GSAs and management areas. The total projects total about 421,000 AFY after implementation. This assessment indicates that the proposed SGMA projects and management actions for the Kern County Subbasin are of sufficient magnitude that, if fully implemented, would lead to groundwater sustainability for the Kern County Subbasin after WY2040.

The historical C2VSimFG-Kern performs well in the Kern County Subbasin, producing simulated water budget components and groundwater levels that generally match historical values compiled by local agencies. C2VSimFG-Kern simulated groundwater levels provide a reasonable statistical approximation of observed groundwater levels in the Kern County Subbasin that show significant improvement relative to C2VSimFG-Beta. Therefore, C2VSimFG-Kern is well suited as a planning tool to estimate the impacts of the proposed SGMA projects and management actions on groundwater conditions in the Kern County Subbasin.

The C2VSimFG-Kern model development and the water budget analysis were designed to fulfill the GSP requirement for a coordinated subbasin-wide water budget analysis, while also providing information required to fulfill other GSP requirements. The C2VSimFG-Kern was provided to DWR so the Kern County Subbasin revisions can be incorporated into their master version of the C2VSim model.

9.2 C2VSimFG-Kern Compliance with Coordination Agreement Requirements

Subbasin GSAs coordinated on the development and application of the C2VSimFG-Kern to ensure that the model was incorporating comparable data sets and the best available information; as such, the model meets numerous technical requirements for Subbasin-wide coordination, including for

Coordination Agreements in §357.4. As demonstrated throughout this memorandum, the C2VSimFG-Kern model documents the use of "the same data and methodologies" for water budget development.

Specifically, groundwater extraction data were coordinated through the use of ET METRIC data for all irrigated lands over the entire Subbasin to estimate private irrigation pumping. Monthly metered data from District, municipal, and banking pumping were incorporated as available. Surface water supply data were provided in similar units and formats using consistent templates for data collection and management in the model. Total water use and change in groundwater in storage were developed through consistent methodologies as applied in the C2VSimFG-Kern model. Calibration targets also incorporated consistent data sets for groundwater elevation data throughout the Subbasin as compiled in the DWR Water Data Library, KCWA water level database, and supplemented with local data, as needed. This memorandum documents coordination efforts in subsequent sections that demonstrates compliance with GSP requirements in §354.18, §357.4, and other portions of the regulations.

9.3 Limitations and Uncertainty of C2VSimFG-Kern

The C2VSimFG-Kern performs well in the Kern County Subbasin, producing simulated water budget components that generally match historical values compiled by local agencies. C2VSimFG-Kern simulated groundwater levels provide a reasonable approximation of observed groundwater levels in the central part of the Kern County Subbasin. The model is well suited to estimating the impacts of management actions on subbasin groundwater storage.

The C2VSimFG-Kern update was limited in scope, and some model components do not perform well. These components do not reduce model capabilities with respect to GSP development but limit the usefulness of the model for other types of studies. Flows in the Kern River channel, including local stream-groundwater interactions, are not well replicated and surface water diversions are not dynamically simulated. The Kern County Subbasin portion of the C2VSimFG-Kern is not calibrated, and although the land surface water budget components are generally accurate, groundwater conditions and stream flows are poorly simulated in much of the Subbasin. Some rejected recharge occurs in the Kern Fan area in very wet years, but this is not significant as it is a very small volume.

The C2VSimFG-Kern is a reliable and defensible tool to support planning future groundwater conditions and estimating the potential hydrological impacts of future climate conditions and management actions at the subbasin level. It is currently the best available quantitative tool for assessing projected future groundwater conditions under SGMA. DWR recommends updating and refining models used in GSPs to incorporate new data including that in annual GSP updates. Refining Kern County Subbasin hydrologic modelling tools to replicate district-level historical conditions will provide a reliable means of assessing future effects of management actions at the district level for future GSP development.

9.4 Applicability of C2VSimFG-Kern Simulation Results

Based on the model validation, C2VSimFG-Kern provides a useful planning tool to evaluate potential future trends in groundwater in the Kern County Subbasin. The model validation demonstrated the capability of C2VSimFG-Kern to reasonably simulate the groundwater elevations and trends during the period from WY1995 through WY2015 based on the comparison to measured data.

The ability to reasonably simulate historical conditions provides confidence that C2VSimFG-Kern can be used to simulate potential future conditions. The model has the capability to simulate the most beneficial application of water projects that would provide the long-term benefit to the area. For the

future case scenarios, the general practice is to evaluate model results with respect to long-term trends. Therefore, as a planning tool, it is most beneficial to run the model in relation to a base case and to evaluate the relative difference between the model scenario and the base case. The base case would assume a selected set of climatic, hydrologic and pumping conditions. Commonly, the calibration base period is assumed to repeat; however, any number of variations can be constructed.

It is important to note that in some cases the model results may vary from those measured in individual wells due to the geologic complexity of the Kern County Subbasin. However, the model is capable of evaluating the impacts of changes in pumping and water use practices in the Kern County Subbasin that are useful for SMGA planning purposes.

The conclusions and recommendations presented herein are professional opinions based on the C2VSimFG-Kern revisions and simulations as described herein. The findings and professional opinions presented in this letter are presented within the limits prescribed by the client contract, in accordance with generally accepted professional engineering, geologic and modeling practices, to support development of GSPs within the Kern County Subbasin. There is no other warranty, either expressed or implied, regarding the conclusions, recommendations, and opinions presented in this report.

10. REFERENCES

- Brush, CF, EC Dogrul and TN Kadir. 2016. Development and Calibration the California Central Valley Groundwater-Surface Water Simulation Model (C2VSim), Version 3.02-CG. California, California Department of Water Resources Technical Memorandum.
- California Department of Water Resources (DWR). 2016A. California's Groundwater, Bulletin 118 Interim Update 2016. Sacramento, CA: Technical Memorandum.
- California Department of Water Resources (DWR). 2016B. Management Practices for the Sustainable Management of Groundwater, Modeling BMP. Sacramento, CA: Technical Memorandum.
- California Department of Water Resources (DWR). 2018A. Guidance for Climate Change Data Use During Groundwater Sustainability Plan Development. Sacramento, CA: Technical Memorandum.
- California Department of Water Resources (DWR). 2018B. Resource Guide, DWR-Provided Climate Change Data and Guidance for Use During Groundwater Sustainability Plan Development. Sacramento, CA: Technical Memorandum.
- California Department of Water Resources (DWR). 2019. Chronological Reconstructed Sacramento and San Joaquin Valley Water Year Hydrologic Classification Indices, accessed California Data Exchange Center database: http://cdec.water.ca.gov/reportapp/javareports?name=WSIHIST last accessed in July 2019.
- California Natural Resources Agency (CNRA), 2018, C2VSimFG Beta model, model files and data sets downloaded from https://data.cnra.ca.gov/dataset/c2vsimfg-beta-model on May 25, 2018.
- California Water Commission. 2016. Water Storage Investment Program Technical Reference. Sacramento, CA: Technical Memorandum.
- City of Bakersfield (COB), 1985-2015, Annual Kern River Hydrographic Reports from 1985 through 2015. Water Resources Department.

- Friant Water Users Authority (FWUA). 2018. Estimate of Future Friant Division Supplies for use in Groundwater Sustainability Plans. Fresno, CA.
- GEI Consultants. 2018. Kern River Hydrology Under Climate Change. Bakersfield, CA.
- IPUMS National Historical Geographic Information System Database, 2018, accessed and download population data for Kern County from http://www.ipums.org, last accessed April 2018.
- Irrigation Training and Research Center (ITRC). 2017. 1993-2015 ITRC-METRIC ETc for Kern County. California Polytechnic State University, San Luis Obispo, CA.
- Nady, P, and LL Larragueta. 1983. Estimated average annual streamflow into the Central Valley of California. USGS Hydrologic Atlas HA-657.
- Natural Resources Conservation Service (NRCS). 2018. Published Soil Surveys for California. https://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateid-CA.
- Natural Resources Conservation Service (NRCS), 2004, Part 630 Hydrology, National Engineering Handbook, Chapters 9, 10 and 20. Washington, DC.
- US Bureau of Reclamation (USBR). 2011. Kern National Wildlife Refuge Water Management Plan. https://www.usbr.gov/mp/watershare/docs/2010/refuges/kern-national-wildlife-refuge.pdf
- US Department of Commerce, 2018, Assessed online population database using census data for 1990, 2000 and 2010. https://www.census.gov/data/developers/data-sets/decennial-census.html, last accessed April 2018.
- US Geologic Survey (USGS). 2009. Central Valley Hydrologic Model: Texture Model. https://ca.water.usgs.gov/projects/central-valley/cvhm-texture-model.html.

List of Tables (following text except where noted)

Table 1	Summary of data input for surface water diversion to agriculture by water district applied to C2VSimFG-Kern Historical Simulation
Table 2	Summary input for surface water diversion from Kern River at different diversion and turnouts applied to C2VSimFG-Kern Historical Simulation
Table 3	Summary of data input for surface water diversions for various purposes applied to C2VSimFG-Kern Historical Simulation
Table 4	Summary of data input for surface water diversions to groundwater banking and managed aquifer recharge for different facilities applied to C2VSimFG-Kern Historical Simulation
Table 5	Summary of data input for groundwater recovery pumping for local water supply by water district applied to C2VSimFG-Kern Historical simulation
Table 6	Summary of data input for groundwater pumping for basin export by water district applied to C2VSimFG-Kern Historical Simulation
Table 7	Summary of population data input by Urban Zone applied to C2VSimFG-Kern Historical Simulation
Table 8	Summary of data input of per-capita water use by urban zone applied to C2VSimFG- Kern Historical simulation
Table 9	Summary of data input for crop evapotranspiration (ET) by crop type based on METRIC satellite data applied to C2VSimFG-Kern Historical Simulation
Table 10	Summary of C2VSimFG-Beta modifications in the Kern County Revision applied to C2VSimFG-Kern by IWFM model input file
Table 11A	Historical Groundwater Budget for the Kern County Subbasin for Water Years 1995 to 2014 based on C2VSimFG-Kern Historical Simulation
Table 11B	Current Groundwater Budget for the Kern County Subbasin for Water Year 2015 based on C2VSimFG-Kern Historical Simulation
Table 12	Estimated sustainable yield for Kern County Subbasin for WY1995 to WY2014 Base Period based on C2VSimFG-Kern Historical Simulation
Table 13	Estimate of potential native yield for Kern County Subbasin for WY1995 to WY2014 based on C2VSimFG-Kern Historical Simulation
Table 14	Hydrologic Year Correlation with relevant river Indices for projected-future simulation period
Table 15	Summary of Simulated Change in Groundwater Storage Results over the 2041 to 2070 Sustainability Period (in text)
Table 16	Projected Future Groundwater Budget for Kern County Subbasin under Baseline Conditions with NO SGMA Projects based on C2VSimFG-Kern Simulation
Table 17	Projected Future Groundwater Budget for Kern County Subbasin under Baseline Conditions WITH SGMA Projects based on C2VSimFG-Kern Simulation
Table 18	Projected Future Groundwater Budget for Kern County Subbasin under 2030 Climate Conditions with NO SGMA Projects based on C2VSimFG-Kern Simulation
Table 19	Projected Future Groundwater Budget for Kern County Subbasin under 2030 Climate Conditions WITH SGMA Projects based on C2VSimFG-Kern Simulation
Table 20	Projected Future Groundwater Budget for Kern County Subbasin under 2070 Climate Conditions with NO SGMA Projects based on C2VSimFG-Kern Simulation
Table 21	Projected Future Groundwater Budget for Kern County Subbasin under 200 Climate Conditions WITH SGMA Projects based on C2VSimFG-Kern Simulation

Table 22	Assessment of change in groundwater storage from C2VSimFG-Kern model results for
	historical and future scenarios for the Kern County Subbasin
Table 23	Evaluation of Sustainable Yield for Projected-Future scenarios based on C2VSimFG-Kerr
	Model Results for Kern County Subbasin
Table 24	Summary of Statistical Analysis for Validation of C2VSimFG-Kern Historical Simulation

List of Figures (following tables)

Figure 1	GSAs in Kern County Subbasin
Figure 2	C2VSimFG Simulation Grid for Central Valley Showing Kern County Subbasin
Figure 3	C2VSimFG-Kern Simulation Grid with Kern County Subbasin GSAs
Figure 4	Annual Kern River Index used to Define 20-Year Historical Study Period
Figure 5	Surface Water Features Kern County Subbasin
Figure 6	Recharge Facilities and Recovery Wells used in C2VSimFG-Kern
Figure 7	C2VSimFG-Kern Urban Zones with City Limits
Figure 8	ITRC METRIC Data for Evapotranspiration 2013 Annual Example
Figure 9	C2VSimFG-Kern Historical Groundwater Budget for Kern County Subbasin
Figure 10	C2VSimFG-Kern Average Annual Water Budget for Kern County Subbasin
Figure 11	Simulated Historical Change in Groundwater Storage for Kern County Subbasin
Figure 12	Simulated Historical Recharge Operations for Kern County Subbasin
Figure 13	Simulated Historical Groundwater Pumping for Kern County Subbasin
Figure 14	Simulated Historical Surface Water Deliveries for Kern County Subbasin
Figure 15	Average Annual Benefit of Proposed SGMA Projects and Management Action
Figure 16	Projected Future Change in Groundwater Storage for Baseline Conditions
Figure 17	Baseline Projected Future Average Annual Groundwater Budget for WY2041-2070
Figure 18	2030 Climate Projected Future Average Annual Groundwater Budget for WY2041-2070
Figure 19	2070 Climate Projected Future Average Annual Groundwater Budget for WY2041-2070
Figure 20	Projected Future Change in Groundwater Storage for All Conditions
Figure 21	Regional Monitoring Well (RMW) Locations Kern County Subbasin
Figure 22	Hydrographs for all Projected Future Conditions with SGMA Sustainability Criteria
Figure 23	C2VSimFG-Kern Sensitivity Analysis Results

List of Attachments (following tables)

Attachment C2VSimFG-Kern Hydrographs at Regional Monitoring Wells in Kern County Subbasin for Projected Future Water Budget Simulations

TABLES

TABLE 1 - Summary of data input for surface water diversion to agriculture by water district applied to C2VSimFG-Kern Historical Simulation

							ce water a											
Water Year	Arvin-Edison WSD	Belridge WSD	Berrenda Mesa WSD	Buena Vista WSD	Cawelo WD	Kern River Canal Co.	Henry Miller WD	Kern Delta WD	Kern-Tulare WD	Lost Hills WD	North Kern WSD	Rosedale Rio Brave WSD	Semi-tropic WSD	Shafter- Wasco ID	So. San Joaquin MUD	Wheeler Ridge	Olcese WD	TOTAL
	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft
1986	144,722	106,293	90,909	162,444	78,084	14,994	43,242	183,471	27,131	103,268	198,865	0	74,487	149,252	112,888	177,348	1,493	1,668,891
1987	127,333	106,293	90,909	142,274	89,117	12,113	43,242	137,458	27,131	123,981	112,432	0	53,753	172,161	76,193	· · · · · · · · · · · · · · · · · · ·	1,493	1,477,832
1988	114,321	106,293	90,909	141,152	77,106	4,203	43,242	135,078	27,131	111,872	81,580	0	47,071	164,192	71,243	154,030	1,417	1,370,840
1989	114,591	106,293	90,909	150,341	85,190	11,096	43,242	140,360	27,131	122,044	61,797	0	50,495	190,990	94,729	178,129	1,480	1,468,817
1990	70,816	106,293	90,909	124,845	67,867	14,757	43,242	114,531	27,131	88,963	51,926	0	34,381	49,992	73,000	170,693	1,480	1,130,826
1991	40,698	106,293	90,909	100,517	50,621	10,416	43,242	117,287	27,131	9,553	28,931	0	40,595	7,926	11,683	31,030	1,480	718,312
1992	52,839	106,293	90,909	108,874	54,406	9,909	43,242	118,190	27,131	52,853	34,291	0	45,851	94,467	65,310	96,514	1,480	1,002,559
1993	137,479	93,344	85,549	151,653	75,490	11,596	43,973	174,003	26,034	77,793	181,920	5,040	72,120	226,462	108,767	137,221	1,425	1,609,869
1994	171,856	110,017	93,092	125,084	62,968	13,862	53,471	132,865	28,017	87,636	117,580	2,362	47,111	110,951	83,680	151,368	1,685	1,393,606
1995	134,559	110,993	78,521	189,797	73,155	6,600	29,047	159,595	27,333	85,963	174,020	5,591	62,105	235,347	108,778	153,783	1,425	1,636,611
1996	166,288	112,412	115,132	184,597	90,229	11,591	39,539	179,052	28,749	145,349	202,199	5,722	72,231	313,420	128,865	189,454	1,987	1,986,816
1997	185,820	143,146	97,233	197,871	88,202	11,134	50,584	179,388	29,998	122,140	191,871	4,563	67,407	313,717	124,456	188,455	1,778	1,997,763
1998	120,808	79,387	85,885	152,455	69,758	4,959	30,260	124,464	24,422	80,845	153,662	4,756	53,064	240,072	89,373	148,174	849	1,463,194
1999	152,909	101,786	93,199	142,271	86,667	10,085	53,858	141,626	28,093	108,563	146,395	4,679	57,625	307,686	110,686	166,018	1,248	1,713,394
2000	158,008	111,057	87,200	135,689	87,894	12,833	44,302	152,338	29,948	119,828	133,872	3,920	61,358	315,833	119,597	179,278	1,382	1,754,337
2001	158,432	91,642	65,734	76,718	70,873	10,048	31,379	113,044	30,109	68,302	74,725	0	48,772	70,879	98,104	136,390	1,588	1,146,739
2002	158,197	107,617	63,705	78,735	75,042	9,058	31,724	116,181	25,443	67,574	62,006	0	55,121	165,448	103,849	133,652	1,702	1,255,054
2003	139,412	103,724	64,267	96,601	75,749	8,371	33,941	161,162	24,120	62,007	106,436	1,000	55,511	265,110	106,779	120,733	2,041	1,426,964
2004	155,531	118,543	68,902	86,119	78,558	9,383	39,101	138,664	25,541	67,607	99,610	1,739	58,351	174,605	106,537	138,771	1,637	1,369,199
2005	136,887	105,523	69,372	125,522	78,101	6,037	39,248	169,747	21,445	60,844	207,612	2,784	58,711	294,595	109,716	127,846	1,939	1,615,929
2006	140,411	115,146	84,869	149,851	96,249	5,317	46,538	172,882	22,525	73,422	199,626	0	68,468	332,115	120,106	150,416	2,048	1,779,988
2007	158,526	118,036	102,971	91,196	70,811	4,574	48,482	112,341	23,348	83,116	89,195	552	37,391	146,826	75,642	164,924	1,496	1,329,426
2008	157,604	114,525	86,217	70,032	62,437	4,380	18,156	145,633	22,788	74,554	86,051	0	47,623	29,675	87,776	168,211	1,700	1,177,361
2009	145,184	113,385	86,439	73,530	67,340	4,340	12,129	126,039	21,803	83,740	84,727		44,265	30,808	116,967	159,502	1,781	1,171,979
2010	132,462	117,589	88,556	102,109	76,351	3,604	29,694	166,787	19,272	88,191	171,744	1,543	65,238	168,870	120,394	159,162	1,756	1,513,322
2011	130,306	121,808	87,344	121,329	88,617	4,617	39,642	192,069	20,213	92,149	173,305	4,466	74,413	337,724	124,678	156,216	1,530	1,770,425
2012	148,146	130,559	87,953	96,407	89,745	3,988	41,553	195,763	21,682	91,720	81,584	1,329	35,369	227,901	81,602	168,753	1,783	1,505,837
2013	159,887	138,131	93,311	33,558	49,978	3,585	18,533	94,682	22,252	93,322	23,343	0	26,194	81,279	58,923	170,033	1,966	1,068,977
2014	144,605	123,390	82,731	410	41,223	2,645	2,246	70,367	14,067	82,546	11,290	0	8,303	5,748	14,249	152,372	1,238	757,429
2015	114,350	117,357	81,535	134	38,195	2,663	0	68,228	10,274	80,631	9,901	0	0	12,226	3,020	145,842	1,462	685,817

TABLE 2 - Summary of data input for surface water diversion from Kern River at different diversion and turnouts applied to C2VSimFG-Kern Historical Simulation

			ary or data	mpac ioi	surrace m	ater divers		CIII IIIVCI	at amere.	t untersion	Tana tan	outs applie	u to cero.	iiii G itterii	motorical		
Water Year	Kern River to Beardsley Canal		Kern River to Carrier Canal at Calloway Weir	Kern River to CVC at Turnout #4	Kern River to River Canal	Kern River to Rio Vista at River Walk		Kern River to North Lake		Kern River to Berrenda Mesa WSD	Kern River to Pioneer Project	Kern River to Kern Water Bank	Kern River to Kern Water Bank Canal	Kern River to 2800 Acre Facility	Kern River to Buena Vista WSD BSA	Kern River to Aqueduct at Intertie	TOTAL
	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft
1986	291,715	199,035	238,877	181,392	0	0	65,684	0	63,232	0	0	0	0	97,866	86,736	0	1,224,537
1987	190,539	76,888	179,876	58,811	0	0	19,893	0	756	0	0	0	0	21,592	86,736	0	635,091
1988	111,679	25,813	163,938	21,851	0	0	345	0	0	0	0	0	0	0	86,736	0	410,362
1989	98,796	28,696	168,926	23,291	0	0	0	0	0	0	0	0	0	0	86,736	0	406,445
1990	77,389	5,373	128,753	6,577	0	0	0	0	0	0	0	0	0	0	86,736	0	304,828
1991	69,736	180,189	56,331	13,944	0	0	5,869	0	0	0	0	0	0	0	86,736	0	412,805
1992	71,521	194,315	690	11,008	0	0	3,598	0	0	0	0	0	0	0	86,736	0	367,868
1993	213,099	241,104	43,555	59,099	50,897	0	54,936	0	27,803	0	0	0	0	64,852	64,488	0	819,833
1994	187,380	213,631	18,103	26,829	67	0	0	0	0	9,882	0	0	0	28,046	38,745	0	522,683
1995	256,234	248,113	65,360	144,230	136,516	0	91,721	0	40,366	23,822	45,284	0	0	60,476	103,429	11,850	1,227,401
1996	315,988	255,792	105,845	108,405	119,999	0	78,824	0	14,286	17,382	55,074	0	0	24,037	92,768	0	1,188,400
1997	288,746	280,471	123,771	130,336	123,333	0	62,841	0	23,271	14,977	45,600	0	0	27,212	134,320	52,848	1,307,726
1998	312,857	244,337	143,422	131,398	23,346	0	95,706	0	51,802	18,483	69,637	0	0	95,160	115,019	188,048	1,489,215
1999	214,847	180,856	71,974	46,274	58,082	0	33,938	0	839	6,915	21,343	0	0	17,891	77,220	0	730,179
2000	175,718	169,844	38,793	31,596	38,147	0	20,213	0	0	1,396	15,929	0	0	30,660	47,882	0	570,178
2001	130,052	188,404	23,762	14,050	4,631	0	3,177	0	2,179	0	0	0	0	0	32,686	0	398,941
2002	91,980	203,010	4,149	23,609	7,878	0	581	0	199	431	871	0	0	0	29,404	0	362,112
2003	164,112	206,448	15,893	14,088	31,451	0	12,306	0	0	1,045	0	0	0	0	38,307	0	483,650
2004	153,148	198,769	29,338	18,247	2,301	589	1,503	165	0	2,545	2,005	0	0	0	39,412	0	448,022
2005	236,776	228,885	73,215	62,146	60,019	0	141,022	1,442	1,942	39,702	102,111	21,548	23,125	77,127	72,865	0	1,141,925
2006	257,590	247,806	53,872	122,931	33,872	3,942	87,318	1,442	9,962	24,636	116,108	25,165	34,358	42,587	97,955	0	1,159,544
2007	135,525	189,169	1,049	10,483	7,752	2,746	0	0	0	13,099	17,809	7,507	0	4,568	47,914	0	437,621
2008	137,813	229,304	53,824	22,700	0	544	0	0	0	0	0	0	0	0	34,549	0	478,734
2009	139,246	238,103	31,342	28,635	115	712	109	0	0	0	0	0	0	0	18,418	0	456,680
2010	196,135	241,876	70,315	68,944	60,087	820	10,816	776	1,775	1,165	0	0	0	13,748	66,441	0	732,898
2011	298,003	266,684	75,784	160,243	90,048	1,752	101,209	787	20,479	26,223	121,857	23,951	47,187	84,876	98,416	0	1,417,499
2012	148,513	241,953	20,495	55,303	409	1,001	10,998	0	0	7,594	20,162	582	0	7,871	45,173	0	560,054
2013	45,141	153,474	706	25,758	0	247	0	0	0	3,529	0	0	0	155	0	0	229,010
2014	26,041	122,044	0	8,356	0	283	0	0	0	0	0	0	0	0	0	0	156,724
2015	16,883	104,841	0	0	0	195	0	0	0	0	0	0	0	0	0	0	121,919

TABLE 3 - Summary of data input for surface water diversions for various purposes applied to C2VSimFG-Kern Historical Simulation

Water Year	Metro Bakersfield Urban Surface Water Supply	Metro Bakersfield Wastewater Land Disposal	Kern Nat'l Wildlife Refuge SWP Supply	Kern Nat'l Wildlife Refuge Surface Water Inflows from Poso Creek	TOTAL
	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft
1986	24,416	29,235	0	1,611	30,846
1987	25,298	30,832	0	247	31,079
1988	28,563	32,304	0	65	32,369
1989	27,818	33,785	0	136	33,921
1990	27,426	35,756	0	0	35,756
1991	20,959	36,837	0	123	36,960
1992	25,867	37,801	0	10	37,811
1993	30,261	38,774	120	852	39,746
1994	29,111	39,684	16,861	95	56,640
1995	27,248	40,709	12,097	896	53,702
1996	28,261	41,667	12,776	4,536	58,979
1997	19,216	40,832	7,964	13,811	62,607
1998	11,036	40,355	12,268	90,926	143,549
1999	26,996	39,629	14,827	1,876	56,332
2000	30,963	41,497	7,489	58	49,044
2001	28,611	41,559	13,179	0	54,738
2002	30,185	42,043	19,299	1	61,343
2003	32,206	42,962	20,945	22	63,929
2004	56,861	43,735	23,461	0	67,196
2005	43,727	44,021	23,310	9,025	76,356
2006	40,294	44,614	21,829	11,734	78,177
2007	55,334	44,643	21,607	2,440	68,690
2008	56,335	44,936	17,728	18	62,682
2009	58,834	45,416	19,494	9	64,919
2010	61,314	45,527	21,808	536	67,871
2011	64,388	46,429	26,599	7,691	80,719
2012	68,013	46,666	18,451	9	65,126
2013	66,998	45,513	23,701	0	69,214
2014	55,692	44,645	13,877	0	58,522
2015	44,981	43,256	9,203	0	52,459

TABLE 4 - Summary of data input for surface water diversion to groundwater banking and managed aquifer recharge for different facilities applied to C2VSimFG-Kern Historical Simulation

Water	Arvin-Edison WSD	Berrenda Mass Brainst	Buena Vista	Causala M/D	Kern Delta	Kern River GSA	North Kern WSD	Rosedale-Rio Bravo WSD	Semi-tropic WSD	West Kern WD	City of Bakers-field	Pioneer	Kern Water	TOTAL
Year	Acre-ft	Mesa Project Acre-ft	WSD Acre-ft	Cawelo WD Acre-ft	WD Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Project Acre-ft	Bank Acre-ft	TOTAL Acre-ft
1986	63,708	Acre-it 0	28,948	ACTE-11 0	ACTE-IL	107,936	115,498	103,384	ACTE-11	25,559		Acre-it		609,894
1987	18,800	0	7,487	0	0	62,084	47,206	47,731	0	23,249		0		257,142
1988	1,434	0	227	0	0	49,926	11,171	19,026	0	24,594	18,294	0	·	124,672
1989	3,358	0	3,532	0	0	58,640	804	27,984	0	28,604				137,070
1990	4,660	0	3,332	0	0	35,825	0	11,530	0	22,368	,	0		83,947
1991	2,404	0	0	0	0	54,577	1,224	5,931	0	14,754	19,768	0		98,658
1992	3,886	0	799	0	0	48,497	10,236	11,880	0	10,368	23,482	0		109,148
1993	99,714	0	19,229	0	0	83,472	25,220	88,065	0	24,420		0		466,664
1994	28,968	0	11,485	0	0	60,217	12,333	26,016	0	29,233	67,418	0		235,670
1995	87,910	17,808	49,623	0	0	98,122	149,948	119,339	0	28,201	143,019			877,709
1996	69,472	23,398	18,253	0	0	102,034	103,277	116,704	0	37,351	75,468	51,330	· · · ·	829,642
1997	58,069	9.801	38,015	7,524	0	103,578	102,050	108,711	0	18,555	53,470			670,399
1998	97,098	9,493	63,868	9,136	0	90,233	196,469	136,250	0	23,133	149,426	57,357	236,320	1,068,783
1999	81,398	11,489	8,904	6,110	0	83,858	69,080	78,941	0	29,249		21,884		549,092
2000	95,786	1,027	238	3,446	0	74,926	163	44,501	0	23,082	51,444	22,032	36,551	353,196
2001	38,774	0	99	2,683	0	59,411	0	5,653	0	8,747	22,005	1,253	10,029	148,654
2002	4,437	0	1,065	2,596	0	63,427	0	1,404	0	19,467	11,840	0	13,439	117,675
2003	44,030	0	424	3,314	4,177	73,362	367	27,154	0	17,766	20,133	0	5,369	196,096
2004	7,160	3,172	0	5,172	1,380	65,335	3,039	9,626	0	3,513	22,480	10,768	53,070	184,715
2005	100,311	19,663	33,153	7,882	7,274	98,474	74,241	151,136	0	29,552	164,991	93,466	308,092	1,088,235
2006	90,722	28,268	22,966	4,219	1,224	95,246	138,698	174,051	0	14,385	113,166	64,388	308,877	1,056,210
2007	20,012	15,292	0	5,241	488	51,678	80,467	20,348	0	4,209	31,534	19,386	70,553	319,208
2008	4,409	0	0	5,069	0	53,118	0	0	92	0	8,787	0	0	71,475
2009	34,000	0	3,000	5,239	0	48,217	2,596	2,354	0	5,075	18,730	0	0	119,211
2010	101,606	323	19,127	6,252	11,038	97,829	18,377	76,399	0	10,419	40,113	0	8,272	389,755
2011	99,559	19,373	73,880	29,630	46,690	158,694	147,576	227,775	17,276	24,880	144,869	132,320	397,029	1,519,551
2012	27,799	20,055	0	7,162	54,573	83,460	60,613	88,019	1,865	30,166	37,046	27,293	83,991	522,042
2013	3,947	5,750	0	9,345	14,726	46,298	5,078	5,622	22	2,500	11,518	0	0	104,806
2014	3,518	0	0	2,102	0	46,654	0	0	0	0	9,176	0	0	61,450
2015	401	0	0	5,893	0	40,368	4,768	0	22	0	18,840	0	0	70,292

TABLE 5 - Summary of data input for groundwater recovery pumping for local water supply by water district applied to C2VSimFG-Kern Historical Simulation

			•										CU 10 CZ 15111				
Water	Arvin-Edison	Berrenda	Buena Vista	City of			Kern Delta	Kern Water	Lost Hills	North Kern		Pioneer	Rosedale Rio	Semi-tropic	West Kern	Wheeler Ridge -	
Year	WSD	Mesa Project	WSD	Bakers-field	Cawelo WD	KCWA ID4	WD	Bank	UD	WSD	Olcese WD	Project	Brave WSD	WSD	WD	Maricopa WSD	TOTAL
	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft
1986	1,955	0	0	0	0	0	0	0	274	0	101	0	0	0	12,073	0	14,403
1987	21,660	0	0	0	0	0	0	0	278	41,963	101	0	0	0	12,195	0	76,196
1988	27,486	0	960	0	0	0	0	0	281	67,609	138	0	0	0	12,316	0	108,790
1989	38,231	0	2,507	0	0	0	0	0	285	79,674	132	0	0	0	12,438	0	133,266
1990	78,769	0	2,605	0	957	0	0	0	292	73,635	132	0	0	0	12,560	0	168,949
1991	82,566	0	2,511	0	4,666	0	0	0	307	80,432	132	0	0	0	12,546	0	183,160
1992	94,444	0	4,146	0	7,124	0	0	0	306	72,926	132	0	0	0	12,533	5,419	197,029
1993	21,035	0	222	0	3,469	0	0	0	308	3,950	66	0	0	0	12,530	150	41,730
1994	67,679	0	1,732	0	7,805	0	0	0	321	37,251	123	0	0	0	12,078	2,705	129,693
1995	14,191	0	73	0	4,628	0	0	0	322	4,176	66	0	0	0	11,638	0	35,094
1996	1,095	0	175	0	2,475	0	0	0	322	4,726	143	0	0	2,373	13,642	0	24,950
1997	0	0	0	0	2,406	0	0	0	322	4,261	112	0	0	5,824	13,962	0	26,887
1998	245	0	0	0	1,008	0	0	0	307	318	232	0	0	1,499	13,404	76	17,089
1999	915	0	0	0	2,099	0	0	0	333	773	105	0	0	1,241	14,692	2,806	22,963
2000	2,119	0	855	0	6,406	0	0	0	336	15,864	81	0	0	689	17,125	0	43,475
2001	100,492	19,482	6,115	13,950	8,533	0	0	86,404	350	61,988	103	52,034	0	0	15,714	6,507	371,673
2002	86,809	3,436	4,453	13,972	10,047	0	0	24,664	360	70,804	94	9,578	0	2,082	16,247	0	242,545
2003	30,906	0	1,619	3,211	5,484	1,892	0	53,591	364	21,811	56	16,181	0	2,828	17,733	24	155,699
2004	75,399	0	3,848	7,147	8,920	3,345	0	27,736	393	49,888	120	1,985	0	2,879	20,809	41	202,510
2005	25,104	589	430	0	3,563	0	0	21,553	400	6,121	111	12,951	0	2,145	20,843	0	93,809
2006	174	0	228	0	4,202	0	0	0	416	2,645	77	0	0	156	22,108	0	30,007
2007	101,515	23,022	5,858	10,000	11,039	6,220	0	167,291	419	88,841	149	54,150	2,302	0	23,107	0	493,914
2008	141,081	27,850	6,066	13,400	12,222	9,478	9,744	246,249	423	100,465	115	77,533	7,470	0	22,340	0	674,436
2009	128,043	29,745	5,315	9,086	742	5,582	15,117	166,703	389	111,798	144	78,033	6,001	449	21,629	0	578,777
2010	37,081	15,117	841	3,896	2,078	1,886	4,466	97,576	362	20,897	112	41,021	0	375	21,334	0	247,041
2011	445	0	290	0	146	0	0	0	378	683	115	0	0	500	20,801	1,037	24,395
2012	43,589	6,362	1,835	3,960	2,058	1,319	3,148	94,381	393	103,236	107	14,257	0	0	21,107	14,579	310,330
2013	123,971	1,379	4,261	5,571	20,994	2,252	19,809	171,627	373	146,543	118	41,743	14,231	0	19,494	16,518	588,883
2014	146,319	23,891	3,269	7,997	18,120	30,884	34,160	183,235	359	133,769	472	78,603	21,604	0	33,129	16,020	731,830
2015	123,618	26,298	1,267	3,516	24,146	38,294	32,918	154,687	358	118,342	109	56,634	17,237	0	20,344	13,857	631,624

TABLE 6 - Summary of data input for groundwater pumping for basin export by water district applied to C2VSimFG-Kern Historical Simulation

			аррион со о	Z V SIIIII G-KCIII				
Water Year	Arvin-Edison WSD to Aqueduct	DWR to Aqueduct	North Kern WSD to Friant-Kern Canal	Rosedale Rio Brave WSD to CVC	Semi-tropic WSD to Aqueduct	Wheeler Ridge - Maricopa WSD to Aqueduct	County of Kern to BVARA	TOTAL
	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft
1986	0	0	0	0	0	0	0	2,056
1987	0	0	0	0	0	0	673	63,724
1988	0	0	0	0	0	0	6,301	96,193
1989	0	0	0	0	0	0	5,879	120,544
1990	0	0	0	0	0	0	8,836	156,097
1991	0	0	0	0	0	0	22,114	170,307
1992	0	0	0	0	0	0	25,025	184,191
1993	0	0	0	0	0	0	7,521	28,892
1994	0	0	0	0	0	0		117,295
1995	0	2,319	0	0	0	0	4,748	23,134
1996	0	0	0	0	0	0	0	10,986
1997	0	0	0	0	0	0	0	12,603
1998	0	0	0	0	0	0	0	3,378
1999	0	0	0	0	0	0	0	7,938
2000	0	0	0	0	0	0	56	26,013
2001	0	0	0	0	1,457	638	10,024	355,608
2002	0	0	0	0	21,819	0	22,402	225,938
2003	12,380	0	0	0	0	0	9,886	137,602
2004	11,573	0	0	0	8,965	0	13,643	181,308
2005	13,939	0	0	0	19,103	0	6,071	72,567
2006	0	0	0		0	0	0	7,482
2007	7,609	0	7,276	0	6,282	0	10,437	470,388
2008	42,615	0	4,612	0	92,169	0	17,351	651,673
2009	43,080	0	5,880	0	86,194	7,243	7,786	556,758
2010	56,229	0	73	0	37,995	12,404	7,019	225,345
2011	16,065	0	0	0	0	0	369	3,217
2012	10,010	0	6,803	0	0	1,340	1,889	288,831
2013	15,111	0	7,471	12,116	5,610	3,815	9,786	569,016
2014	45,195	0	12,071	28,818	95,611	18,236	21,567	698,342
2015	67,142	0	9,752	26,314	89,453	26,943	23,330	610,923

TABLE 7 - Summary of population data input by urban zone applied to C2VSimFG-Kern Historical Simulation

		•		•							
Water Year	Urban Zone 97	Urban Zone 98	Urban Zone 99	Urban Zone 100	Urban Zone 102	Urban Zone 103	Urban Zone 104	Urban Zone 105	Urban Zone 106	Total	Annual Growth Rate
	Population	Population	Population	Population	Population	Population	Population	Population	Population	Population	percent
1985	18,266	4,545	54,766	199	11,589	1,845	15,756	443	229,085	336,493	
1986	18,506	4,565	56,021	184	11,631	1,868	16,127	443	245,095	354,441	5.3%
1987	18,747	4,586	57,277	170	11,673	1,892	16,498	443	261,105	372,389	5.1%
1988	18,987	4,607	58,532	155	11,715	1,915	16,869	442	277,114	390,337	4.8%
1989	19,227	4,627	59,788	141	11,758	1,939	17,240	442	293,124	408,285	4.6%
1990	19,467	4,648	61,043	126	11,800	1,962	17,611	442	309,134	426,233	4.4%
1991	19,808	4,662	64,110	132	12,190	2,023	17,570	475	316,532	437,502	2.6%
1992	20,150	4,676	67,178	138	12,581	2,084	17,528	507	323,930	448,771	2.6%
1993	20,491	4,690	70,245	144	12,971	2,145	17,487	540	331,328	460,041	2.5%
1994	20,832	4,704	73,313	150	13,362	2,206	17,445	572	338,726	471,310	2.4%
1995	21,174	4,718	76,380	156	13,752	2,268	17,404	605	346,124	482,579	2.4%
1996	21,515	4,732	79,447	161	14,142	2,329	17,363	637	353,522	493,848	2.3%
1997	21,856	4,746	82,515	167	14,533	2,390	17,321	670	360,920	505,117	2.3%
1998	22,197	4,760	85,582	173	14,923	2,451	17,280	702	368,318	516,387	2.2%
1999	22,539	4,774	88,650	179	15,314	2,512	17,238	735	375,716	527,656	2.2%
2000	22,880	4,788	91,717	185	15,704	2,573	17,197	767	383,114	538,925	2.1%
2001	23,154	4,887	94,141	193	16,313	2,601	17,609	742	395,409	555,047	3.0%
2002	23,429	4,985	96,564	200	16,922	2,628	18,020	717	407,703	571,169	2.9%
2003	23,703	5,084	98,988	208	17,532	2,656	18,432	692	419,998	587,291	2.8%
2004	23,977	5,182	101,412	215	18,141	2,683	18,844	667	432,292	603,413	2.7%
2005	24,252	5,281	103,836	223	18,750	2,711	19,256	643	444,587	619,536	2.7%
2006	24,526	5,379	106,259	230	19,359	2,738	19,667	618	456,882	635,658	2.6%
2007	24,800	5,478	108,683	238	19,968	2,766	20,079	593	469,176	651,780	2.5%
2008	25,074	5,576	111,107	245	20,578	2,793	20,491	568	481,471	667,902	2.5%
2009	25,349	5,675	113,530	253	21,187	2,821	20,902	543	493,765	684,024	2.4%
2010	25,623	5,773	115,954	260	21,796	2,848	21,314	518	506,060	700,146	2.4%
2011	25,815	5,802	117,403	261	21,959	2,862	21,474	519	512,386	708,482	1.2%
2012	26,009	5,831	118,871	261	22,124	2,877	21,635	521	518,791	716,919	1.2%
2013	26,204	5,860	120,357	262	22,290	2,891	21,797	522	525,275	725,458	1.2%
2014	26,400	5,889	121,861	263	22,457	2,905	21,961	523	531,841	734,102	1.2%
2015	26,598	5,919	123,385	263	22,626	2,920	22,125	525	538,489	742,850	1.2%

TABLE 8 - Summary of data input of per-capita water use by urban zone applied to C2VSimFG-Kern Historical simulation

	,	or didital impart	. Or per-capit		,	o uppiiou to			
Water Vear	Urban Zone 97	Urban Zone 98	Urban Zone 99	Urhan Zone 100	Urhan Zone 102	Urban Zone 103	Urhan 7one 101	Urhan Zone 105	Urhan Zone 106
vvater rear									
1985	gdpc 228	gdpc 196	gdpc 245	gdpc 159	gdpc 180	gdpc 159	gdpc 293	gdpc 159	gdpc 508
1985	228	196	245	159	180	159	293	159	
									480
1987	228	196	245	159	180	159	293	159	450
1988	228	196	245	159	180	159	293	159	439
1989	228	196	245	159	180	159	293	159	419
1990	228	196	245	159	180	159	293	159	438
1991	228	196	245	159	180	159	293	159	409
1992	228	196	245	159	180	159	293	159	417
1993	228	196	245	159	180	159	293	159	414
1994	228	196	245	159	180	159	293	159	421
1995	228	196	245	159	180	159	293	159	381
1996	228	196	245	159	180	159	293	159	401
1997	228	196	245	159	180	159	293	159	348
1998	228	196	245	159	180	159	293	159	304
1999	228	196	248	159	159	159	237	159	388
2000	228	196	248	159	159	159	237	159	367
2001	228	196	248	159	159	159	237	159	364
2002	228	196	248	159	159	159	237	159	362
2003	228	196	248	159	159	159	237	159	358
2004	228	196	248	159	159	159	237	159	386
2005	228	196	248	159	159	159	237	159	314
2006	228	196	248	159	159	159	237	159	338
2007	228	196	248	159	159	159	237	159	375
2008	228	196	248	159	159	159	237	159	367
2009	228	196	248	159	159	159	237	159	344
2010	228	196	248	159	159	159	237	159	328
2011	228	196	248	159	159	159	237	159	351
2012	228	196	248	159	159	159	237	159	378
2013	228	196	248	159	159	159	237	159	330
2014	228	196	248	159	159	159	237	159	314
2015	228	196	248	159	159	159	237	159	261

TABLE 9 - Summary of data input for crop evapotranspiration (ET) by crop type based on METRIC satellite data applied to C2VSimFG-Kern Historical Simulation

																applied t								
Water Year		Cotton	Sugar Beets		Dry Beans		Other Field Crops	Alfalfa	Pasture	Tomoto- Processed	Tomato- Fresh	Curcubits	Onions & Garlic	Potatoes	Other Truck	Almonds & Pistachios	Orchards	Citrus	Vineyards	Idle	Rice	Refuge	Urban	Native
Units	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr	in/yr
1985	30.0	31.6	34.6	35.4	30.8	28.0	27.9	38.9	35.8	28.8	27.3	24.9	28.7	27.6	29.3	31.6	29.7	36.5	25.0	27.4	35.8	31.6	28.1	27.5
1986	28.2	28.9	36.4	32.8	28.0	26.2	29.2	39.3	35.5	29.8	28.8	27.7	26.5	26.2	27.9	35.1	33.6	36.8	26.9	27.1	39.3	36.2	27.8	26.8
1987	33.8	35.2	39.5	33.3	31.0	26.3	31.4	44.5	33.2	34.2	28.3	27.2	31.3	30.9	31.2	41.4	37.1	43.4	32.1	30.6	40.7	32.2	32.3	33.0
1988	33.8	35.2	39.5	33.3	31.0	26.3	31.4	44.5	33.2	34.2	28.3	27.2	31.3	30.9	31.2	41.4	37.1	43.4	32.1	30.6	40.7	32.2	32.3	33.0
1989	33.8	35.2	39.5	33.3	31.0	26.3	31.4	44.5	33.2	34.2	28.3	27.2	31.3	30.9	31.2	41.4	37.1	43.4	32.1	30.6	40.7	32.2	32.3	33.0
1990	33.8	35.2	39.5	33.3	31.0	26.3	31.4	44.5	33.2	34.2	28.3	27.2	31.3	30.9	31.2	41.4	37.1	43.4	32.1	30.6	40.7	32.2	32.3	33.0
1991	30.0	31.6	34.6	35.4	30.8	28.0	27.9	38.9	35.8	28.8	27.3	24.9	28.7	27.6	29.3	31.6	29.7	36.5	25.0	27.4	35.8	31.6	28.1	27.5
1992	33.8	35.2	39.5	33.3	31.0	26.3	31.4	44.5	33.2	34.2	28.3	27.2	31.3	30.9	31.2	41.4	37.1	43.4	32.1	30.6	40.7	32.2	32.3	33.0
1993	28.2	28.9	36.4	32.8	28.0	26.2	29.2	39.3	35.5	29.8	28.8	27.7	26.5	26.2	27.9	35.1	33.6	36.8	26.9	27.1	39.3	36.2	27.8	26.8
1994	29.5	34.0	36.9	37.0	31.9	24.0	36.5	37.6	31.4	32.4	27.3	27.4	34.1	28.7	31.6	37.2	37.5	38.7	29.1	33.3	26.6	23.9	27.0	27.3
1995	30.1	32.4	35.8	34.4	30.7	26.6	30.7	36.6	32.6	29.4	29.0	28.1	33.1	27.4	30.2	35.8	35.5	35.8	28.7	32.2	31.6	36.3	27.5	29.6
1996	35.0	37.1	39.7	39.2	38.2	32.6	35.8	42.3	38.7	36.1	32.7	28.7	35.3	30.4	33.0	39.3	40.1	39.4	32.1	32.8	34.1	36.4	30.2	31.0
1997	31.3	35.5	39.1	37.7	33.9	29.3	37.2	43.5	36.0	33.2	28.1	28.8	29.7	28.8	30.1	33.7	34.0	38.1	26.1	30.6	34.1	34.0	28.1	31.1
1998	28.2	28.9	36.4	32.8	28.0	26.2	29.2	39.3	35.5	29.8	28.8	27.7	26.5	26.2	27.9	35.1	33.6	36.8	26.9	27.1	39.3	36.2	27.8	26.8
1999	30.0	31.6	34.6	35.4	30.8	28.0	27.9	38.9	35.8	28.8	27.3	24.9	28.7	27.6	29.3	31.6	29.7	36.5	25.0	27.4	35.8	31.6	28.1	27.5
2000	31.1	34.6	36.0	33.2	29.4	28.7	33.8	44.0	38.6	32.2	32.3	27.3	30.5	29.4	29.5	37.0	34.6	41.0	28.9	27.6	41.2	31.4	32.3	33.0
2001	31.9	33.4	36.3	32.0	29.3	27.2	32.1	44.5	33.8	30.2	29.9	26.5	28.8	28.1	28.8	39.9	36.0	40.7	29.7	28.0	41.7	30.8	30.5	31.6
2002	33.8	35.2	39.5	33.3	31.0	26.3	31.4	44.5	33.2	34.2	28.3	27.2	31.3	30.9	31.2	41.4	37.1	43.4	32.1	30.6	40.7	32.2	32.3	33.0
2003	33.0	35.5	35.6	33.2	33.5	28.0	31.7	42.9	30.6	31.0	26.2	27.8	29.7	27.2	28.4	39.6	32.8	38.8	30.4	29.7	37.0	32.1	28.5	30.4
2004	34.5	36.6	37.3	33.5	33.3	32.8	35.6	46.4	36.1	33.1	26.4	26.1	32.4	30.3	33.1	44.2	36.7	40.0	33.1	35.5	39.0	31.5	30.1	32.4
2005	31.8	35.4	40.6	30.5	31.8	27.8	33.0	40.7	32.3	28.4	23.7	26.8	29.6	28.4	28.0	35.1	30.2	34.8	28.0	29.6	37.3	34.1	28.2	30.0
2006	30.9	33.7	33.7	31.4	31.3	24.9	31.1	41.4	33.2	25.4	26.9	29.5	26.9	31.9	28.2	33.9	28.6	35.0	27.6	27.3	39.6	39.3	27.9	29.0
2007	34.3	36.5	33.9	36.1	31.6	28.9	35.3	44.1	35.3	29.4	24.4	26.7	29.1	27.8	32.5	34.5	29.6	37.6	29.6	29.7	38.0	34.0	27.7	31.5
2008	35.2	34.1	30.6	35.3	29.7	25.1	36.0	43.8	37.2	28.0	25.1	25.7	29.7	29.1	31.3	33.2	31.5	37.9	29.6	26.9	34.2	29.9	28.3	31.4
2009	35.3	34.1	25.1	34.2	32.4	32.6	33.9	42.2	30.9	26.5	24.4	24.9	27.1	29.3	29.6	34.5	31.9	37.8	30.4	28.9	35.8	30.5	27.9	32.0
2010	31.6	28.9	25.8	30.2	28.5	23.7	29.8	38.7	26.8	23.2	23.4	26.2	25.4	26.5	27.0	37.3	31.0	35.5	32.3	28.3	33.7	30.8	27.1	30.2
2011	30.1	28.2	23.9	28.3	27.0	21.8	29.6	36.0	25.1	22.6	27.0	24.4	25.5	25.8	25.2	36.2	32.0	33.6	30.9	26.6	38.1	33.6	26.9	32.7
2012	30.2	27.3	22.5	28.7	26.3	23.0	31.0	35.8	26.1	22.6	28.1	24.3	25.8	26.1	26.1	36.6	31.7	33.9	31.2	26.0	38.4	33.8	27.5	33.0
2013	35.7	35.5	28.0	34.7	32.7	33.2	36.4	44.0	33.1	27.2	30.7	29.1	32.4	30.1	30.1	43.6	35.5	39.9	38.6	29.5	36.3	36.8	29.1	35.2
2014	33.9	33.6	25.2	32.9	28.4	28.8	36.0	40.4	28.8	25.2	28.2	28.3	28.6	28.7	29.8	42.5	33.0	37.8	34.1	28.5	36.0	35.8	29.2	34.2
2015	33.4	34.2	28.3	36.3	31.9	33.9	37.0	43.2	29.0	24.0	26.4	27.1	34.8	27.5	30.7	38.8	31.8	38.3	31.0	28.1	29.6	32.2	27.9	32.4
Average	32.4	33.4	33.0	33.4	30.9	27.8	32.9	41.5	33.0	28.8	27.5	26.9	29.3	28.5	29.5	37.3	33.3	37.7	30.3	29.1	37.1	33.6	28.8	31.3
BETA	21.6	39.8	39.2	32.3	31.1	34.9	36.4	48.0	50.4	31.6	40.6	32.0	36.5	35.4	31.6	48.1	45.9	42.5	42.0	57.1	50.2	76.1	52.0	57.1
Difference	10.8	-6.4	-6.3	1.1	-0.2	-7.2	-3.5	-6.5	-17.4	-2.8	-13.0	-5.0	-7.2	-6.9	-2.1	-10.9	-12.6	-4.8	-11.7	-28.0	-13.1	-42.6	-23.2	-25.8

TABLE 10 - Summary of C2VSimFG-Beta modifications in the Kern County Revision applied to C2VSimFG-Kern by IWFM model input file

File Name	Change to Model Input File
C2VSimFG.ii	
*	Change simulation starting time to 09/30/1985_24:00
C2VSimFG_U	
*	Replaced initial condition values with more representative values for revised starting
C2VSimFG_S	SWatersheds.dat
*	Modified parameters to improve stream discharge match to historical values
	Groundwater1985.dat
*	Added hydrologic flow barrier at White Wolf Fault
*	Set Corcoran Clay thickness to 0 ft in areas where it is not present
	New 10/1/1985 initial condition
*	Modified hydraulic conductivity and specific storage in Layer 1 in the Kern Water Bank
*	Kern County observation wells
C2VSimFG_I	ElemPump.dat
*	FRACSK and DSTSK modified for Kern County elements with limited pumping
C2VSimFG_\	WellSpec.dat
*	Added Kern County groundwater water bank recovery wells
*	Added Kern County In-District and Urban wells
	PumpRates.dat
*	Added Kern County groundwater water bank recovery pumping
*	Added Kern County In-District and Urban pumping
C2VSimFG_S	StreamInflow.dat
*	Exteneded Poso Creek inflow through WY2015
C2VSimFG_I	DiverionSpec.dat
*	Removed all Kern County diversions and renumbered remaining diversions to 1-371
*	Added Kern County diersions 372-484
C2VSimFG_I	Diverions.dat
*	Removed all Kern County diversions and renumbered remaining diversions to 1-371
*	Added Kern County diersions 372-484
*	Updated diversion data for all diversions to Kern County
C2VSimFG_I	BypassSpecs.dat
*	Removed bypass #17
C2VSimFG_I	RootZone.dat
*	Native return flow is sent to either nearby stream nodes as runoff or out-of-model as ET
_	rrPeriod.dat
	Adjusted Kern County irrigation periods
	ReturnFlowFrac.dat
	Modified Kern County Ag return flow fraction
C2VSimFG_I	
	Added zone 106 for Metro Bakersfield and adjusted other Kern County zone areas
*	Applied estimated September 1985 initial condition

TABLE 10 - Summary of C2VSimFG-Beta modifications in the Kern County Revision applied to C2VSimFG-Kern by IWFM model input file

File Name	Change to Model Input File								
C2VSimFG_I	2VSimFG_Urban_Area.dat								
*	Changed Kern County oil fields from urban to native vegetation								
C2VSimFG_U	Urban_PerCapWaterUse.dat								
*	Updated population for Kern County Urban Zones based on 1990, 2000, 2010 Census								
*	Developed demands from historical data and water management plans								
C2VSimFG_U	Urban_Population.dat								
*	Updated population for Kern County Urban Zones based on 1990, 2000, 2010 Census								
C2VSimFG_U	Urban_WaterUseSpecs.dat								
*	Set fractions for SRs 19-21 based on local info								
C2VSimFG_I	NonPondedCrop.dat								
*	Return flow = 0 for Kern County								
C2VSimFG_I	NonPondedCrop_Area.dat								
*	Revided crop distributions to match historical distribution								
C2VSimFG_I	PondedCrop_Area.dat								
*	Modified distribution of rice to be limited to areas in northwest Kern County with								
C2VSimFG_I	NativeVeg_Area.dat								
*	Rebalanced native veg distribution after redistribution of non-ponded crop area to								

Table 11A - Historical Groundwater Budget for the Kern County Subbasin for Water Years 1995 to 2014 based on the C2VSimFG-Kern Historical Simulation

Water Year Units	Deep Percolation Acre-ft		Net GW/SW Interactions Acre-ft	GW Pumping Acre-ft	Small Watershed	Subsurface Flow with Adjacent GW Basins Acre-ft	Change in Groundwater Storage Acre-ft
1995			185,777	-946,782	122,287	-75,299	
1995	,		,	,			
1996	,-	926,537	106,692	-1,247,471	41,190	,	,
	,	771,510	126,405	-1,068,169	50,548		
1998 1999		1,097,180	121,413	-884,593	155,312	-87,515	, ,
	,	633,676	39,704	-1,109,310	32,155	-85,211	
2000	- ,	,	91,454	-1,375,733	25,956		
2001	551,880		66,647	-1,839,000	24,633	-81,896	, ,
2002	,	202,687	76,147	-1,760,186	· · · · · · · · · · · · · · · · · · ·	-83,943	
2003	<i>'</i>	297,019	118,149	-1,492,816	34,003	-85,638	·
2004	· · · · · · · · · · · · · · · · · · ·	284,862	83,294	-1,860,344	27,959	-89,250	-1,065,153
2005	799,614	1,147,287	132,785	-1,108,382	93,557	-89,912	974,946
2006	839,390	1,125,277	44,657	-1,149,877	40,846	-96,591	803,702
2007	560,860	403,611	26,260	-2,099,953	17,882	-91,566	-1,182,908
2008	463,721	146,763	78,841	-2,341,780	36,058	-86,260	-1,702,659
2009	485,234	186,548	73,848	-2,206,377	21,586	-85,764	-1,524,923
2010	599,434	467,683	141,715	-1,470,205	58,145	-94,664	-297,892
2011	1,073,963	1,530,123	259,404	-984,968	118,303	-94,981	1,901,842
2012	713,826	580,590	88,581	-1,583,369	19,020	-93,041	-274,395
2013	538,356	156,704	59,483	-2,447,479	19,043	-83,619	-1,757,511
2014	447,782	84,456	50,857	-2,830,674	17,832	-81,081	-2,310,831
Total	13,387,959	11,671,966	1,972,113	-31,807,470	975,198	-1,742,039	-5,542,280
Average	669,398	583,598	98,606	-1,590,373	48,760	-87,102	-277,114

Table 11B - Current Groundwater Budget for the Kern County Subbasin for Water Year 2015 based on the C2VSimFG-Kern Historical Simulation

Water Year		Deep	- J	Net GW/SW Interactions		Subsurface Flow within	Adjacent GW	Change in Groundwater Storage
Units		Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft
2	2015	429,983	89,744	46,344	-2,740,237	0	-51,201	-2,225,366

NOTES:	N	O	Т	E	S	:
--------	---	---	---	---	---	---

Deep Percolation	Precipitation and applied water that reaches the groundwater after simulated transport across the
Deep refcolation	unsaturated zone
Managed Recharge and Canal	Combined groundwater recharge from managed aquifer recharge operations, groundwater
Seepage	banking, and seepage from canals and other conveyance
Net GW/SW Interactions	Net volumetric exchange of surface water and groundwater from streams: Positive represents a net
Net GW/SW Interactions	groundwater recharge, and negative represents a net groundwater discharge to the stream
CM/ Dumming	Total groundwater pumping by wells. Groundwater banking recovery pumping is specified input
GW Pumping	whereas agricultural and municipal pumping is calculated by C2VSim based on demand
Subsurface Flow within GW Basin	Net subsurface groundwater flow into a neighboring water district or area within the Kern County
Subsurface Flow within GW basin	Subbasin: negative is a net flow out of the district and positive is a net flow into the district
Subsurface Flow with Adjacent	Net subsurface groundwater flow from the Kern County Subbasin with an adjoining groundwater
GW Basins	basin: negative is a net flow out of the Basin and positive is a net flow into the Basin
	Sum of the inflow components (positive numbers) plus the outflow components (negative
Change in Groundwater Storage	numbers): positive is an increase in storage typified by a rise in GW levels whereas a negative is a
	decrease in storage typified by a decline in GW levels

TABLE 12: Estimated sustainable yield for Kern County Subbasin for WY1995 to WY2014

Base Period based on C2VSimFG-Kern Historical Simulation

Water Year Units	Total Average Annual Volume Acre-ft	Acre-ft	Agricultural Average Annual Volume per Ag Acre ft/acre	Urban Average Annual Volume Acre-ft
	Sustainable Yield f	rom Groundwater F	umping	
Groundwater Pumping	1,590,373	1,239,931	1.59	176,146
Percentage of Pumping		78%		11%
Change in Groundwater in Storage	-277,114	-216,051	-0.28	-30,692
Percentage of Pumping		-17%		-17%
Sustainable Yield	1,313,259	1,023,880	1.31	145,453
Average Annual Difference	-277,114	-216,051	-0.28	-30,693
Percent Difference	-21%	-21%	-21%	-21%
	Sutainable Yield fro	om Basin Recharge	and Outflow	
Groundwater Recharge	1,400,362	1,091,789	1.40	155,101
Subsurface Outflow	-87,102	-67,909	-0.09	-9,647
Sustainable Yield	1,313,260	1,023,880	1.31	145,453
Average Annual Difference	-277,114	-216,051	0	-30,692
Percent Difference	0	0	0	0

NOTES:

Sustainable Yield from GroundwaterApproach assumes that adjusting total groundwater pumping by the changePumpingin storage provides an reasonable approximation of the Basin SustainableSutainable Yield from Basin RechargeApproach assumes that the Basin Sustainable Yield can be reasonablyand Outflowapproximated by adding up the different recharge components and non-

TABLE 13: Estimate of potential native yield for Kern County Subbasin for WY1995 to WY2014 based on C2VSimFG-Kern Historical Simulation

	Ag	Precipitation Recha	rge	Other A	Area Precipitation Re	echarge	Sn	nall Watershed Inflo	ows	
	•	Precipitation to ET Demand		Precipitation in Other Areas	Precipitation to ET		Small Watershed Subsurface Inflow		Small Watershed Recharge to Groundwater	Native Yield
Units	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft
1995	702,794	521,974	180,820	1,108,386	824,558	283,828	17,540	104,746	122,287	586,934
1996	381,496	351,540	29,956	526,809	422,541	104,268	17,512	23,679	41,190	175,414
1997	482,117	356,589	125,528	637,266	487,128	150,138	17,524	33,024	50,548	326,214
1998	966,485	663,632	302,853	1,492,576	1,024,918	467,658	17,840	137,472	155,312	925,823
1999	433,456	400,669	32,786	589,454	464,061	125,393	17,812	14,343	32,155	190,334
2000	384,158	357,496	26,661	476,308	398,994	77,315	17,757	8,200	25,956	129,933
2001	431,757	353,840	77,917	579,440	488,081	91,358	17,722	6,911	24,633	193,908
2002	255,111	227,877	27,234	382,463	317,069	65,394	17,679	1,203	18,882	111,510
2003	400,953	331,300	69,653	599,314	506,451	92,863	17,683	16,320	34,003	196,519
2004	301,023	275,258	25,765	422,514	339,652	82,862	17,661	10,298	27,959	136,586
2005	653,833	486,132	167,701	964,382	785,465	178,917	17,808	75,750	93,557	440,175
2006	499,756	447,319	52,437	657,647	546,950	110,697	17,783	23,063	40,846	203,981
2007	216,658	227,752	-11,095	292,814	241,483	51,331	17,725	157	17,882	58,119
2008	189,035	170,649	18,385	305,703	248,514	57,189	17,697	18,361	36,058	111,633
2009	268,010	221,348	46,663	405,160	336,116	69,044	17,674	3,913	21,586	137,293
2010	457,031	346,082	110,949	683,456	543,580	139,876	17,731	40,414	58,145	308,969
2011	649,878	441,717	208,161	1,023,701	692,781	330,919	17,932	100,370	118,303	657,382
2012	335,227	299,191	36,036	446,686	372,675	74,012	17,851	1,169	19,020	129,067
2013	214,951	203,005	11,946	303,560	246,644	56,916	17,787	1,257	19,043	87,906
2014	167,800	152,566	15,234	263,824	214,181	49,642	17,713	120	17,832	82,708
Total	8,391,529	6,835,938	1,555,591	12,161,462	9,501,842	2,659,620	354,429	620,769	975,198	5,190,409
Average	419,576	341,797	77,780	608,073	475,092	132,981	17,721	31,038	48,760	259,520
Use (ft/acre)	0.54	0.44	0.10	0.59	0.46	0.13	0.01	0.02	0.03	0.144

NOTES:

Simulation of Recharge	IWFM applies two processes to simulate the movement of water from the surface to the groundwater. The root zone simulates calculates the volume of water that will percolate below the root zone based on local soil properties. This water bases to the unsaturated zone that applies a 1-D vadose zone flow that simulates the rate that water will reach the groundwater based on subsurface properties and soil moisture content.
Percolation from Agricultural Area	Total volume of rainfall and applied water calculated to meet the total agricultural demand that percolates below the root zone in irrigated agricultural areas based on C2VSim simulation.
Percolation from Urban Area	Total volume of rainfall and applied water calculated to meet urban outdoor use that percolates below the root zone in urban areas based on C2VSim simulation.
Percolation from Native, Undeveloped or Fallow Areas	Total volume of rainfall and applied water that percolates below the root zone in native, undeveloped and fallow areas based on C2VSim simulation.
Percolation to Unsaturated Zone	Total volume of rainfall and applied water that percolates below the root zone from all areas based on C2VSim simulation.
GW Recharge from Unsaturated Zone	Volume of water going from the unsaturated zone to groundwater
GW Banking, Managed Recharge and Canal Seepage	Managed aquifer recharge and groundwater banking is simulated in C2VSim by applying a high recoverable loss factor for surface water diversions. For Kern County, these operations generally assumes that 88% to 94% of surface water deliveries physically recharge groundwater. This recharge is applied directly to the groundwater without passing through the unsaturated zone.
Net GW/SW Interactions	Net volumetric exchange between surface water in Kern River or Poso Creek and the groundwater. A positive number is surface water to groundwater, and a negative is groundwater discharge to the stream. This recharge is applied directly to the groundwater without passing through the unsaturated zone.
Total GW Recharge	Total volume to water reaching the groundwater as recharge

Table 14 - Hydrologic year correlation with relevant river indices for projected-future simulation period

for projected-future simulation period									
Project Year	Hydrology Year	Annual Kern River Index	San Joaquin River Index						
2021	2003	71	Below Normal						
2022	2004	56	Dry						
2023	2005	159	Wet						
2024	2006	147	Wet						
2025	2007	35	Critical						
2026	2008	71	Critical						
2027	2009	65	Below Normal						
2028	2010	126	Above Normal						
2029	2011	201	Wet						
2030	2012	45	Dry						
2031	2013	28	Critical						
2032	2014	24	Critical						
2033	1995	191	Wet						
2034	1996	136	Wet						
2035	1997	162	Wet						
2036	1998	236	Wet						
2037	1999	60	Above Normal						
2038	2000	66	Above Normal						
2039	2001	54	Dry						
2040	2002	58	Dry						
2041	2003	71	Below Normal						
2042	2004	56	Dry						
2043	2005	159	Wet						
2044	2006	147	Wet						
2045	2007	35	Critical						
2046	2008	71	Critical						
2047	2009	65	Below Normal						
2048	2010	126	Above Normal						
2049	2011	201	Wet						
2050	2012	45	Dry						
2051	2013	28	Critical						
2052	2014	24	Critical						
2053	1995	191	Wet						
2054	1996	136	Wet						
2055	1997	162	Wet						
2056	1998	236	Wet						
2057	1999	60	Above Normal						
2058	2000	66	Above Normal						
2059	2001	54	Dry						
2060	2002	58	Dry						
2061	2003	71	Below Normal						
2062	2004	56	Dry						
2063	2005	159	Wet						
2064	2006	147	Wet						
2065	2007	35	Critical						
2066	2008	71	Critical						
2067	2009	65	Below Normal						
2068	2010	126	Above Normal						
2069	2011	201	Wet						
2070	2012	45	Dry						
20/0	2012	40	ыу						

Table 16 - Projected Future Groundwater Budget for Kern County Subbasin under Baseline Conditions with NO SGMA Projects based on C2VSimFG-Kern Simulation

	C2VSimFG-Kern Simulation												
		Managed Recharge	Net Stream GW/SW	Net Small Watershed		Subsurface Flow with	Change in Groundwater						
	Deep Percolation	and Canal Seepage	Interaction	Recharge	GW Pumping	Adjacent GW Basins	Storage						
Units	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft						
		SU	JMMARY: WY2021 to	WY2070 Simulatation	on Period		T						
Total	31,276,668	27,591,218	6,284,636	2,457,805	-80,359,227	-3,647,996	-16,396,918						
Average	625,533	551,824	125,693	49,156	-1,607,185	-72,960	-327,938						
	SUMMARY: WY2021 to WY2040 Implementation Period												
Total	12,059,157	10,900,930	2,570,048	948,239	-31,618,403	-1,527,102	-6,667,151						
Average	602,958	545,046	128,502	47,412	-1,580,920	-76,355	-333,358						
Average	002,530			,		70,333	-333,330						
<u> </u>			MMARY: WY2041 to		l								
Total	19,217,510	16,690,288	3,714,588	1,509,566	-48,740,823	-2,120,894	-9,729,767						
Average	640,584	556,343	123,820	50,319	-1,624,694	-70,696	-324,326						
222.	101.0:=		nulation Results for \			22.5	252.25						
2021 2022	421,248 466,065	253,922 311,661	124,080 80,807	38,770 28,596	-1,605,058 -1,881,001	-83,845 -79,540	-850,883 -1,073,415						
2022	670,267	894,337	186,631	97,803	-1,881,001	-79,540	688,801						
2024	782,933	971,636	250,700	67,141	-1,004,008	-81,747	986,650						
2025	487,829	334,264	74,696	18,060	-1,956,094	-78,483	-1,119,730						
2026	440,342	154,936	78,551	36,473	-2,258,997	-69,511	-1,618,207						
2027 2028	522,430 569,509	255,426 496,227	73,629 141,957	21,942 35,496	-1,995,091 -1,490,383	-69,397 -70,383	-1,191,063 -317,575						
2029	1,025,597	1,528,921	110,823	119,558	-1,490,383	-80,187	1,812,744						
2030	692,430	587,522	63,468	19,157	-1,382,783	-79,634	-99,841						
2031	550,146	164,041	109,295	19,161	-2,366,434	-73,780	-1,597,574						
2032	459,496	111,528	66,581	18,134	-2,763,485	-65,268	-2,173,015						
2033	742,600	875,129	188,075	126,420	-1,059,514	-71,675	801,034						
2034 2035	617,059 691,055	786,754 727,363	201,477 294,732	42,156 52,652	-1,422,316 -1,120,121	-78,762 -82,586	146,370 563,094						
2036	848,018	1,151,100	175,108	103,683	-890,760	-84,597	1,302,552						
2037	617,636	539,499	102,463	32,114	-1,230,808	-82,549	-21,645						
2038	517,060	379,550	106,226	26,241	-1,390,747	-77,398	-439,070						
2039	495,144	190,829	65,868	25,370	-1,883,912	-72,405	-1,179,106						
2040 2041	442,293 466,980	186,285 254,002	74,884 124,912	19,311 34,980	-1,941,979 -1,621,935	-68,067 -66,834	-1,287,273 -807,894						
2041	519,154	311,722	81,095	28,467	-1,928,066	-66,378	-1,054,007						
2043	723,193	894,377	183,602	100,835	-1,131,893	-66,724	703,389						
2044	829,429	971,656	217,998	68,630	-1,055,212	-73,234	959,267						
2045	520,072	334,263	67,722	18,136	-2,005,971	-71,742	-1,137,519						
2046 2047	465,742 542,433	154,936 255,426	78,954 73,991	36,599 22,117	-2,308,492 -2,044,767	-64,094 -65,020	-1,636,355 -1,215,821						
2047	587,534	496,227	142,442	35,645	-1,539,937	-66,665	-344,754						
2049	1,038,285	1,528,924	111,871	121,871		-77,190							
2050	704,906	587,522	63,577	19,216	-1,430,758	-77,175	-132,713						
2051	567,160	164,041	109,977	19,218	-2,411,967	-71,447	-1,623,019						
2052 2053	480,958 756,460	111,528 875,129	66,775 189,903	18,007 127,393	-2,776,754 -1,105,182	-63,069 -69,591	-2,162,556 774,112						
2054	629,422	786,754	203,667	42,236		-76,937	118,546						
2055	697,412	727,363	297,238	52,738		-81,081	529,760						
2056	955,260	1,151,202	186,248	169,221	-887,932	-83,323	1,490,676						
2057	663,489	539,499	104,143	33,376		-81,579	-13,077						
2058 2059	543,714 516,904	379,550 190,829	107,428 65,982	26,454 25,586	-1,432,264 -1,924,204	-76,504 -71,122	-451,623 -1,196,025						
2059	461,832	186,285	75,033	19,353	-1,924,204	-71,122	-1,196,025						
2061	483,873	254,002	125,183	34,990	, ,	-65,509	-829,782						
2062	535,495	311,722	81,199	28,658	-1,968,451	-64,883	-1,076,261						
2063	747,374	894,377	185,862	103,344	-1,173,248	-65,287	692,423						
2064	797,596	971,656	227,478	42,092	-1,131,322	-72,135	835,365						
2065 2066	518,644 472,700	334,263 154,936	69,814 79,262	18,276 36,483	-2,046,917 -2,350,004	-70,907 -63,321	-1,176,825 -1,669,944						
2067	550,095	255,426	74,266	22,151	-2,330,004	-64,426	-1,249,703						
2068	654,126	496,227	142,653	60,396	-1,488,744	-65,173	-200,515						
2069	1,067,944	1,528,924	112,385	123,705	-984,856	-76,302	1,771,799						
2070	719,324	587,522	63,930	19,394	-1,475,294	-76,404	-161,529						

Table 17 - Projected Future Groundwater Budget for Kern County Subbasin under Baseline Conditions WITH SGMA Projects based on C2VSimFG-Kern Simulation

	C2VSimFG-Kern Simulation												
Water Year	Deep Percolation	Managed Recharge and Canal Seepage	Net GW/SW Interactions	Small Watershed	GW Pumping	Subsurface Flow with Adjacent GW Basins	Change in Groundwater Storage						
Units	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft						
	SUMMARY: WY2021 to WY2070 Simulatation Period												
Total	33,771,527	32,630,931	5,233,643	2,457,805	-69,157,708	-5,025,601	-89,422						
Average	675,431	652,619	104,673	49,156	-1,383,154	-100,512	-1,788						
	SUMMARY: WY2021 to WY2040 Implementation Period												
Total	13,100,548	12,612,730	2,239,160	948,239	-28,535,055	-1,719,340	-1,353,732						
Average	655,027	630,637	111,958	47,412	-1,426,753	-85,967	-67,687						
	SUMMARY: WY2041 to WY2070 Sustainability Period												
Total	20,670,979	20,018,200	2,994,483	1,509,566	-40,622,653	-3,306,261	1,264,311						
Average	689,033	667,273	99,816	50,319	-1,354,088	-110,209	42,144						
		Annual Sir	nulation Results for V	NV2021 to WV2070 S	imulation Period								
2021	430,153	302,373	123,650	38,770	-1,594,606	-83,189	-782,849						
2022	475,303	349,553	80,614	28,596	-1,862,120	-78,565	-1,006,617						
2023 2024	770,374 855,058	1,002,929 1,086,448	168,647 198,849	97,803 67,141	-1,009,264 -944,665	-78,404 -84,319	952,085 1,178,512						
2024	503,643	350,298	70,663	18,060	-1,861,303	-84,319	-1,000,565						
2026	440,243	214,542	77,894	36,473	-2,187,564	-73,190	-1,491,603						
2027 2028	518,989 578,749	316,584 623,230	73,092 137,529	21,942 35,496	-1,919,158 -1,407,567	-73,183 -75,335	-1,061,733 -107,901						
2029	1,194,895	1,696,947	83,255	119,558	-744,743	-87,273	2,262,638						
2030	750,668	608,048	58,365	19,157	-1,257,759	-87,531	90,947						
2031 2032	555,404 453,293	180,833 125,476	107,613 66,634	19,161 18,134	-2,187,295 -2,567,449	-83,584 -76,460	-1,407,869 -1,980,378						
2033	824,902	1,059,059	172,274	126,420	-840,738	-84,135	1,257,782						
2034	653,828	917,135	178,991	42,156	-1,197,621	-93,181	501,309						
2035 2036	827,370 1,116,969	931,556 1,381,739	238,868 113,563	52,652 103,683	-872,560 -633,072	-98,679 -102,650	1,079,205 1,980,231						
2037	725,584	594,384	63,749	32,114	-1,023,020	-100,141	292,669						
2038	511,919	433,966	84,887	26,241	-1,154,051	-95,834	-192,873						
2039 2040	489,540 423,665	224,450 213,184	65,153 74,871	25,370 19,311	-1,627,860 -1,642,642	-92,035 -89,729	-915,382 -1,001,340						
2041	445,485	305,376	122,807	34,980	-1,354,885	-89,185	-535,423						
2042	498,858	354,364	80,832	28,467	-1,639,112	-89,772	-766,363						
2043 2044	812,155 892,628	1,090,304 1,153,766	140,266 138,151	100,835 68,630	-882,848 -836,920	-92,437 -100,949	1,168,274 1,315,306						
2045	524,833	355,672	49,525	18,136	-1,730,147	-100,070	-882,051						
2046 2047	454,216 532,454	218,616 320,562	78,021 73,425	36,599 22,117	-2,055,875 -1,809,154	-92,126 -93,438	-1,360,549 -954,033						
2047	593,653	668,774	137,874	35,645	-1,809,134	-97,255	14,505						
2049	1,234,198	1,750,812	79,492	121,871	-710,054	-110,080	2,366,239						
2050 2051	768,780 578,825	619,092 192,400	54,500 107,098	19,216 19,218	-1,197,582 -2,110,155	-110,438 -106,461	153,567 -1,319,074						
2051	479,637	135,929	66,695	18,007	-2,470,952	-99,536	-1,870,221						
2053	850,038	1,095,469	170,484	127,393	-813,603	-107,867	1,321,915						
2054 2055	682,383 858,469	948,274 966,141	168,655 223,989	42,236 52,738	-1,143,633 -849,900	-117,748 -123,451	580,168 1,127,986						
2056	1,291,577	1,415,721	105,108	169,221	-638,704	-126,824	2,216,098						
2057	807,949	600,599	52,465	33,376	-1,027,113	-123,865	343,411						
2058 2059	541,774 503,264	439,164 229,194	78,391 64,724	26,454 25,586	-1,146,168 -1,627,673	-119,115 -114,273	-179,499 -919,179						
2060	435,869	217,320	75,042	19,353	-1,597,610	-111,590	-961,617						
2061	449,783	308,906		34,990	-1,363,117	-110,530	-557,207						
2062 2063	501,922 820,754	357,723 1,111,099	80,757 135,039	28,658 103,344	-1,643,414 -898,437	-110,538 -113,406	-784,892 1,158,393						
2064	871,279	1,174,447	124,818	42,092	-868,913	-122,551	1,221,172						
2065	511,277	358,753	43,942	18,276	-1,750,481	-120,972	-939,204 1 308 433						
2066 2067	454,845 531,138	222,078 323,961	77,969 73,264	36,483 22,151	-2,077,330 -1,832,363	-112,479 -113,339	-1,398,433 -995,189						
2068	672,372	689,792	138,150	60,396	-1,265,870	-116,258	178,583						
2069 2070	1,286,647	1,771,462	77,455 52 784	123,705 19 394	-733,283 -1 223 170	-129,909 -129,799	2,396,076 125,553						
2070	783,917	622,428	52,784	19,394	-1,223,170	-129,799	125,553						

Table 18 - Projected Future Groundwater Budget for Kern County Subbasin under 2030 Climate Conditions with NO SGMA Projects based on C2VSimFG-Kern Simulation

			on C2VSimF	G-Kern Simulation	l							
		Managed Recharge	Net GW/SW	Small Watershed		Subsurface Flow with	Change in Groundwater					
Water Year Units	Deep Percolation Acre-ft	and Canal Seepage Acre-ft	Interactions Acre-ft	Inflow Acre-ft	GW Pumping Acre-ft	Adjacent GW Basins Acre-ft	Storage Acre-ft					
05	Acre it	7101011	71010 10	riore re	7101010	Tiere re	71010110					
		SL	JMMARY: WY2021 to	WY2070 Simulatatio	on Period							
Total	30,885,159	30,404,998	6,083,382	2,517,393	-85,792,996	-3,318,618	-19,220,714					
					l		-384,414					
werage 617,703 608,100 121,668 50,348 -1,715,860 -66,372 - 384,4 : SUMMARY: WY2021 to WY2040 Implementation Period												
	T				ı		I					
Total	11,956,360	12,006,382	2,488,942	967,011	-33,772,959	-1,439,420	-7,793,706					
Average	597,818	600,319	124,447	48,351	-1,688,648	-71,971	-389,685					
	SUMMARY: WY2041 to WY2070 Sustainability Period											
Total	18,928,799	18,398,617	3,594,440	1,550,382	-52,020,037	-1,879,198	-11,427,008					
Average	630,960	613,287	119,815	51,679	-1,734,001	-62,640	-380,900					
20-	100.00	1	nulation Results for N	1		00.15:	200 07:					
2021 2022	·	264,773 352,708	147,393 97,994	42,134 31,229	-1,686,375 -1,966,104	-82,161 -77,718	-892,031 -1,075,519					
2022		968,807	192,300	100,122	-1,194,263	-75,163	662,531					
2024	· ·	1,015,022	177,313	64,551	-1,153,552	-78,823	748,944					
2025		327,176		18,068	-2,002,002	-75,206	-1,212,569					
2026 2027	,	213,524 246,268	132,483 115,977	37,800	-2,325,127 -2,151,549	-67,041	-1,565,234 -1,322,507					
2027		566,005	191,408	23,732 39,445	-2,151,549	-65,434 -65,956	-1,322,507					
2029		1,901,727	112,842	122,295	-1,104,305	-76,600	2,174,607					
2030		532,639	51,185	19,641	-1,476,524	-74,857	-394,243					
2031	521,194	199,452	76,829	18,143	-2,339,207	-68,717	-1,592,305					
2032 2033	,	143,631 915,198	46,557 182,822	17,968 122,210	-2,788,464 -1,190,116	-60,558 -67,058	-2,187,167 706,686					
2034		872,000	147,377	45,764	-1,543,359	-73,439	63,619					
2035		843,258	281,587	55,297	-1,297,450	-77,197	542,029					
2036		1,264,065	123,884	102,926	-1,044,324	-79,069	1,231,416					
2037 2038	542,139 507,189	510,531 428,732	72,919 81,591	32,384 27,413	-1,342,279 -1,503,202	-75,848 -70,781	-260,154 -529,059					
2038	· ·	213,280	87,387	27,413	-1,503,202	-65,709	-1,273,748					
2040		227,586	101,273	19,804	-1,995,626	-62,086	-1,270,964					
2041	462,417	263,946	147,623	39,151	-1,702,404	-60,765	-850,032					
2042	532,326	354,460	98,221	31,228	-2,012,621	-59,960	-1,056,345					
2043 2044		967,381 1,015,346	179,212 117,742	103,193 65,724	-1,243,088 -1,204,632	-59,869 -65,643	664,119 694,939					
2045	,	326,770	51,863	18,138	-2,051,621	-63,896	-1,241,282					
2046	465,642	213,337	132,843	37,870	-2,374,509	-57,074	-1,581,891					
2047	526,192	246,482	116,132	23,946	-2,201,023	-56,606	-1,344,877					
2048 2049	4 0 4 0 6 0 =	564,936 1 904 385	191,656 99,805	39,636	-1,700,745 -1,152,654	-57,895 -69,447	-377,449 2,125,726					
2050		1,904,385 533,577	47,140	124,949	-1,524,426	-68,362	-431,617					
2051	531,733	199,452	76,920	18,193	-2,385,216	-62,565	-1,621,483					
2052		139,904	46,651	17,931	-2,807,543	-54,827	-2,188,030					
2053 2054		916,702 870,588	183,503 145,806	123,682 45,880	-1,235,658 -1,587,472	-61,582 -68,329	675,628 24,946					
2054	·	843,485	279,382	55,392	-1,341,090	-72,519	501,167					
2056	·	1,263,249	134,078	169,164	-1,037,331	-74,710	1,408,888					
2057	579,927	508,121	73,014	33,640	-1,384,414	-71,487	-261,199					
2058		431,547	81,726	27,628	-1,544,662	-66,368	-537,727					
2059 2060		214,669 228,154	87,386 101,178	26,299 19,792	-2,057,978 -1,984,645	-61,126 -57,872	-1,286,930 -1,237,094					
2061		264,126	147,695	39,158	-1,742,970	-56,708	-869,739					
2062		353,554	98,263	31,426	-2,052,889	-55,984	-1,078,775					
2063	·	969,075	181,599	104,939	-1,284,313	-56,141	655,606					
2064 2065		1,013,851 327,088	124,774 54,630	41,649 18,289	-1,277,235 -2,092,701	-62,203 -60,730	576,518 -1,275,076					
2066		213,074	132,845	37,782	-2,406,519	-57,164	-1,273,076					
2067	537,374	246,454	116,277	23,923	-2,231,035	-58,641	-1,365,648					
2068	· ·	565,258		65,542	-1,647,974	-59,014	-223,263					
2069		1,903,367	104,892	126,664	-1,191,285	-71,013 -70,699	2,126,821					
2070	578,235	536,275	48,924	19,883	-1,559,383	-70,699	-446,765					

Table 19 - Projected Future Groundwater Budget for Kern County Subbasin under 2030 Climate Conditions WITH SGMA Projects based on C2VSimFG-Kern Simulation

	C2VSimFG-Kern Simulation						
		Managed Recharge	Net GW/SW	Small Watershed		Subsurface Flow with	Change in Groundwater
Water Year Units	Deep Percolation Acre-ft	and Canal Seepage Acre-ft	Interactions Acre-ft	Inflow Acre-ft	GW Pumping Acre-ft	Adjacent GW Basins Acre-ft	Storage Acre-ft
Offics	Acicit	ACIC II	ACIC II	ACIC II	ACIC II	ACIC II	ACIC II
		SI.	JMMARY: WY2021 to	W/V2070 Simulatatio	n Period		
T-4-I	22.020.070		I		I	4 725 026	2 000 202
Total	32,838,979	35,447,299	4,941,607	2,517,393	-73,869,518	-4,735,936	
Average	656,780	708,946	98,832	50,348	-1,477,390	-94,719	-57,204
		SUN	MMARY: WY2021 to V	WY2040 Implementat	tion Period		1
Total	12,873,160	13,719,306	2,153,021	967,011	-30,545,188	-1,641,666	-2,474,378
Average	643,658	685,965	107,651	48,351	-1,527,259	-82,083	-123,719
		SU	MMARY: WY2041 to	WY2070 Sustainabili	ity Period		
Total	19,965,818	21,727,994	2,788,586	1,550,382	-43,324,331	-3,094,271	-385,823
	665,527			51,679	-1,444,144	-103,142	-12,861
Average	005,527	724,266	92,953	51,679	-1,444,144	-103,142	-12,861
		Annual Sir	nulation Results for \	WY2021 to WY2070 S	imulation Period		
2021	. 436,607	313,191	146,335	42,134	-1,676,044	-81,420	-819,196
2022	495,680	391,450	97,863	31,229	-1,947,388	-76,701	-1,007,874
2023	,	1,077,709	179,601	100,122	-1,117,722	-76,444	940,302
2024	· · · · · · · · · · · · · · · · · · ·	1,130,101	141,980	64,551	-1,088,738	-81,861	974,238
2025 2026	· · · · · · · · · · · · · · · · · · ·	343,315 273,084	61,517 131,767	18,068 37,800	-1,906,220 -2,253,887	-78,953 -70,713	-1,099,574 -1,442,550
2027	· · · · · · · · · · · · · · · · · · ·	306,757	115,891	23,732	-2,068,551	-69,760	-1,187,619
2028		692,833	189,187	39,445	-1,565,005	-71,313	-138,447
2029	, ,	2,070,178		122,295	-932,879	-84,094	2,614,536
2030	· · · · · · · · · · · · · · · · · · ·	553,212	37,888	19,641	-1,345,295	-83,321	-233,371
2031 2032	· · · · · · · · · · · · · · · · · · ·	216,234 157,578	76,879 46,694	18,143 17,968	-2,159,236 -2,586,970	-78,674 -72,132	-1,397,939 -1,989,585
2033	,	1,099,092	179,078	122,210	-954,120	-79,949	1,188,943
2034		1,002,883	120,224	45,764	-1,314,339	-88,379	408,386
2035	,	1,046,864	225,239	55,297	-1,036,291	-94,244	1,078,932
2036		1,496,375	67,732	102,926	-748,234	-98,400	1,900,379
2037 2038	· · · · · · · · · · · · · · · · · · ·	565,459 481,733	31,639 53,082	32,384 27,413	-1,137,009 -1,262,856	-94,427 -89,986	16,344 -287,584
2039	,	246,867	81,296	26,084	-1,751,020	-86,330	-1,009,239
2040		254,393	101,481	19,804	-1,693,383	-84,564	-983,462
2041	,	315,197	147,563	39,151	-1,429,438	-83,810	-566,526
2042	· · · · · · · · · · · · · · · · · · ·	397,576	97,317	31,228	-1,723,016	-83,907	-766,546
2043 2044	· · · · · · · · · · · · · · · · · · ·	1,163,940 1,197,675	134,478 50,668	103,193 65,724	-969,015 -949,162	-86,356 -94,611	1,162,938 1,117,864
2045	,	348,281	32,446	18,138	-1,769,470	-93,309	-992,789
2046	446,314	276,979	132,424	37,870	-2,116,321	-86,037	-1,308,771
2047	507,943	310,952	116,190	23,946	-1,951,408	-86,246	-1,078,625
2048		737,315	190,434	39,636	-1,454,664	-89,846	-6,380
2049 2050	· · · · · · · · · · · · · · · · · · ·	2,126,760 565,192		124,949	-846,645 -1,287,166	-103,976 -103,007	2,700,745 -201,604
2051	,	227,799		18,193	-2,083,539	-98,472	-1,320,948
2052	464,011	164,305		17,931	-2,493,990	-92,183	-1,892,949
2053		1,136,728		123,682	-921,588	-100,638	1,255,494
2054		1,032,674		45,880	-1,258,249	-110,065	468,030
2055 2056	· ·	1,081,677 1,529,332	208,421 56,914	55,392 169,164	-1,002,340 -718,274	-116,311 -120,237	1,130,721 2,133,209
2057		569,268		33,640	-1,122,622	-115,686	54,346
2058	· ·	489,739		27,628	-1,253,276	-110,474	-280,179
2059		252,996		26,299	-1,749,204	-105,946	-1,017,581
2060		259,054	101,488	19,792	-1,652,713	-103,828	-946,537
2061 2062		318,905 400,090	147,790 96,110	39,158 31,426	-1,437,034 -1,726,653	-102,731 -102,439	-586,494 -786,068
2062		1,186,122	125,545	104,939	-1,720,033	-105,263	1,151,138
2064	· ·	1,217,000	·	41,649	-986,296	-114,017	1,009,913
2065		351,690		18,289	-1,789,318	-112,105	-1,042,033
2066		280,211	132,607	37,782	-2,125,316	-106,826	-1,331,675
2067 2068	· ·	314,307 758,626	116,486 191,836	23,923 65,542	-1,960,796 -1,393,447	-107,878 -109,878	-1,102,923 163,759
2068		2,146,388		126,664	-1,393,447	-109,878	
2070	· · · · · · · · · · · · · · · · · · ·	571,217		19,883	-1,309,505	-123,427	-237,386

Table 20 - Projected Future Groundwater Budget for Kern County Subbasin under 2070 Climate Conditions with NO SGMA Projects based on C2VSimFG-Kern Simulation

	on C2VSimFG-Kern Simulation						
		Managed Recharge	Net GW/SW	Small Watershed		Subsurface Flow with	Change in Groundwater
Water Year Units	Deep Percolation Acre-ft	and Canal Seepage Acre-ft	Interactions Acre-ft	Inflow Acre-ft	GW Pumping Acre-ft	Adjacent GW Basins Acre-ft	Storage Acre-ft
01.11.03	Acre to	7101010	71010 10	riore re	7101010	Tione ne	7101010
	SUMMARY: WY2021 to WY2070 Simulatation Period						
Total	30,266,907	32,824,218	5,541,096	2,495,122	-92,372,522	-3,271,463	-24,516,680
Average	605,338	656,484	110,822	49,902	-1,847,450	-65,429	-490,334
	T		MMARY: WY2021 to V		1		T
Total	11,792,918	12,994,527	2,263,192	960,586	-36,385,358	-1,447,672	-9,821,843
Average	589,646	649,726	113,160	48,029	-1,819,268	-72,384	-491,092
		SU	MMARY: WY2041 to	WY2070 Sustainabili	ity Period		
Total	18,473,988	19,829,691	3,277,904	1,534,536	-55,987,164	-1,823,791	-14,694,837
Average	615,800	660,990	109,263	51,151	-1,866,239	-60,793	-489,828
		Annual Sir	mulation Results for \	NY2021 to WY2070 S	imulation Period		
2021		250,550	140,163	38,275	-1,842,475	-83,663	-1,088,499
2022 2023		369,832 1,058,910	95,673 189,890	30,903 97,206	-2,096,387 -1,367,109	-78,608 -76,560	-1,206,496 576,325
2023	·	1,038,910	154,523	64,640	-1,367,109	-81,123	734,995
2025	,	339,216	62,383	18,095	-2,093,637	-77,242	-1,316,253
2026	,	316,670	142,130	42,165	-2,392,400	-68,542	-1,490,227
2027	,	219,342	111,136	22,713	-2,302,101	-66,245	-1,546,351
2028 2029	,	622,490 2,021,954	194,932 94,628	37,491 120,391	-1,777,664 -1,272,882	-66,172 -75,969	-423,661 2,121,016
2030	, ,	510,545	46,067	18,406	-1,606,048	-73,952	-592,602
2031	514,885	217,243	80,080	18,510	-2,404,879	-69,108	-1,643,271
2032		109,243	41,157	17,864	-2,961,316	-59,737	-2,431,871
2033 2034		983,283 1,011,310	185,465 124,135	124,666 48,403	-1,366,638 -1,629,020	-66,770 -73,691	577,711 117,609
2035		926,830	240,059	52,829	-1,506,120	-76,785	379,255
2036	·	1,369,821	66,325	95,355	-1,236,377	-78,889	1,056,824
2037	511,349	550,855	51,377	33,462	-1,460,435	-75,693	-389,084
2038 2039	,	516,749	68,512 84,925	30,839	-1,615,455 -2,078,540	-70,944	-544,878
2039	,	261,453 215,482	89,632	29,526 18,846	-2,105,907	-66,064 -61,915	-1,282,515 -1,429,871
2041	434,872	249,759	141,456	34,801	-1,861,023	-59,685	-1,059,819
2042	506,082	371,490	95,431	30,811	-2,143,228	-58,424	-1,197,837
2043 2044	,	1,057,536	164,332	99,819	-1,415,545	-58,898	548,287
2044	,	1,123,035 338,796	84,872 43,022	65,709 18,140	-1,321,033 -2,143,265	-65,596 -63,760	652,868 -1,349,868
2046		316,422	142,576	42,210	-2,441,728	-56,475	-1,505,673
2047	486,516	219,663	111,300	22,758	-2,350,989	-55,383	-1,566,136
2048		621,390	195,292	37,553	-1,826,869	-56,367	-453,078
2049 2050		2,024,646 511,479	76,576 41,647	122,702 18,437	-1,321,171 -1,653,603	-67,189 -66,049	
2051	·	217,243	80,184	18,541	-2,450,881	-61,709	
2052		105,521	41,256	17,846	-2,980,914	-52,973	-2,432,875
2053		984,833	185,983	125,947	-1,412,037	-60,560	
2054 2055		1,010,015 926,775	122,314 240,837	48,546 53,236	-1,673,215 -1,549,608	-67,888 -71,550	
2056		1,369,239	78,789	163,750	-1,223,884	-73,970	
2057	542,683	548,446	53,332	34,610		-70,686	
2058		519,512	70,081	31,051	-1,656,729	-65,944	-551,837
2059 2060		262,783 216,084	85,481 89,721	29,722 18,987	-2,118,584 -2,098,596	-60,956 -57,233	-1,295,243 -1,396,893
2060		216,084	141,478	34,761	-2,098,596	-57,233	-1,396,893
2062	,	370,621	95,685	30,984	-2,183,537	-54,157	-1,217,590
2063		1,059,135	169,499	100,139	-1,456,460	-54,936	542,379
2064		1,121,596	96,738	41,720	-1,390,161	-62,039	545,700
2065 2066		339,078 316,005	47,370 142,585	18,277 41,907	-2,183,880 -2,483,011	-60,597 -53,520	-1,383,226 -1,537,673
2067		219,419	111,431	22,808	-2,393,461	-52,693	-1,595,690
2068	655,939	621,712	196,418	66,128	-1,787,044	-52,309	-299,157
2069		2,023,476			-1,364,360		
2070	532,988	513,990	45,107	18,619	-1,697,522	-62,987	-649,805

Table 21 - Projected Future Groundwater Budget for Kern County Subbasin under 2070 Climate Conditions WITH SGMA Projects based on C2VSimFG-Kern Simulation

	C2VSimFG-Kern Simulation						
Water Year	Deep Percolation	Managed Recharge and Canal Seepage	Net GW/SW Interactions	Small Watershed Inflow	GW Pumping	Subsurface Flow with Adjacent GW Basins	Change in Groundwater Storage
Units	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft	Acre-ft
SUMMARY: WY2021 to WY2070 Simulatation Period							
Total	31,799,129	37,863,262	4,293,932	2,495,122	-79,755,674	-4,729,641	-8,033,910
Average	635,983	757,265	85,879	49,902	-1,595,113	-94,593	-160,678
		SUN	1MARY: WY2021 to V	VY2040 Implementat	tion Period		
Total	12,589,633	14,705,737	1,891,043	960,586	-32,975,395	-1,657,287	-4,485,720
Average	629,482	735,287	94,552	48,029	-1,648,770	-82,864	-224,286
		SU	MMARY: WY2041 to	WY2070 Sustainabili	itv Period		
Total	19,209,496	23,157,525	2,402,889	1,534,536	-46,780,279	-3,072,354	-3,548,190
				51,151			
Average	640,317	771,917	80,096	51,151	-1,559,343	-102,412	-118,273
		Annual Sir	nulation Results for V	WY2021 to WY2070 S	imulation Period		
2021	416,859	299,174	140,033	38,275	-1,829,917	-83,068	-1,018,646
2022	482,771	408,716	95,545	30,903	-2,075,055	-77,724	-1,134,857
2023	778,119	1,167,829	176,974	97,206	-1,283,726	-78,065	858,337
2024 2025	824,224 444,081	1,237,834 355,471	116,452 55,004	64,640 18,095	-1,201,267 -1,995,258	-84,296 -81,218	957,582 -1,203,834
2025		376,346	141,087	42,165	-2,313,156	-72,774	-1,203,834
2027	464,976	279,425	111,024	22,713	-2,213,764	-70,681	-1,406,307
2028	,	749,332	192,740	37,491	-1,685,558	-71,949	-208,410
2029	1,366,993	2,190,420	41,284	120,391	-1,077,423	-84,620	2,557,045
2030 2031	534,178 519,704	531,150 234,003	29,555 79,675	18,406 18,510	-1,464,690 -2,224,205	-82,917 -79,250	-434,320 -1,451,562
2031	415,122	123,188	41,020	17,864	-2,750,519	-71,829	-2,225,156
2033	783,412	1,166,531	179,799	124,666	-1,109,329	-80,416	1,064,663
2034	658,731	1,142,196	88,031	48,403	-1,395,221	-89,128	453,011
2035	863,103	1,130,070	184,994	52,829	-1,232,204	-94,328	904,464
2036 2037	1,029,800 570,198	1,602,138 605,678	12,470 8,505	95,355 33,462	-917,373 -1,243,785	-98,485 -94,402	1,723,905 -120,345
2037		569,446	34,689	30,839	-1,243,783	-90,407	-295,110
2039	479,164	294,676	72,792	29,526	-1,805,973	-86,949	-1,016,764
2040	,	242,115	89,372	18,846	-1,793,459	-84,780	-1,129,554
2041	414,818	301,192	141,646	34,801	-1,568,913	-83,592	-760,049
2042 2043	491,990 790,613	414,742 1,254,107	93,845 115,429	30,811 99,819	-1,840,528 -1,116,588	-83,323 -86,323	-892,462 1,057,057
2043	836,403	1,305,369	17,905	65,709	-1,045,824	-95,401	1,084,162
2045	449,154	360,429	22,817	18,140	-1,852,116	-93,998	-1,095,574
2046		380,169	142,402	42,210	-2,176,184	-86,568	-1,225,983
2047	471,984	283,737	111,550	22,758	-2,085,163	-85,737	-1,280,870
2048 2049	· · · · · · · · · · · · · · · · · · ·	793,776 2,246,987	194,145 3,572	37,553 122,702	-1,568,985 -987,606	-88,857 -102,881	-77,939 2,603,867
2050		543,145	12,030	18,437	-1,398,511	-102,881	-401,409
2051	526,155	245,563	79,307	18,541	-2,147,741	-98,008	-1,376,184
2052	430,658	129,919	41,236	17,846	-2,649,533	-91,211	-2,121,085
2053	792,109	1,204,216	177,747	125,947	-1,064,253	-100,431	1,135,335
2054 2055	668,348 860,469	1,172,104 1,164,599	66,220 170,576	48,546 53,236	-1,336,993 -1,194,626	-110,282 -115,992	507,943 938,261
2056		1,635,346	2,390	163,750	-1,194,020	-113,392	1,952,112
2057	610,598	609,490	-6,003	34,610	-1,226,393	-115,425	
2058		577,365	26,400	31,051	-1,353,145	-110,712	-282,076
2059	· ·	300,706	68,354	29,722	-1,802,615	-106,347	-1,023,382
2060 2061	409,456 418,628	246,809 304,951	89,277 141,821	18,987 34,761	-1,751,495 -1,574,579	-103,792 -102,407	-1,090,757 -776,824
2061	495,173	417,295	92,534	30,984	-1,842,095	-102,407	-907,934
2063		1,276,196	108,214	100,139	-1,128,328	-105,241	1,044,334
2064	,	1,324,749	9,903	41,720	-1,082,528		
2065	· · · · · · · · · · · · · · · · · · ·	363,793	19,730	18,277	-1,870,357	-113,021	-1,141,042
2066 2067	471,618 473,770	383,251 286,942	141,837 111,773	41,907 22,808	-2,193,139 -2,105,041	-104,993 -103,867	-1,259,519 -1,313,616
2067		815,113	111,773	66,128	-2,105,041	-103,867	-1,313,616 79,999
2069	· ·	2,266,438	1,701	124,017	-1,005,088	-121,015	·
2070		549,028	8,916	18,619	-1,422,036	-118,758	

TABLE 22: Assessment of change in groundwater storage from C2VSimFG-Kern model results for historical and future scenarios for the Kern County Subbasin

		Results ainability Period	Adjustments to GW Storage Change 2041-2070 Sustainability Period			
Scenario	Change in Groundwater Storage	Change in Net Operational Budget	Adjustment for Excess Basin Outflows	Adjustment for Excess Kern River Outflow	Adjusted Change in GW Storage	
units	AFY	AFY	AFY	AFY	AFY	
Historic	-277,114	-190,012	0	0	-277,114	
Baseline	-324,326	-253,629	0	0	-324,326	
Base Projects	42,144	152,353	26,327	17,108	85,578	
2030 Climate	-380,900	-318,260	0	8,780	-372,120	
2030 Projects	-12,861	90,282	27,056	32,634	46,829	
2070 Climate	-489,828	-429,035	0	17,492	-472,336	
2070 Projects	-118,273	-15,861	28,077	44,227	-45,969	

NOTE:

[&]quot;Change in Groundwater Storage" DOES include subsurface flow with adjacent basins

[&]quot;Operational Storage" DOES NOT include subsurface flow with adjacent basins

[&]quot;Adjustment for Excess Basin Outflows" is the difference in simulated basin outflow that is attributed to addition of SGMA projects in Kern County without comparable SGMA projects added to adjacent basins. Adjustment assumes that this difference is due to limitation of simulation, and that this difference would remain in Kern County when SGMA projects from adjacent basin are included in simulation.

[&]quot;Adjustment for Excess Kern River Outflow" is the increase in simulated groundwater outflows to Kern River relative to Baseline condition that are attributed to SGMA Projects and Climate Change. Model is not optimized for river management. Since the Kern River is a highly managed system, the assumption is that in practice this water would be recovered for beneficial use rather than be a loss of water from the basin.

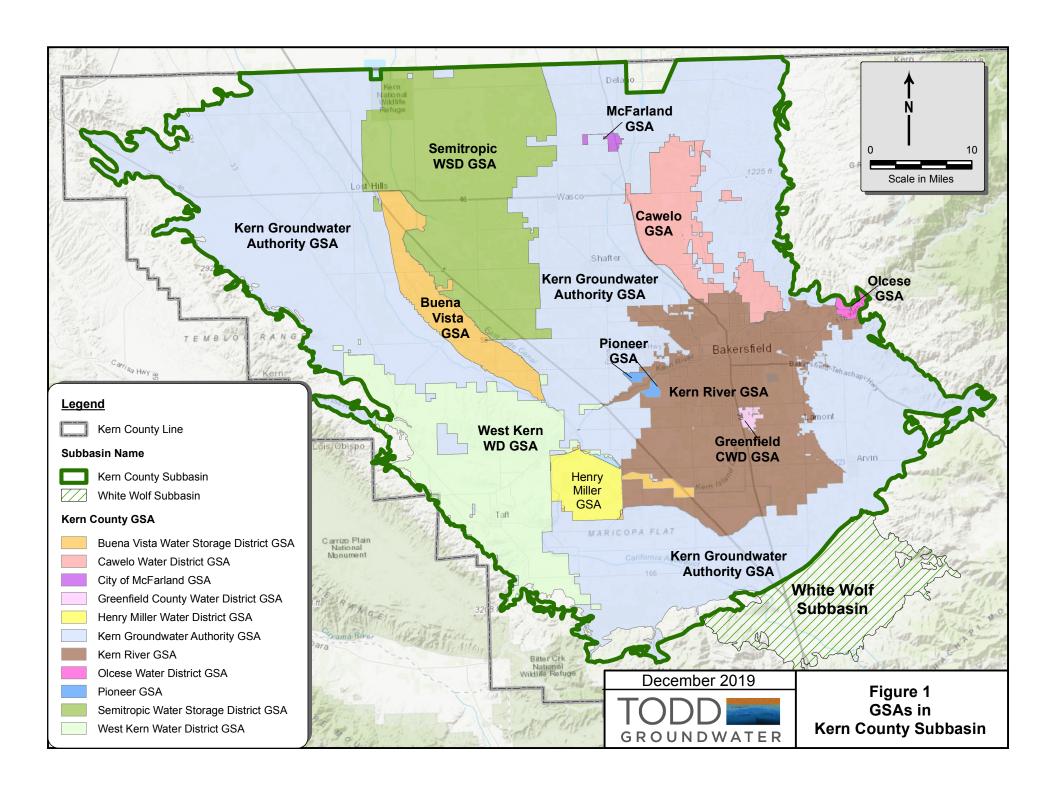
[&]quot;Adjusted Change in GW Storage " Change in GW Storage plus modifications listed as adjustments to provide a more realistic Change in GW Storage estimate for the simulation.

TABLE 23: Evaluation of Sustainable Yield for Projected-Future scenarios based on C2VSimFG-Kern Model Results for Kern County Subbasin

			<i>-</i>						
	C2VSimFG-Kern Model Results								
	2041-2070 Sustainability Period								
						Percent			
Scenario						Difference of			
		Change in			Average Annual	Pumping to			
	Groundwater	Groundwater in	GW Storage	Sustainable	Difference of	Sustainable			
	Pumping	Storage	Adjustments	Yield	Pumping to Yield	Yield			
units	AFY	AFY	AFY	AFY	AFY	AFY			
Historic	1,590,373	-277,114	0	1,313,259	-277,114	-21%			
Baseline	1,624,694	-324,326	0	1,300,369	-324,326	-25%			
Baseline Projects	1,354,088	42,144	43,434	1,439,666	85,578	6%			
2030 Climate	1,734,001	-380,900	8,780	1,361,881	-372,120	-27%			
2030 Projects	1,444,144	-12,861	59,690	1,490,974	46,829	3%			
2070 Climate	1,866,239	-489,828	17,492	1,393,902	-472,336	-34%			
2070 Projects	1,559,343	-118,273	72,304	1,513,373	-45,969	-3%			

NOTES:

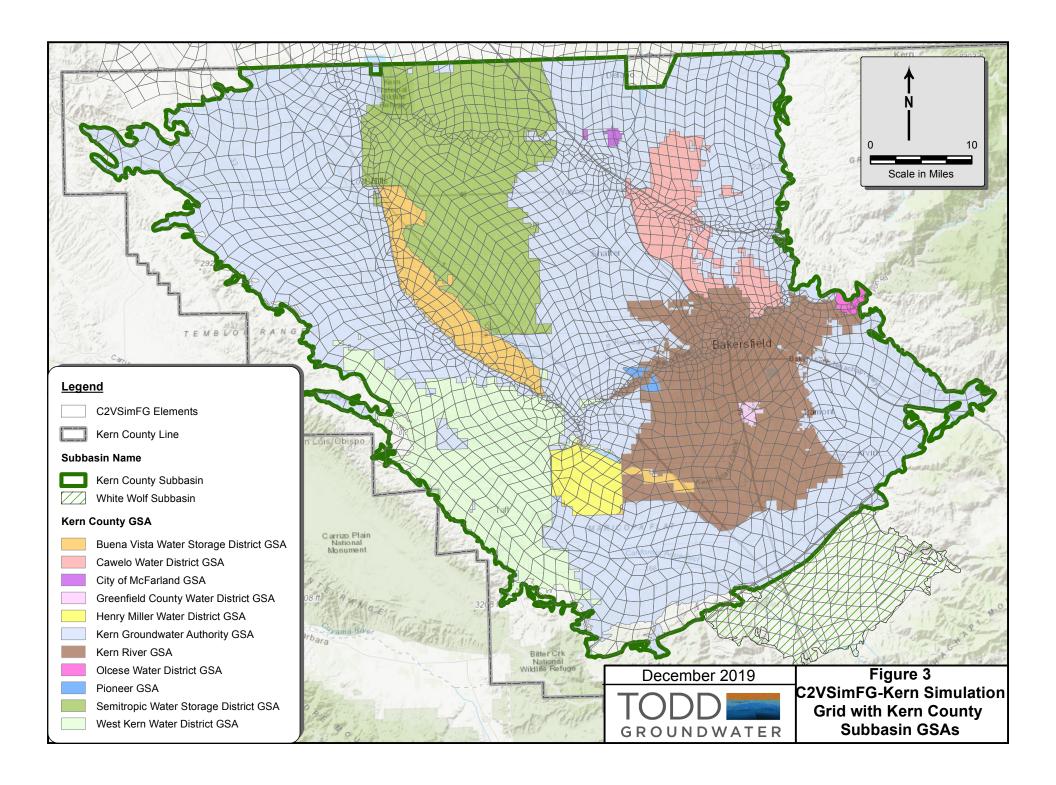
Groundwater	Total groundwater pumping by wells. Groundwater banking recovery pumping is specified input whereas
Pumping	agricultural and municipal pumping is calculated by C2VSim based on demand
Change in	Sum of the inflow components (positive numbers) plus the outflow components (negative numbers): positive
Groundwater in	is an increase in storage typified by a rise in GW levels whereas a negative is a decrease in storage typified by
Storage	a decline in GW levels
Adjusted Banking	Adjustment that assumes that recharge operations are affected by reductions in imported water sources, but
GW Storage	Adjustment to GW Storage that reflect artifacts of the simulation. For Kern County, adjustments made to
Adjustments	reflect no SGMA projects simulated north of Kern County, and that Kern River operations are not optimized to
	Sustainable yield is defined is the amount of pumping that can be sustained in the groundwater basin without
Sutainable Yield	the undesirable effect of a decline in groundwater storage that serves as a proxy for other undesirable effects
Average Annual	The difference between the sustainable yield and the simulated groundwater pumping. A negative value is
Difference	pumping in excess of the sustainable yield
	The percentage of the Average Annual Difference to the total groundwater pumping to provide context and a
Percent Difference	method to compare the significance of the difference in the pumping copmared to the sustainable yield.

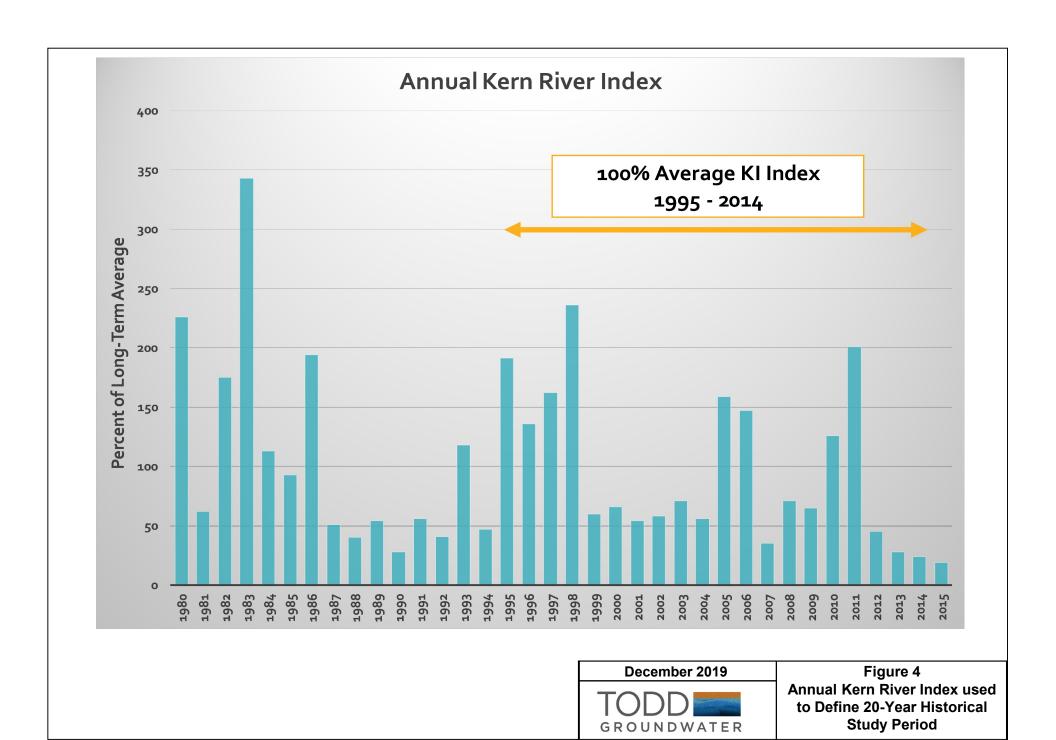

TABLE 24: Summary of Statistical Analysis for Validation of C2VSimFG-Kern Historical Simulation

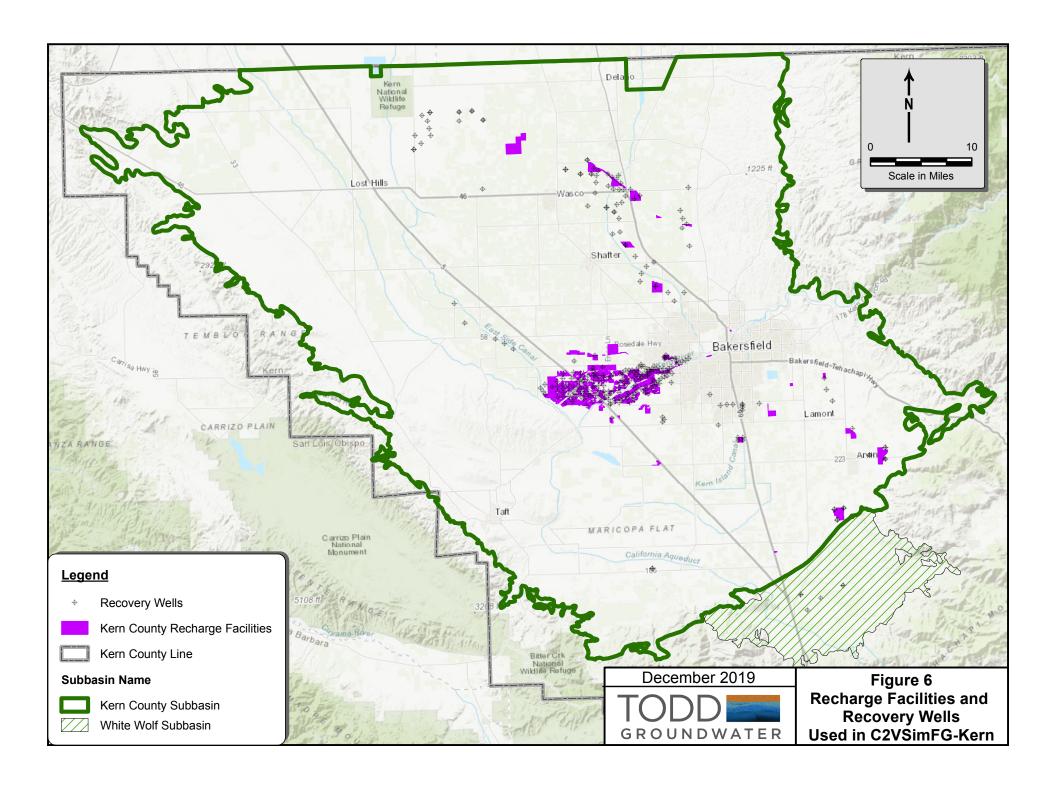
Validation Measure	C2VSimFG-Kern	C2VSimFG-Beta	Percent Change			
Units	Feet	Feet	Percent			
Residual Mean	17.3 ft	32.6 ft	47%			
Residual Standard Deviation	45.5 ft	54.0 ft	16%			
Absolute Residual Mean	37.4 ft	56.8 ft	34%			
Root Mean Square (RMS) Error	50 ft	73.5 ft	32%			
Scaled Absolute Residual Mean	0.061	0.092	34%			
Correlation Coefficient	0.76	0.52	47%			
Number of Monitor Wells	558	558	same			
Number of Observations	42,075	42,075	same			

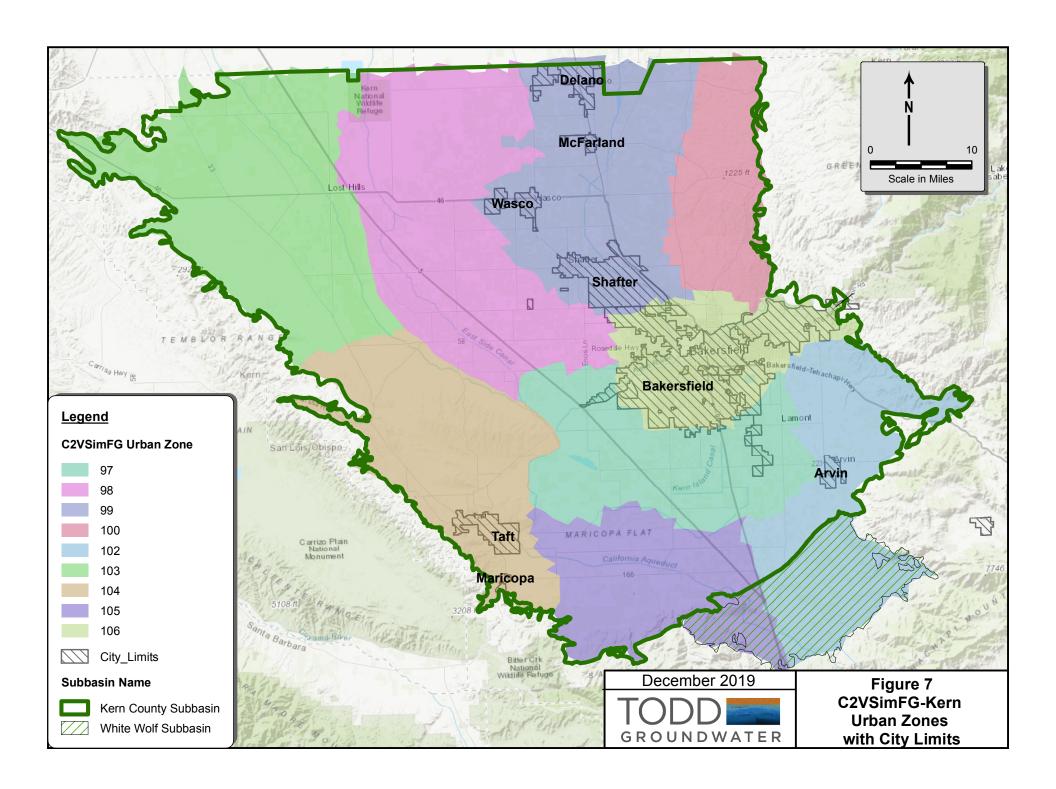
Notes

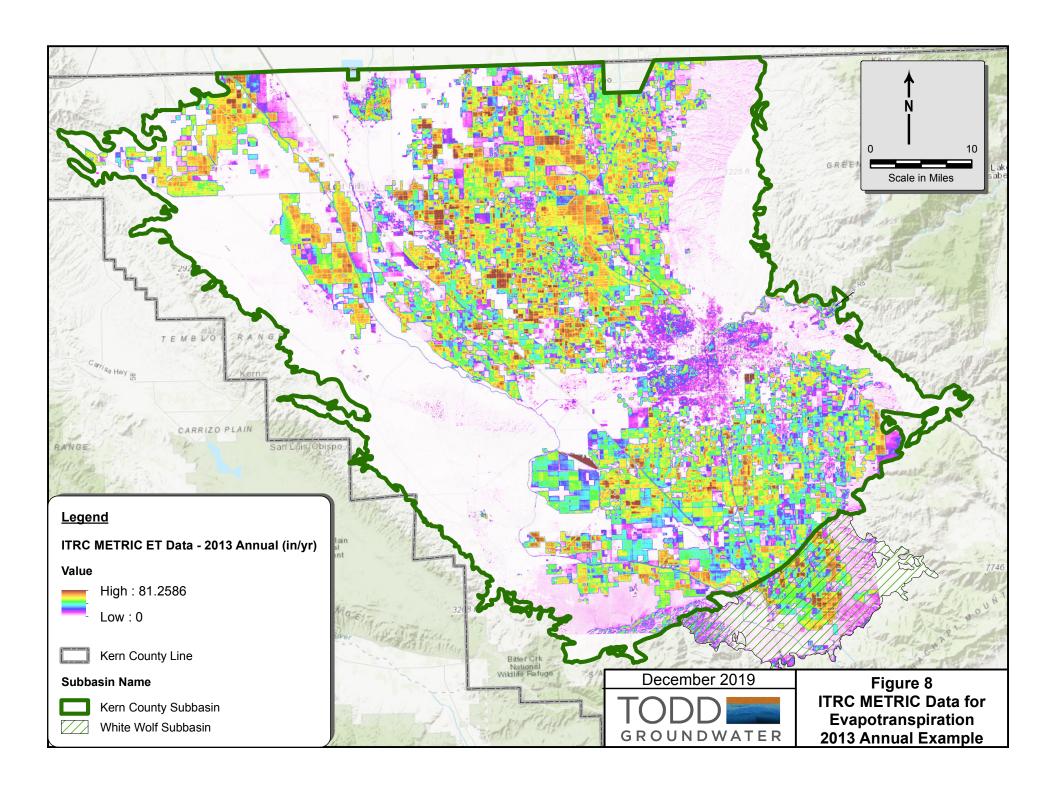
notes	
Observation Point	Location in the model where measured data from well is compared to simulated model results
Residual	Difference between measured and simulated groundwater elevations at an observation point
Residual Mean	Statistical measure of fit of simulated to measured data using sum of the residuals divided by the number of residual data values
Residual Standard Deviation	Statistical evaluation of the scatter of the data by calculating standard deviation of residuals
Absolute Residual Mean	Statistical measure of fit of simulated to measured data using sum of the absolute value residuals divided by the number of residual data values
Root Mean Square (RMS) Error	Statistical measure of fit of simulated to measured data using square root of the quotient of sum of squares of residuals by the number of observations
Scaled Absolute Residual Mean	Statisical measure to provide scale of validation using ratio of the absolute residual mean divided by the range of observed groundwater elevations
Correlation Coefficient	Scaled measure of the closeness of fit of simulated to measured data from -1 to 1 correlation with 1.0 a perfect correlation
Number of Monitor Wells	Number of wells where measured groundwater level data was compared to C2VSimFG-Kern simulation results for model validation
Number of Observations Number of groundwater level measurements that were compared to C2VSii results for model validation	

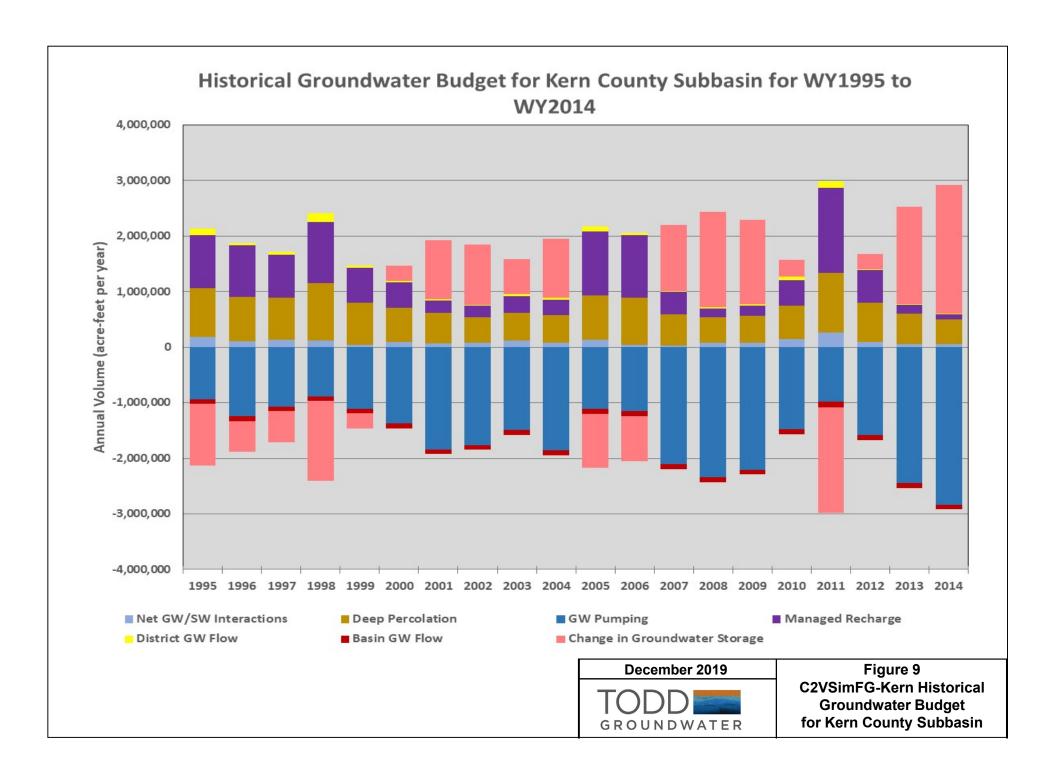

FIGURES

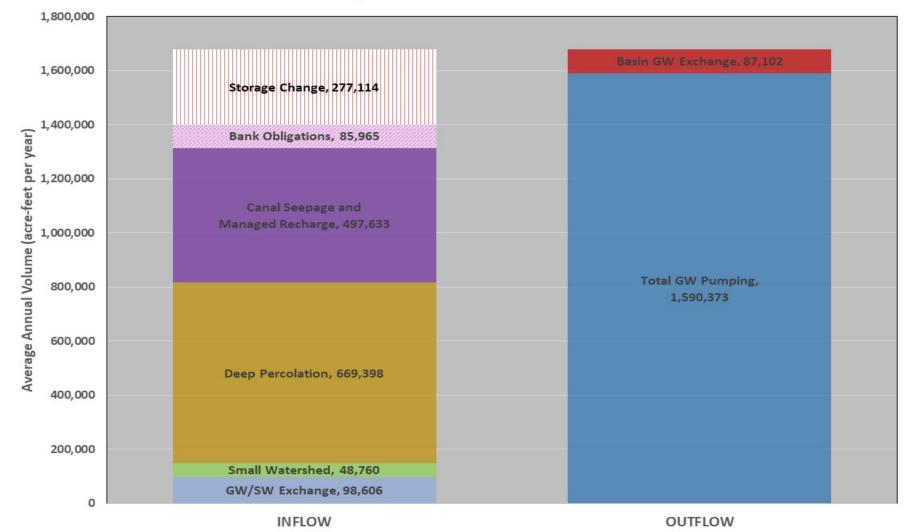



N

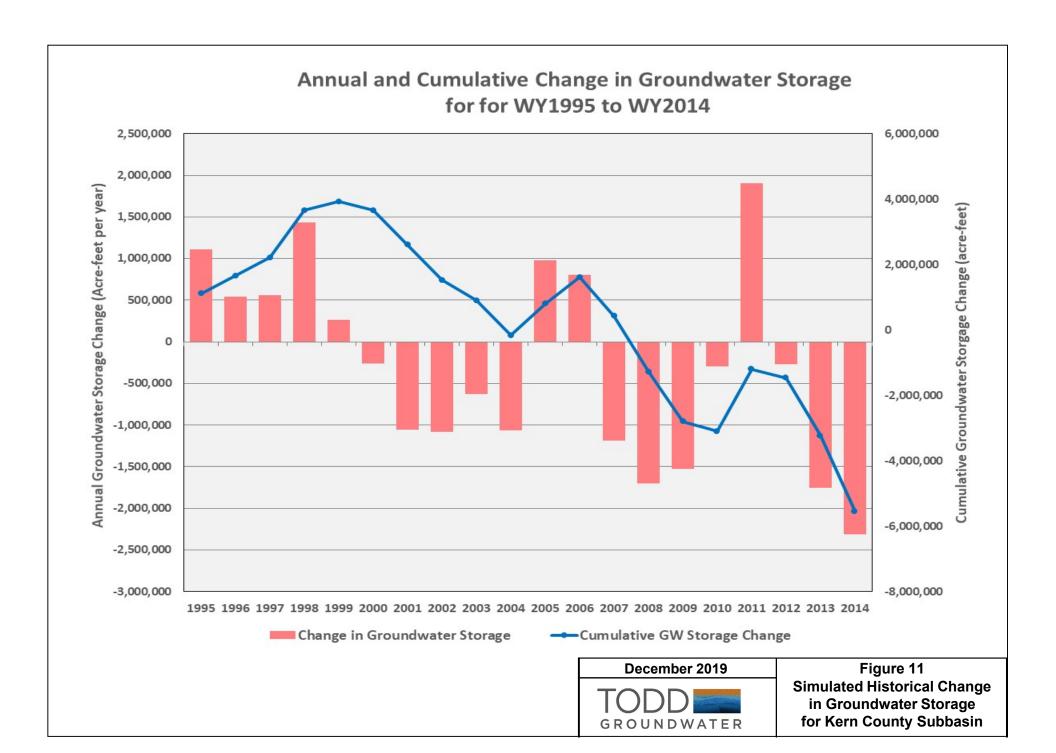

Figure 2
C2VSimFG Simulation Grid for
Central Valley Showing Kern
County Subbasin







Average Annual Groundwater Budget for Kern County Subbasin for WY1995 to WY2014



December 2019

TODD

GROUNDWATER

Figure 10
C2VSimFG-Kern Average
Annual Water Budget
for Kern County Subbasin

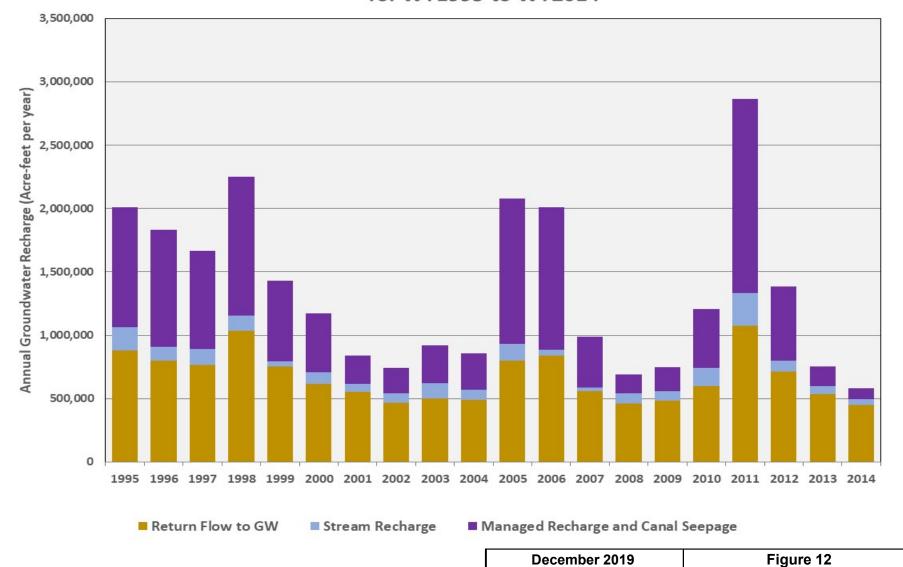
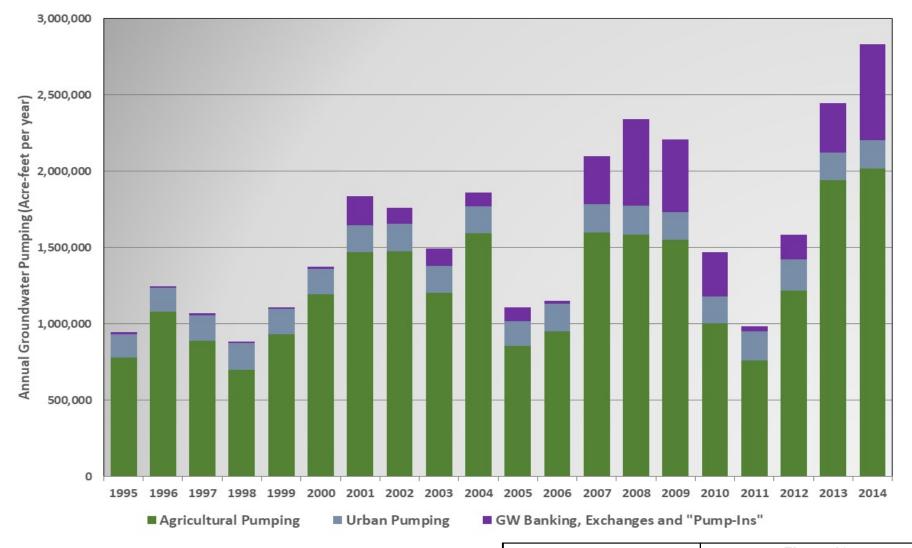
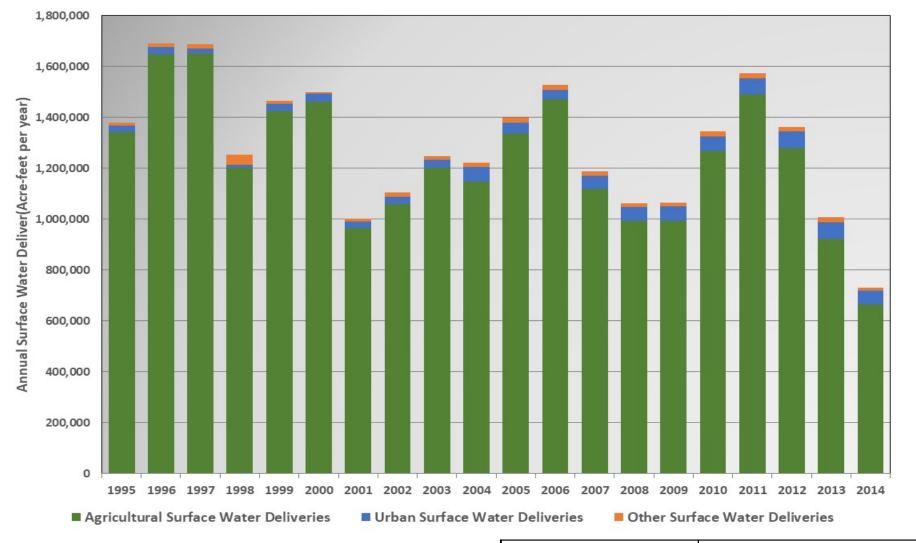



Figure 12
Simulated Historical
Recharge Operations
for Kern County Subbasin

Groundwater Pumping by Type for Kern County Subbasin for WY1995 to WY2014

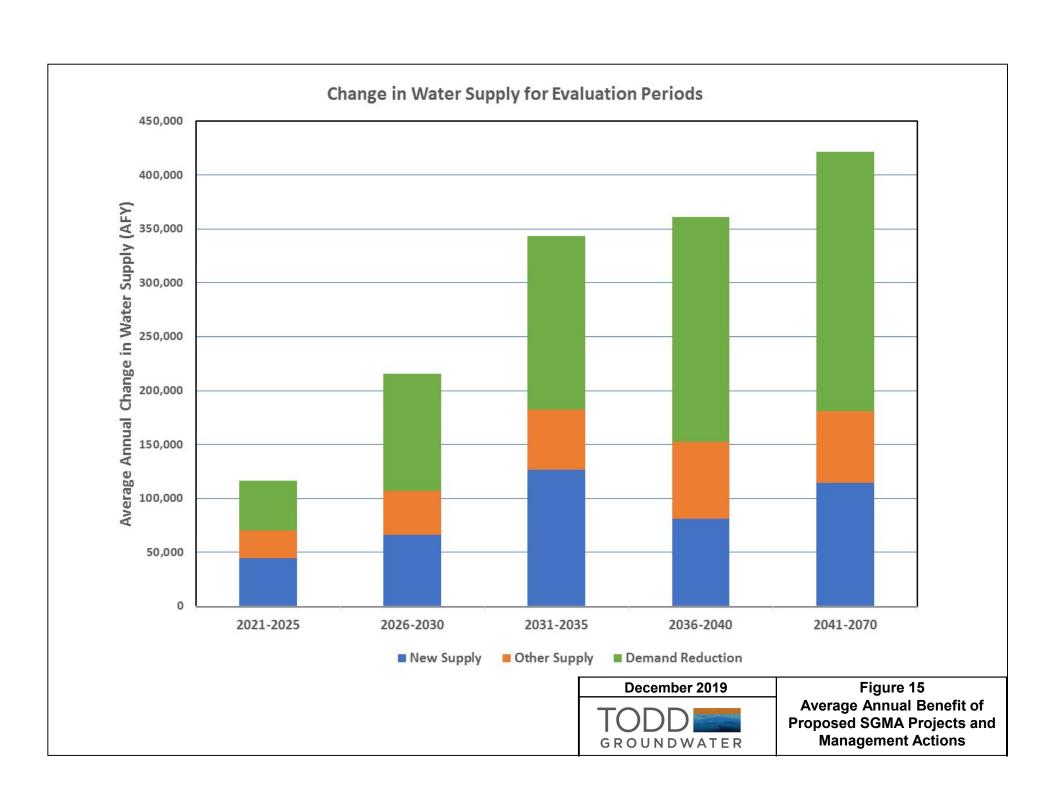

December 2019

TODD

GROUNDWATER

Figure 13
Simulated Historical
Groundwater Pumping
for Kern County Subbasin

Surface Water Deliveries by Type for Kern County Subbasin for for WY1995 to WY2014



December 2019

TODD

GROUNDWATER

Figure 14
Simulated Historical
Surface Water Deliveries
for Kern County Subbasin

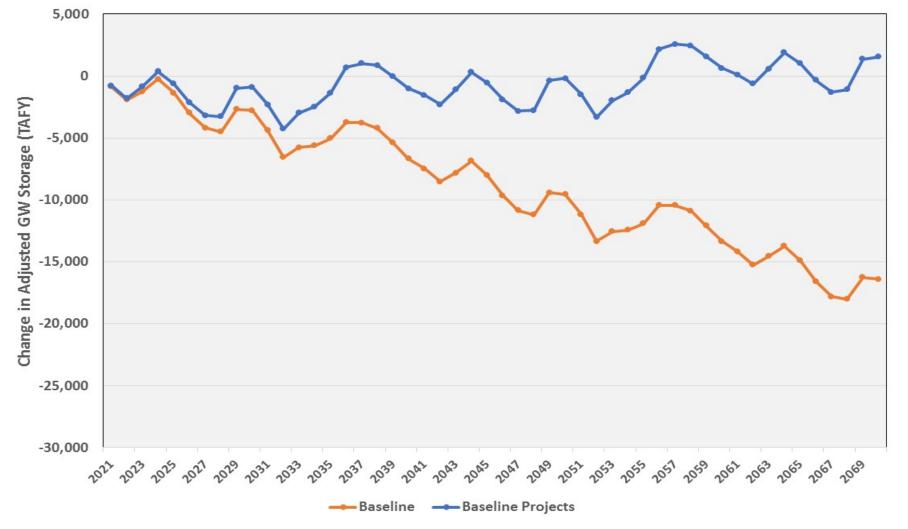
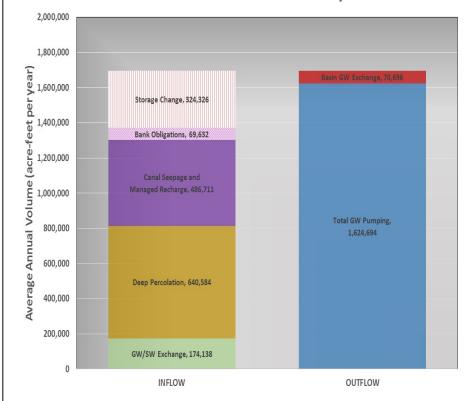
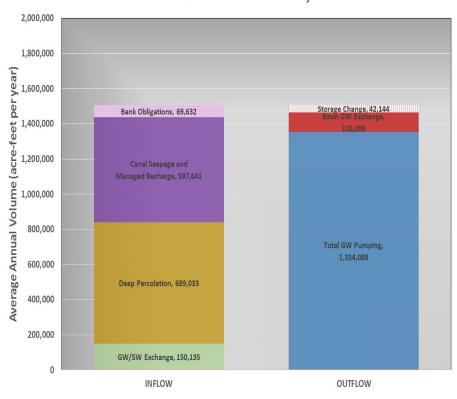
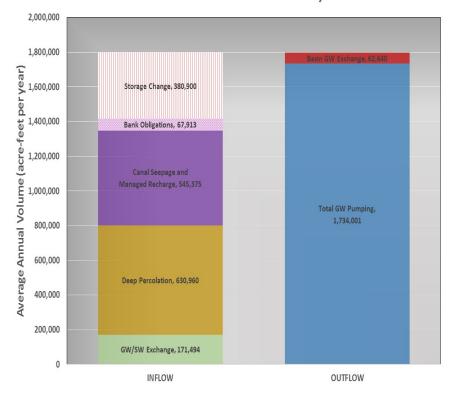




Figure 16
Projected Future Change in
Groundwater Storage for
Baseline Conditions

Kern County Subbasin Average Annual GW Budget for WYs 2041-2070 FINAL Future Baseline Scenario with NO Projects

Kern County Subbasin Average Annual GW Budget for WYs 2041-2070 FINAL Baseline Scenario WITH Projects


December 2019

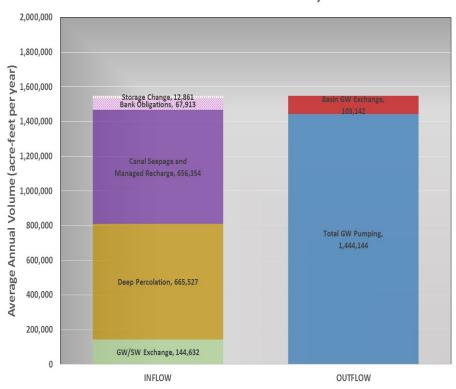
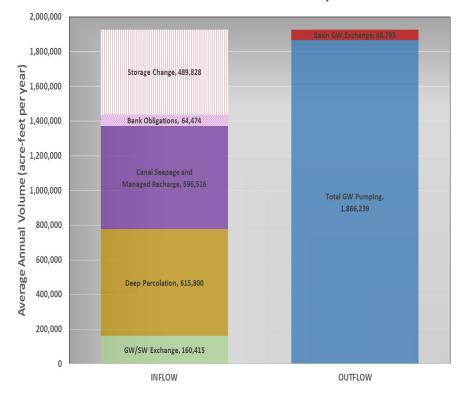
TODD

GROUNDWATER

Figure 17
Baseline Projected Future
Average Annual Groundwater
Budget for WY2041-2070

Kern County Subbasin Average Annual GW Budget for WYs 2041-2070 FINAL 2030 Climate Scenario with NO Projects

Kern County Subbasin Average Annual GW Budget for WYs 2041-2070 FINAL 2030 Climate Scenario WITH Projects

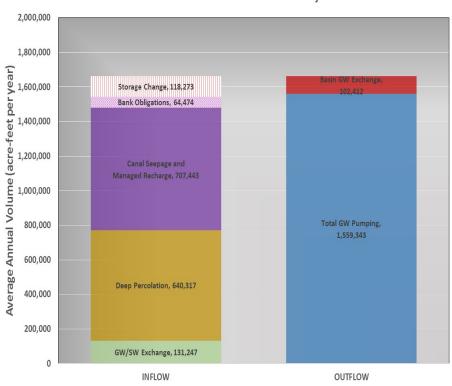


Figure 18 2030 Climate Projected Future Average Annual Groundwater Budget for WY2041-2070

Kern County Subbasin Average Annual GW Budget for WYs 2041-2070 FINAL 2070 Climate Scenario with NO Projects

Kern County Subbasin Average Annual GW Budget for WYs 2041-2070 FINAL 2070 Climate Scenario WITH Projects

December 2019

TODD

GROUNDWATER

Figure 19 2070 Climate Projected Future Average Annual Groundwater Budget for WY2041-2070

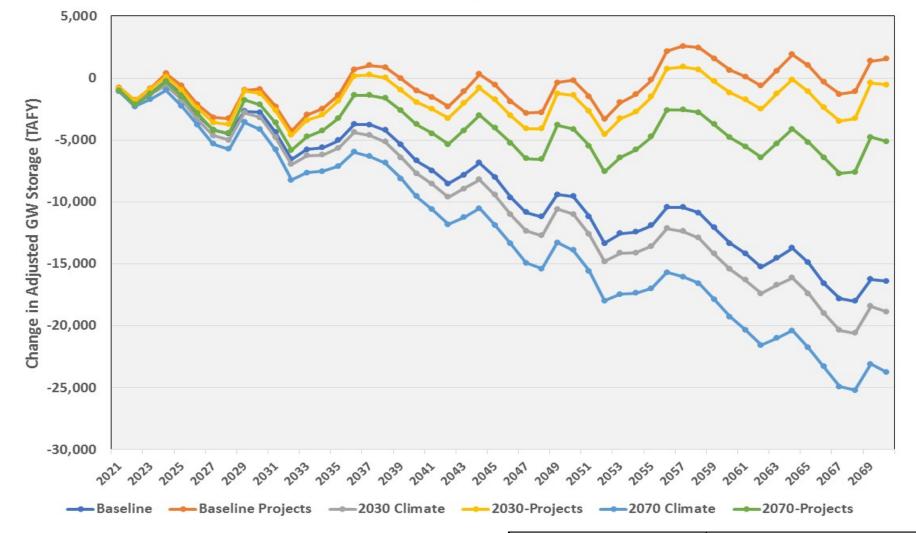
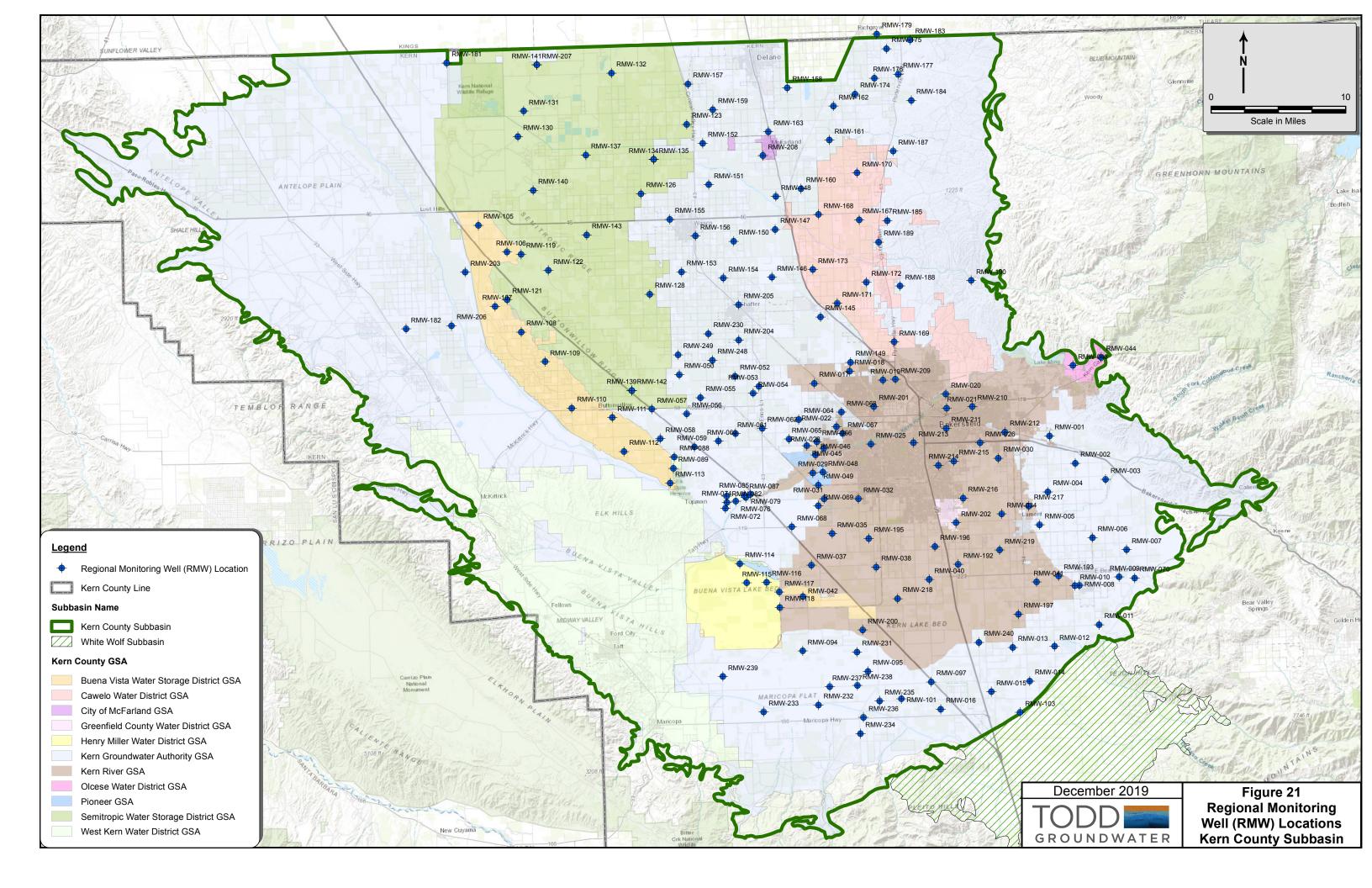
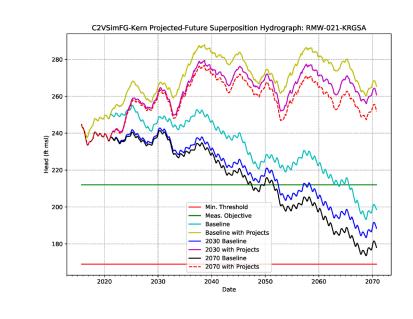
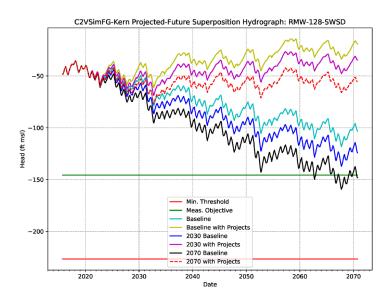
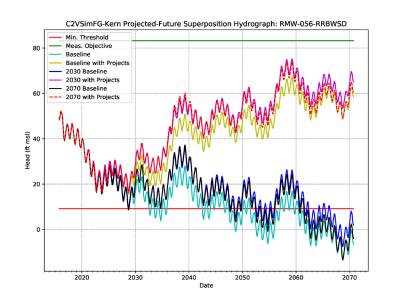






Figure 20
Projected Future Change in
Groundwater Storage for All
Conditions

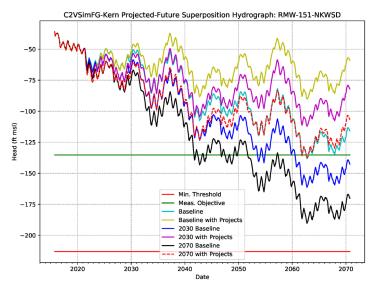
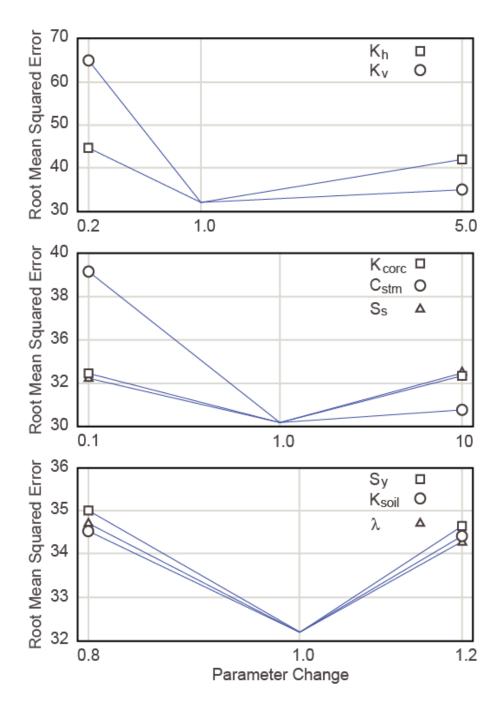



Figure 22
Hydrographs for all Projected
Future Conditions with SGMA
Sustainability Criteria

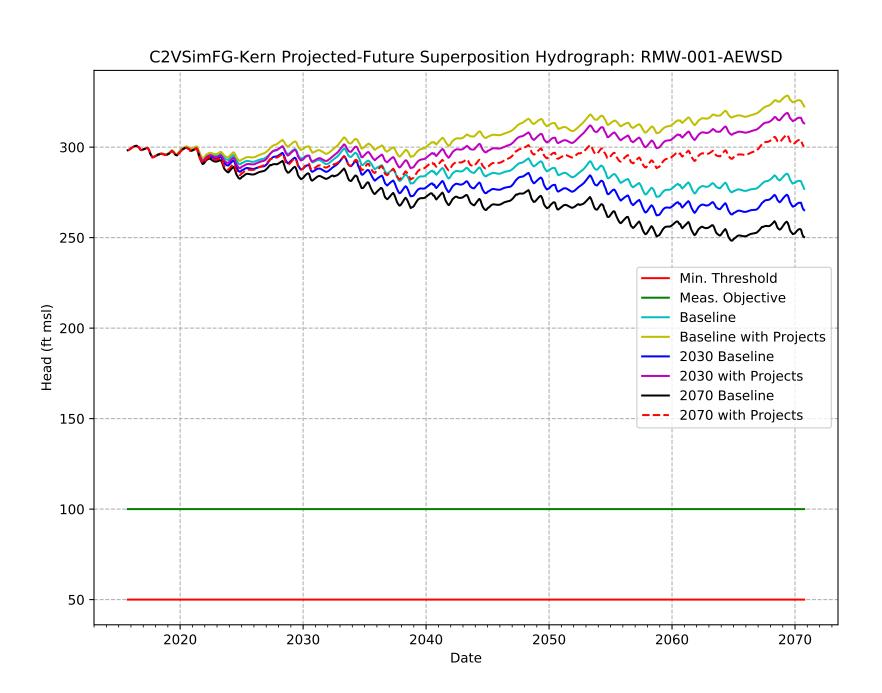
Notes:

Sensitivity parameters modified and evaluated for Kern County Subbasin

Kh - horizontal hydraulic conductivity of aquifer

Kv – vertical hydraulic conductivity of aquifer

Kcorc - horizontal hydraulic conductivity of Corcoran Clay aquitard or equivalent Cstm – streambed conductance of Kern River and Poso Creek Ss – specific storage of aquifer


Sy – specific yield of aquifer Ksoil –soil hydraulic conductivity in root zone Λ –soil pore size distribution index in root zone

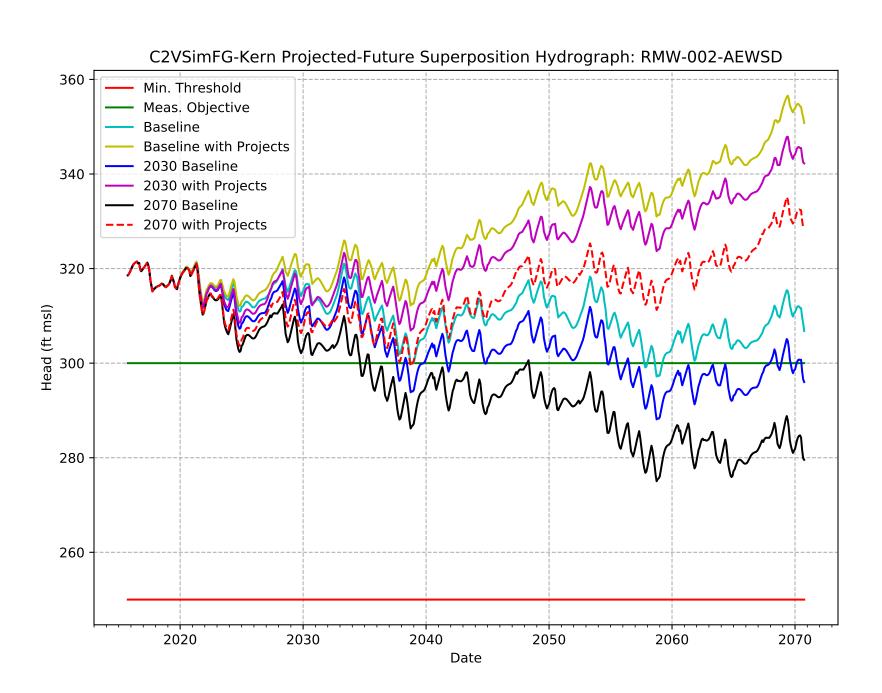
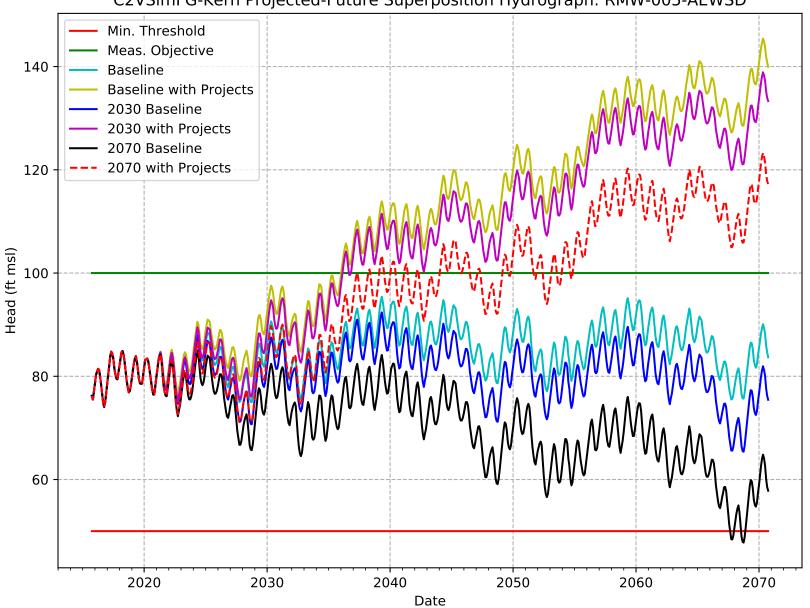


Figure 23
C2VSimFG-Kern Sensitivity
Analysis Results

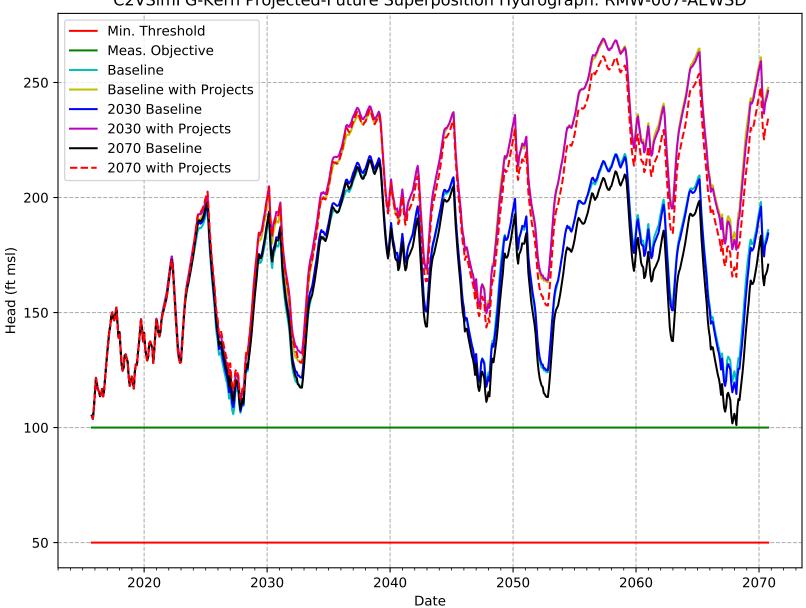
ATTACHMENT

C2VSimFG-Kern Hydrographs at Regional Monitoring Wells in Kern County Subbasin for Projected Future Water Budget Simulations

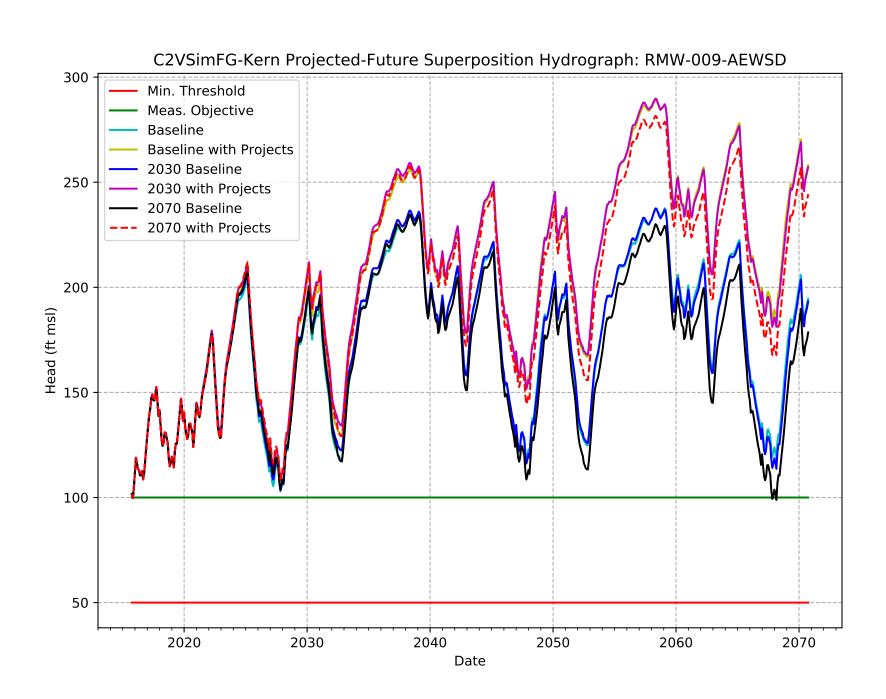


C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-003-AEWSD 450 400 Min. Threshold Meas. Objective Head (ft msl) Baseline Baseline with Projects 2030 Baseline 350 2030 with Projects 2070 Baseline 2070 with Projects 300 250 2020 2030 2040 2050 2070 2060 Date

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-004-AEWSD Min. Threshold Meas. Objective 160 Baseline Baseline with Projects 2030 Baseline 2030 with Projects 140 -2070 Baseline 2070 with Projects 120 Head (ft msl) 100 80 60 2020 2030 2040 2050 2070 2060


Date

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-005-AEWSD

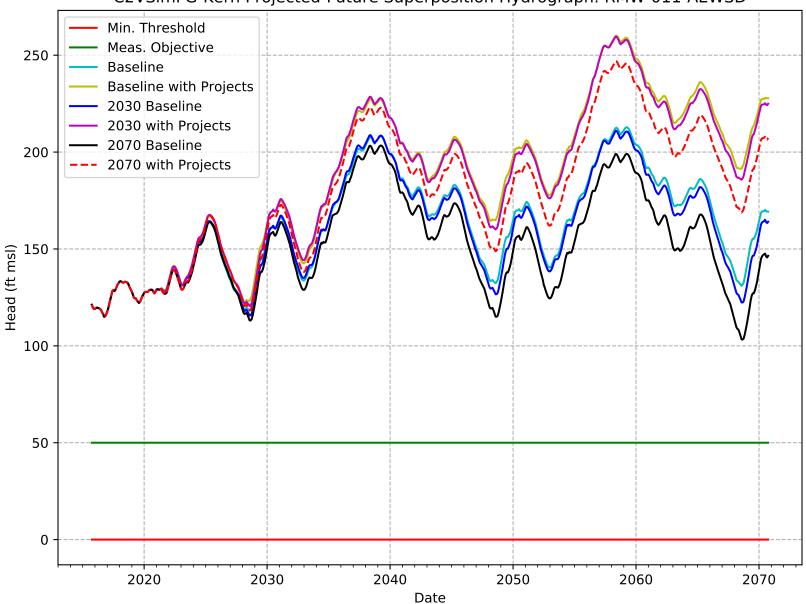


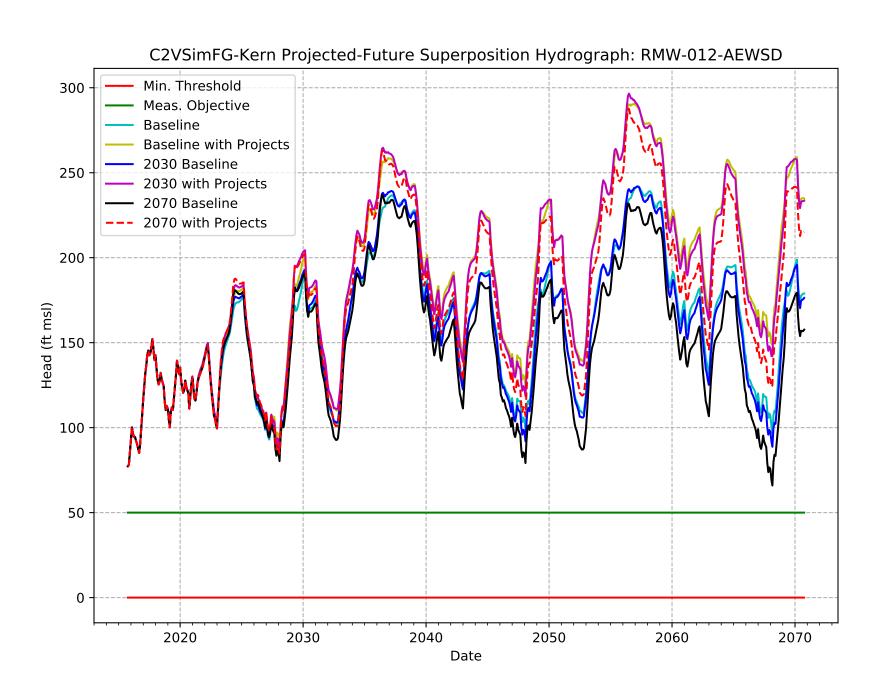
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-006-AEWSD Min. Threshold Meas. Objective 200 Baseline Baseline with Projects 2030 Baseline 180 -2030 with Projects 2070 Baseline 2070 with Projects 160 Head (ft msl) 140 120 100 80 60 2020 2030 2070 2040 2050 2060 Date

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-007-AEWSD

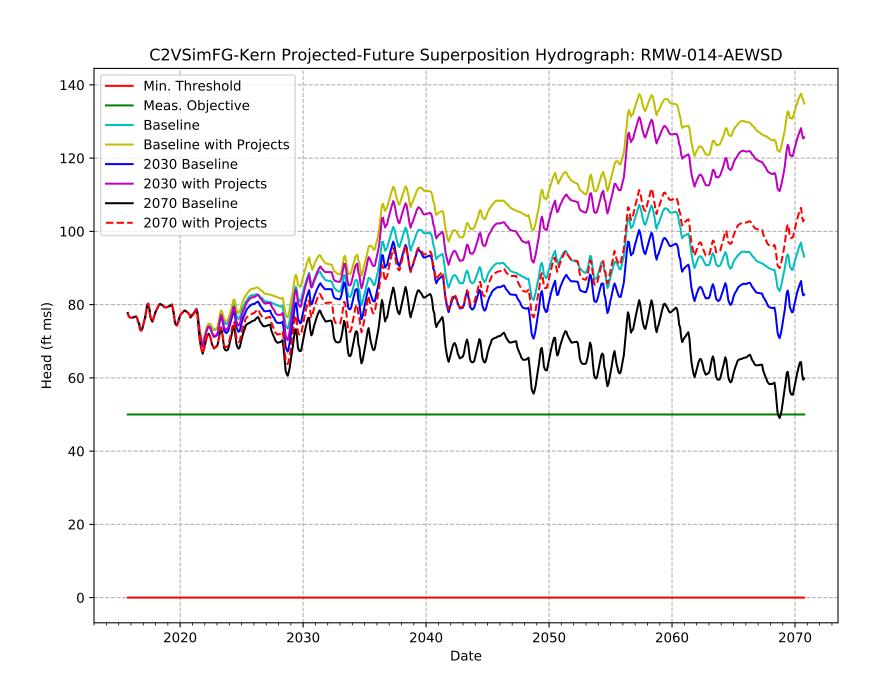
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-008-AEWSD Min. Threshold Meas. Objective 125 Baseline Baseline with Projects 2030 Baseline 100 2030 with Projects 2070 Baseline 2070 with Projects 75 50 Head (ft msl) 25 0 -25-50 -752020 2030 2050 2070 2040 2060 Date

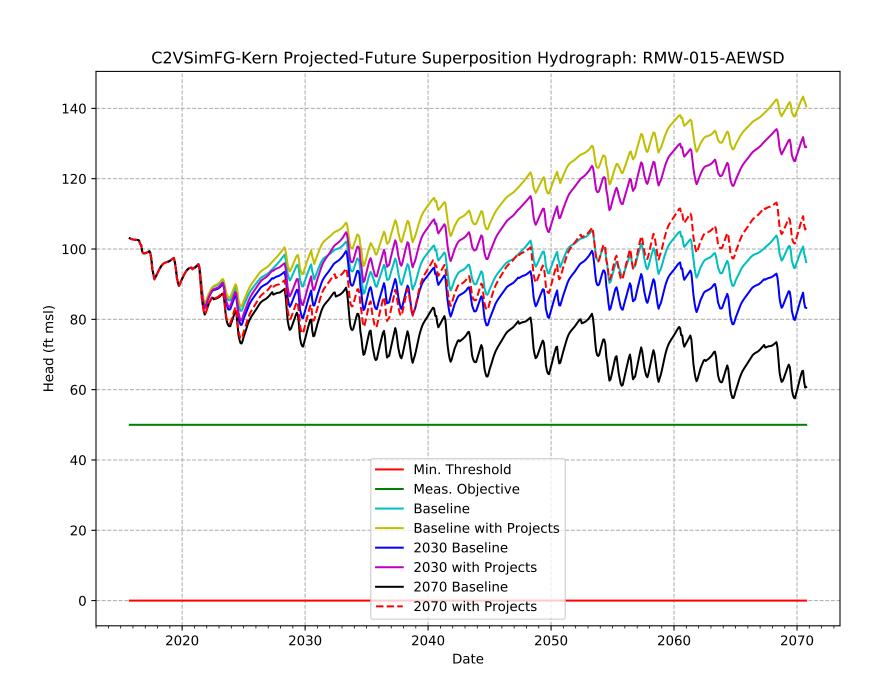
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-010-AEWSD Min. Threshold 150 · Meas. Objective Baseline Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline 100 2070 with Projects Head (ft msl) 50 0 -502020 2030 2070


2040


Date

2050


2060


C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-011-AEWSD

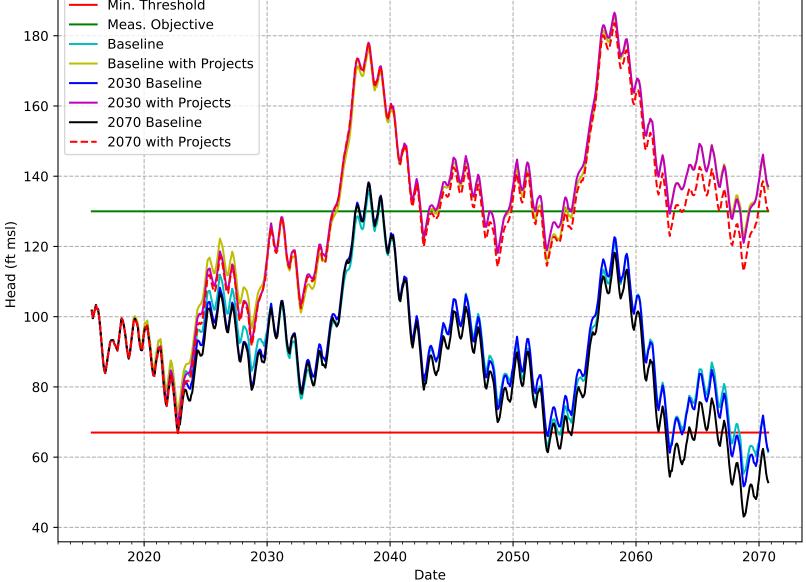
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-013-AEWSD 200 Min. Threshold Meas. Objective Baseline Baseline with Projects 175 · 2030 Baseline 2030 with Projects 2070 Baseline 150 2070 with Projects 125 Head (ft msl) 100 75 50 25 0 2020 2030 2050 2070 2040 2060 Date

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-016-AEWSD Min. Threshold Meas. Objective Baseline 120 Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline 100 2070 with Projects 80 Head (ft msl) 60 40 20 0

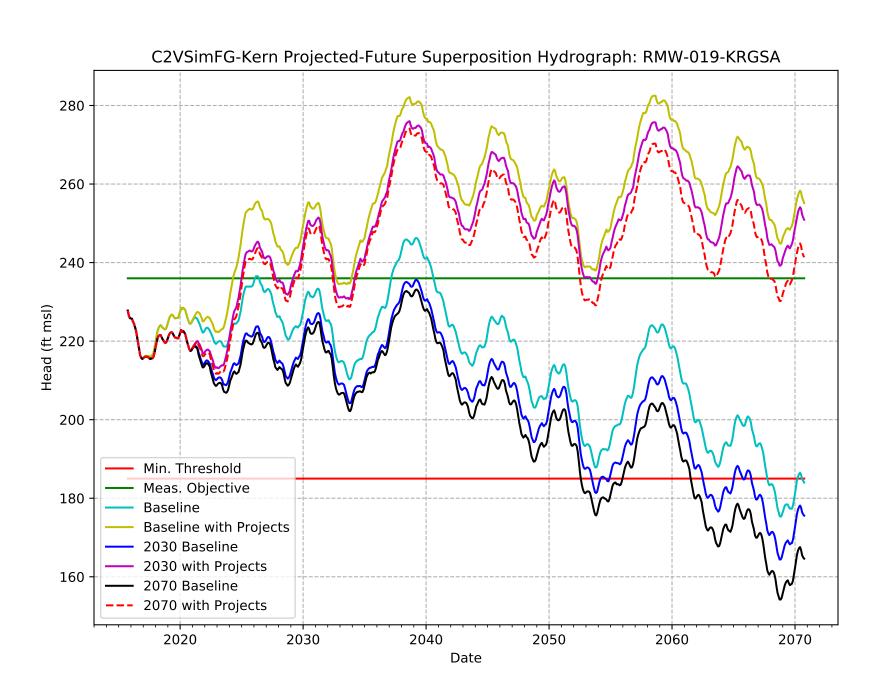
2040

Date

2050


2070

2060


2020

2030

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-017-KRGSA Min. Threshold Meas. Objective Baseline

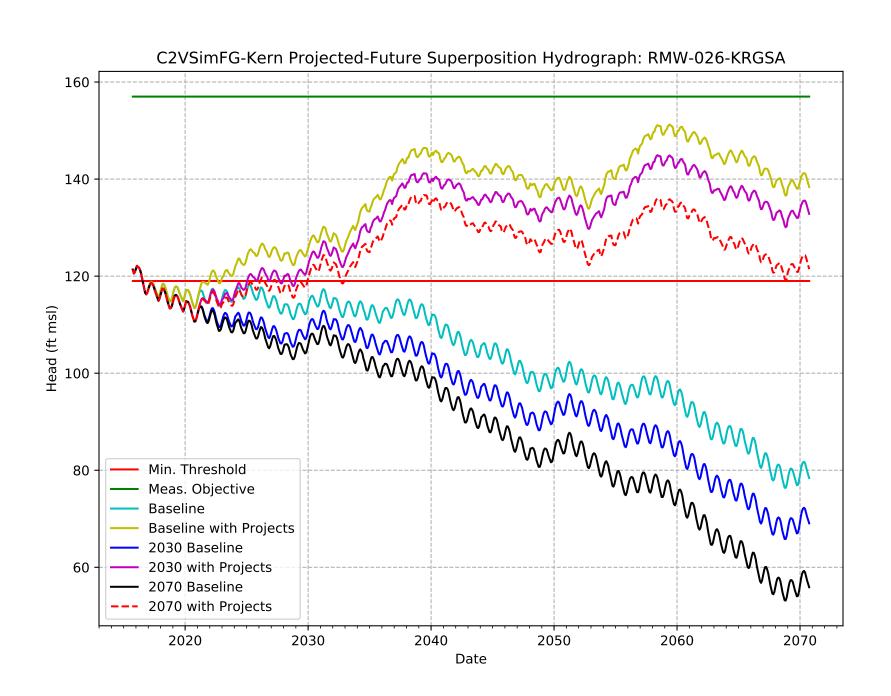
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-018-KRGSA 200 -Min. Threshold Meas. Objective Baseline Baseline with Projects 180 2030 Baseline 2030 with Projects 2070 Baseline 160 2070 with Projects 140 Head (ft msl) 120 100 80 60 40 2070 2020 2030 2040 2050 2060 Date

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-020-KRGSA 360 340 Head (ft msl) 320 300 Min. Threshold Meas. Objective Baseline Baseline with Projects 280 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 260 2020 2030 2070 2040 2050 2060 Date

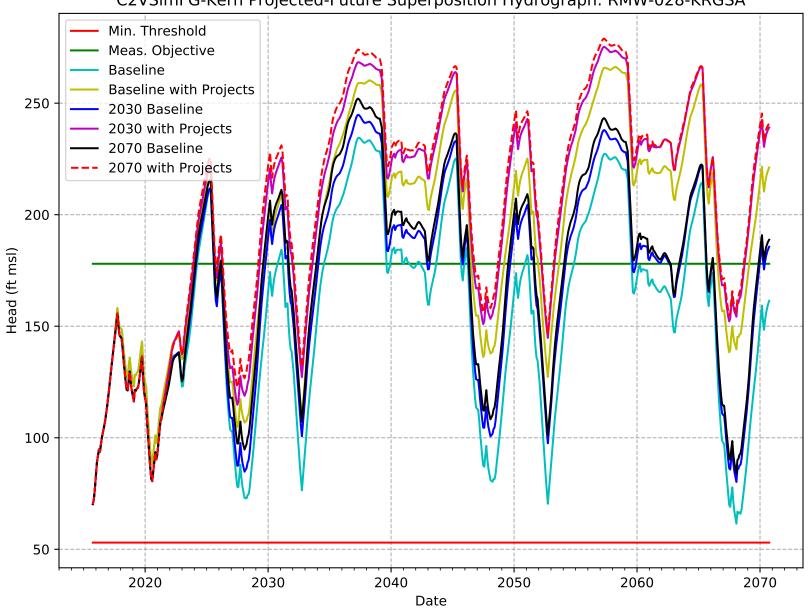
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-021-KRGSA 280 260 240 Head (ft msl) 0000 Min. Threshold 200 Meas. Objective Baseline Baseline with Projects 2030 Baseline 180 2030 with Projects 2070 Baseline 2070 with Projects 2020 2030 2040 2050 2070 2060 Date

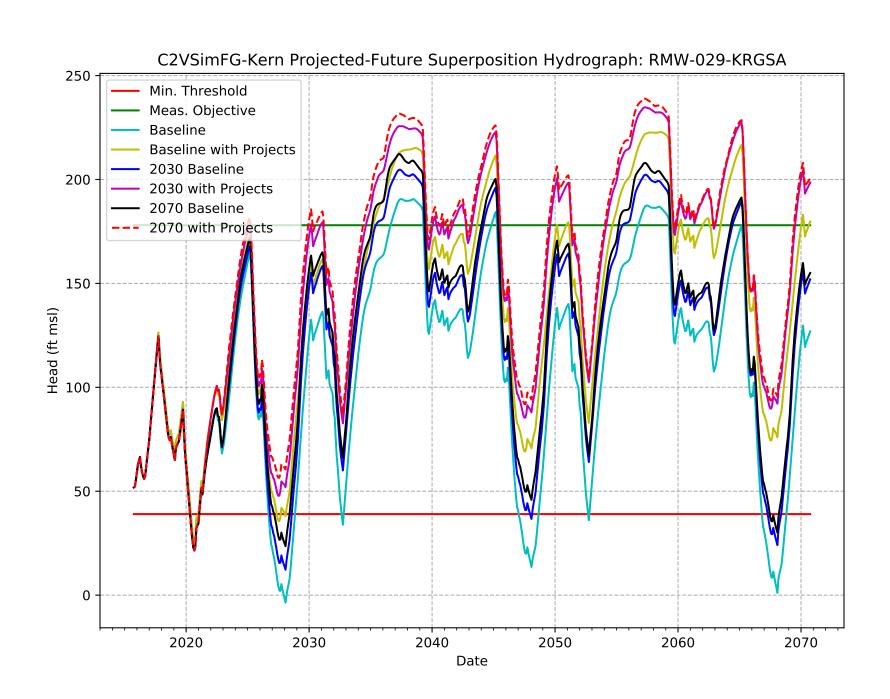
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-022-KRGSA Min. Threshold Meas. Objective 300 Baseline Baseline with Projects 2030 Baseline 2030 with Projects 275 2070 Baseline 2070 with Projects 250 Head (ft msl) 225 200 175 150

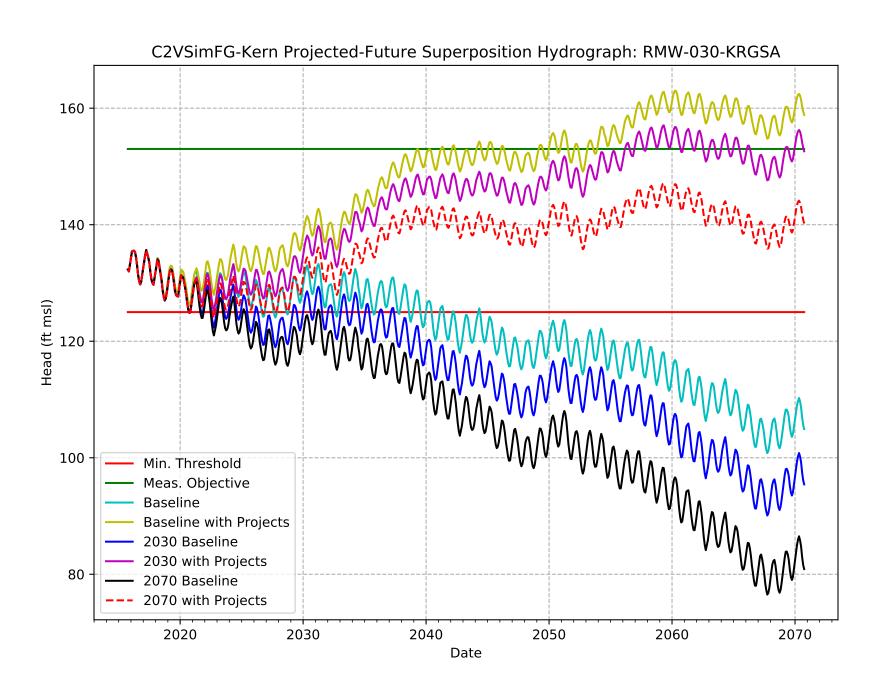
Date


2050

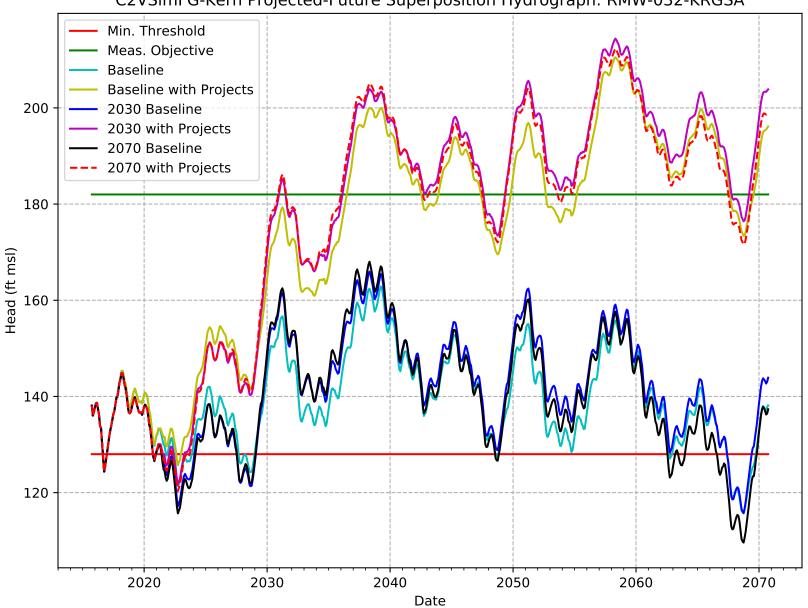
2070

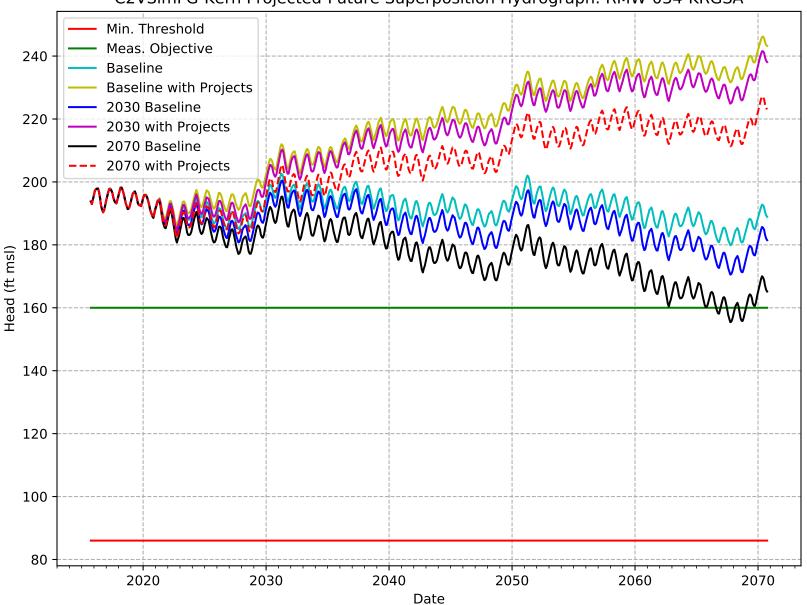

2060


2020

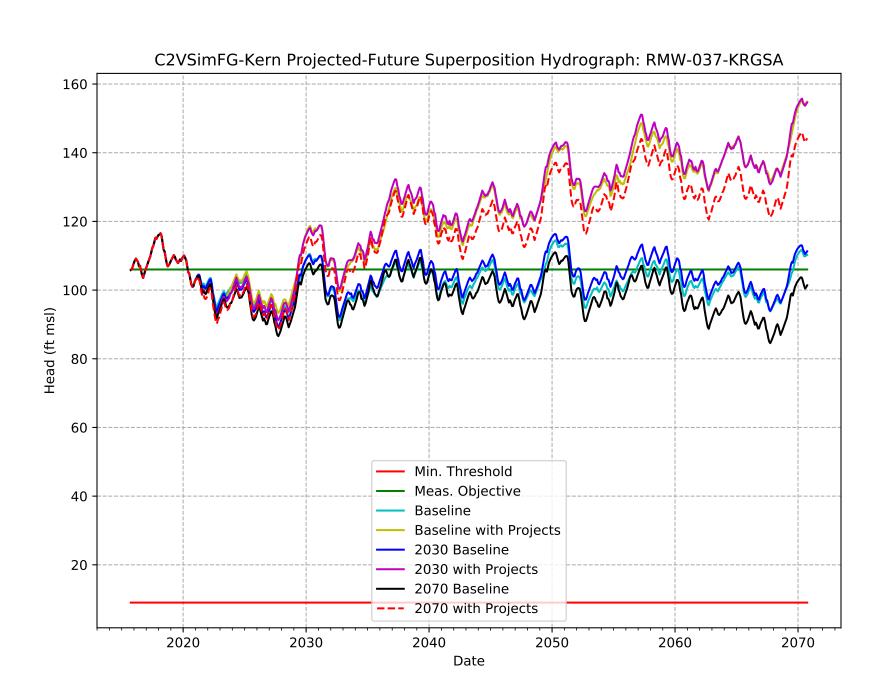

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-025-KRGSA 280 Min. Threshold Meas. Objective Baseline Baseline with Projects 260 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 240 Head (ft msl) 200 180 160 140 2020 2030 2050 2070 2040 2060 Date

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-028-KRGSA

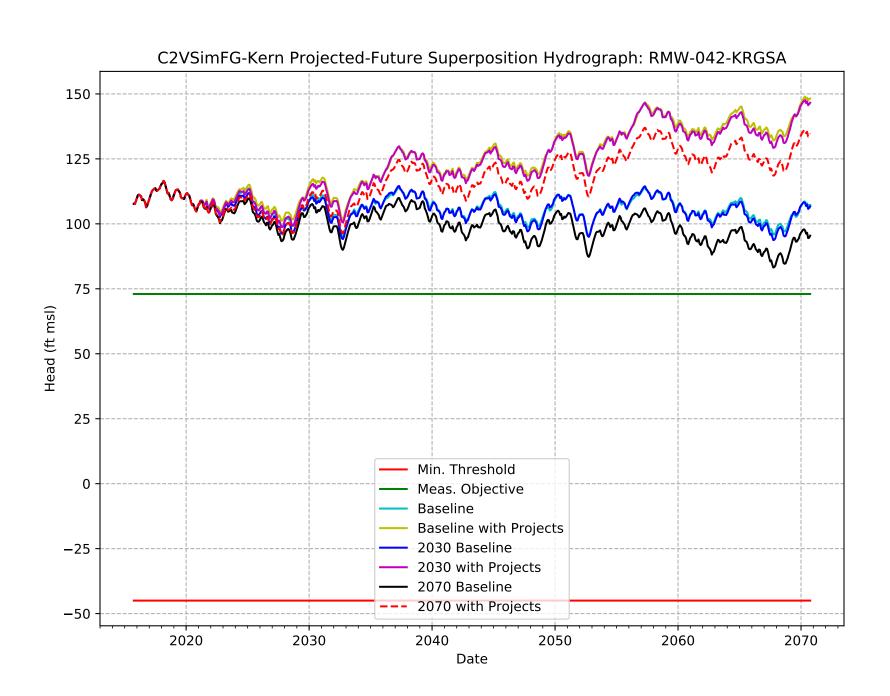


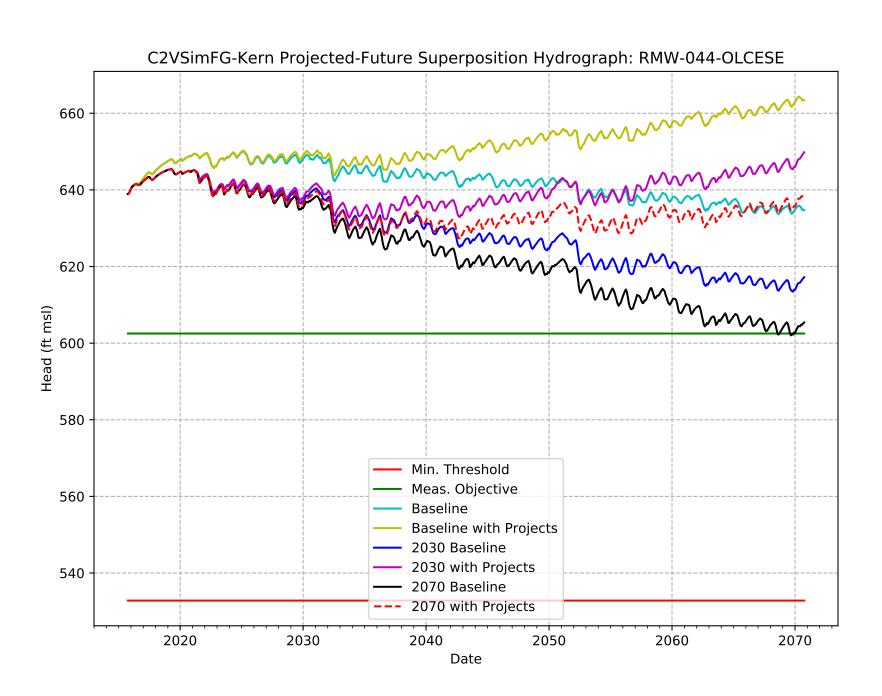


C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-031-KRGSA Min. Threshold 220 Meas. Objective Baseline Baseline with Projects 200 2030 Baseline 2030 with Projects 2070 Baseline 180 -2070 with Projects 160 Head (ft msl) 140 120 100 80 60 2020 2030 2040 2050 2070 2060

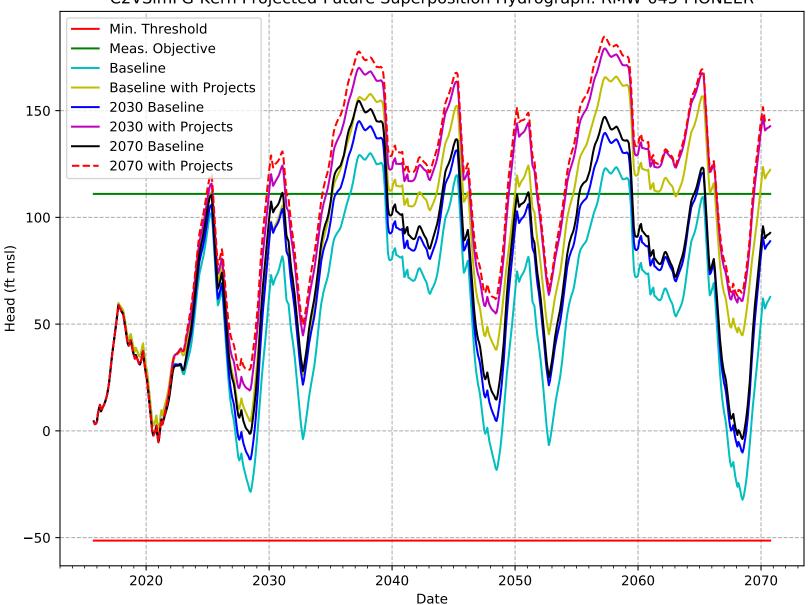

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-032-KRGSA

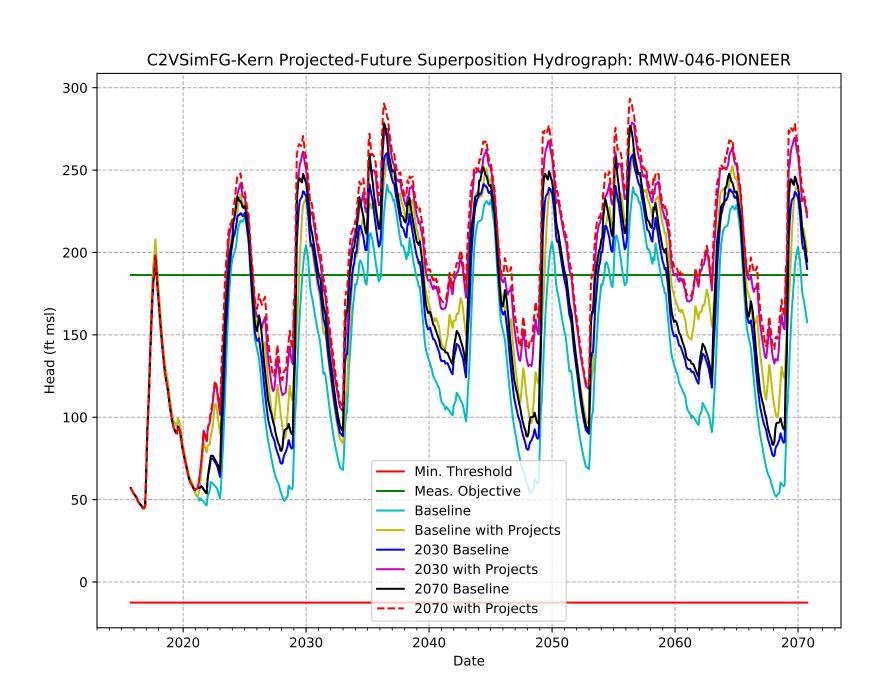
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-034-KRGSA

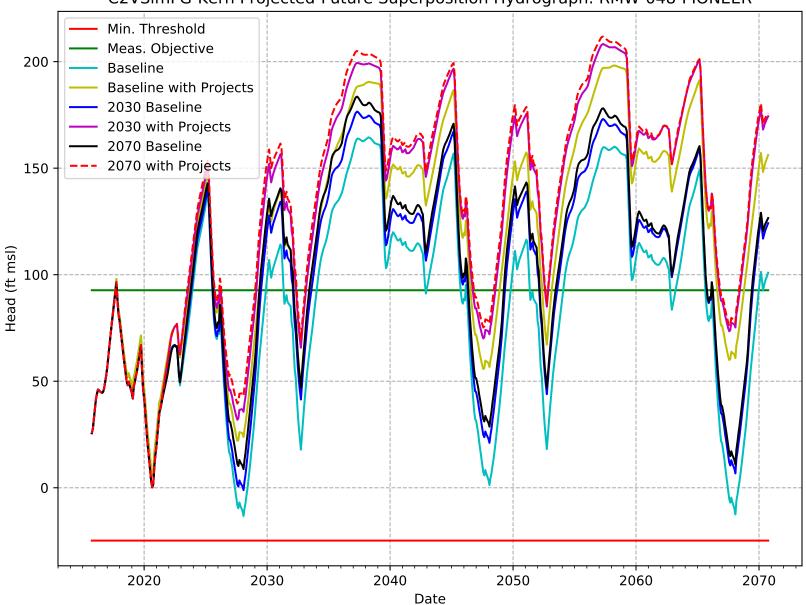

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-035-KRGSA Min. Threshold 180 Meas. Objective Baseline Baseline with Projects 160 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 140 120 Head (ft msl) 100 80 60 40 2020 2030 2040 2050 2070 2060



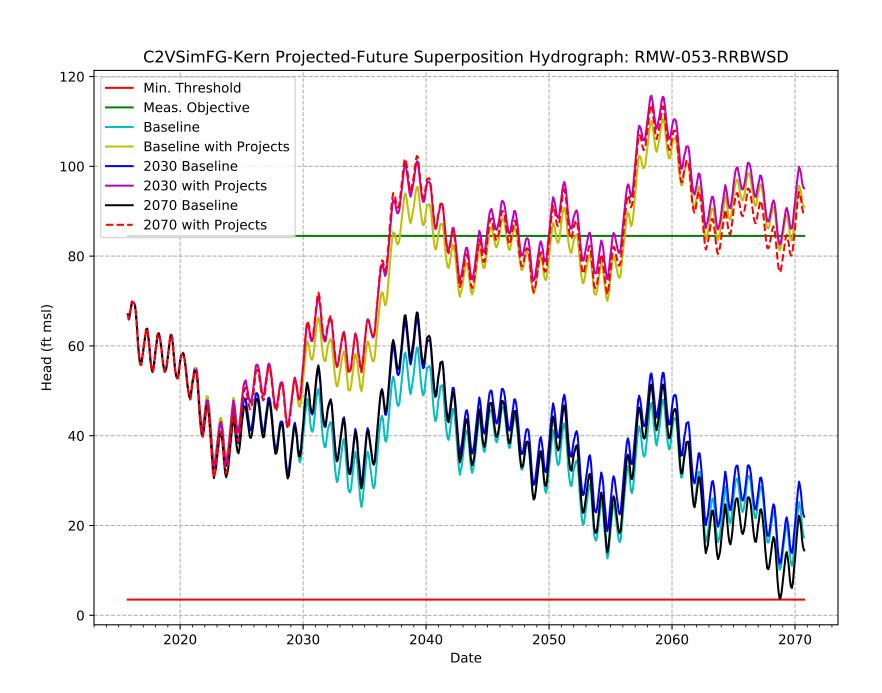
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-038-KRGSA 180 -Min. Threshold Meas. Objective Baseline Baseline with Projects 160 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 140 Head (ft msl) 120 100 80 60 2020 2030 2040 2050 2070 2060 Date

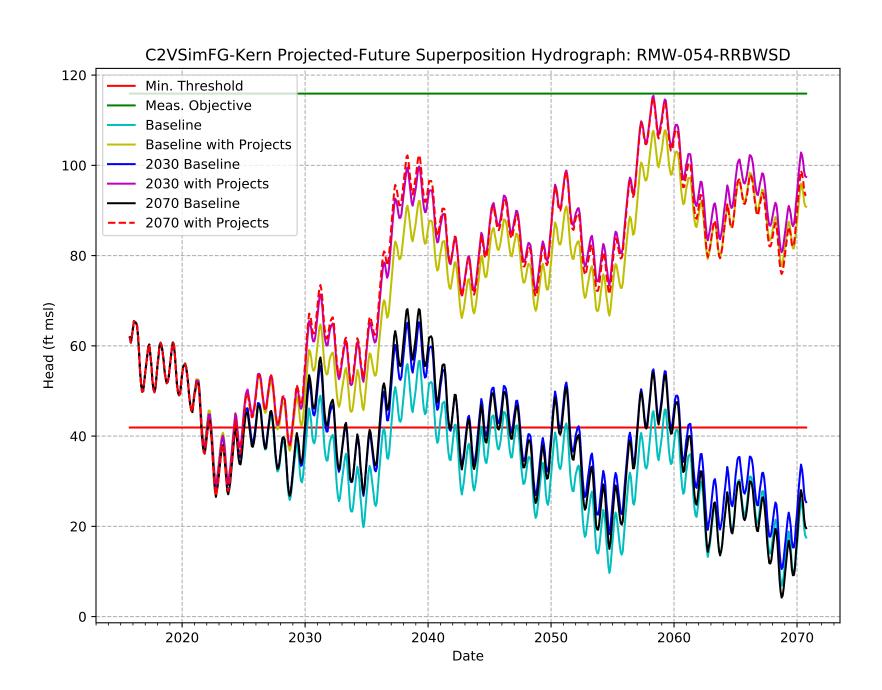

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-040-KRGSA Min. Threshold 220 Meas. Objective Baseline Baseline with Projects 200 2030 Baseline 2030 with Projects 2070 Baseline 180 -2070 with Projects 160 Head (ft msl) 140 120 100 80 60 2020 2030 2040 2050 2070 2060 Date


C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-041-KRGSA Min. Threshold 200 Meas. Objective Baseline Baseline with Projects 180 2030 Baseline 2030 with Projects 2070 Baseline 160 -2070 with Projects 140 Head (ft msl) 120 100 80 60 40 2020 2030 2040 2050 2070 2060

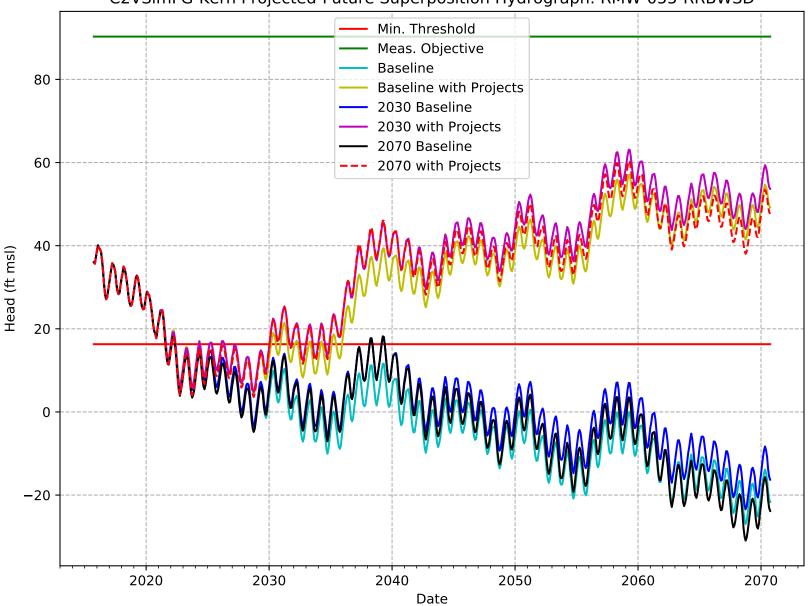


C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-045-PIONEER

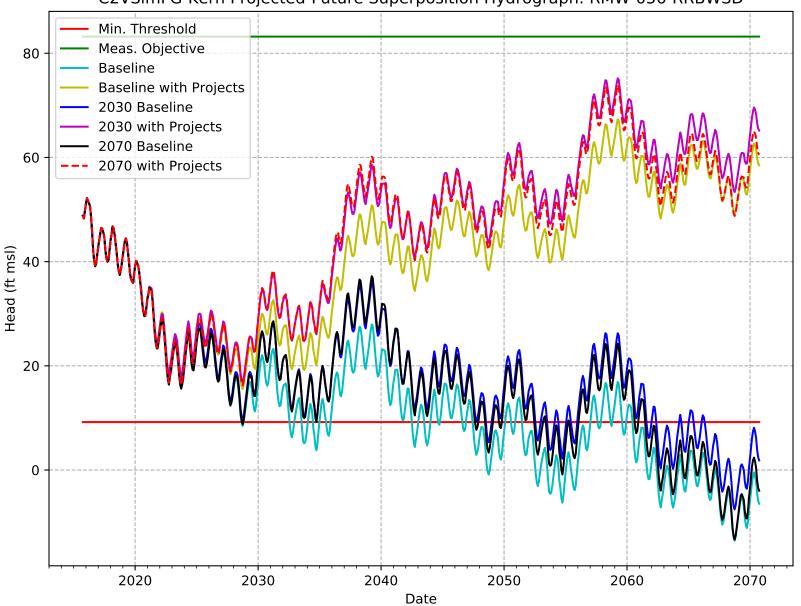

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-048-PIONEER

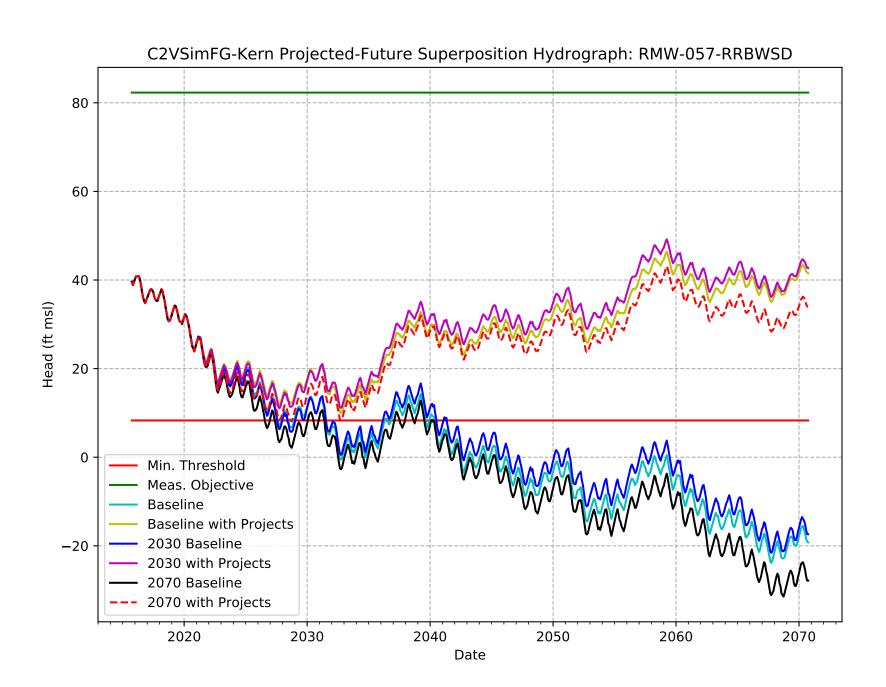


C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-049-PIONEER Min. Threshold 175 Meas. Objective Baseline Baseline with Projects 150 2030 Baseline 2030 with Projects 2070 Baseline 125 -2070 with Projects 100 Head (ft msl) 75 50 25 0 **-**25 2020 2030 2070 2040 2050 2060

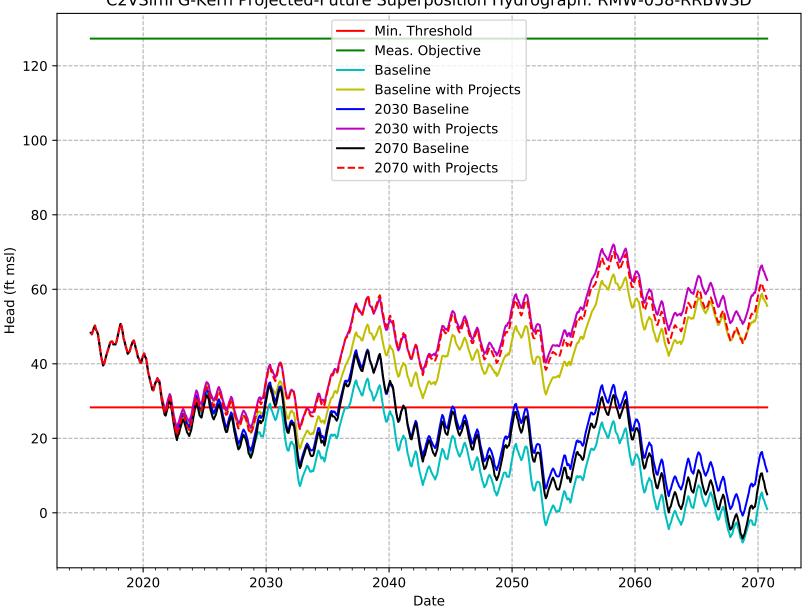

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-050-RRBWSD 40 20 Head (ft msl) 0 -20Min. Threshold -40Meas. Objective Baseline Baseline with Projects 2030 Baseline 2030 with Projects -60 2070 Baseline 2070 with Projects 2020 2030 2040 2050 2060 2070

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-052-RRBWSD Min. Threshold 80 Meas. Objective Baseline Baseline with Projects 2030 Baseline 60 2030 with Projects 2070 Baseline 2070 with Projects 40 Head (ft msl) 20 0 -20 2020 2030 2040 2050 2070 2060 Date





C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-055-RRBWSD



C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-056-RRBWSD

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-058-RRBWSD

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-059-RRBWSD Min. Threshold 140 Meas. Objective Baseline Baseline with Projects 2030 Baseline 120 2030 with Projects 2070 Baseline 2070 with Projects 100 Head (ft msl) 80 60 40 20 2020 2030 2040 2070 2050 2060

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-060-RRBWSD Min. Threshold Meas. Objective Baseline Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects

Date

2050

2070

2060

140 -

120

100

80

60

40

20

0

2020

2030

Head (ft msl)

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-061-RRBWSD Min. Threshold Meas. Objective 175 · Baseline Baseline with Projects 2030 Baseline 2030 with Projects 150 · 2070 Baseline 2070 with Projects 125 Head (ft msl) 100 75 50 25 2020 2030 2070 2040 2050 2060

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-062-RRBWSD Min. Threshold Meas. Objective 200 Baseline Baseline with Projects 2030 Baseline 180 2030 with Projects 2070 Baseline 2070 with Projects 160 Head (ft msl) 140 120 100 80 60

Date

2050

2070

2060

2020

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-063-RRBWSD Min. Threshold 260 Meas. Objective Baseline Baseline with Projects 2030 Baseline 240 2030 with Projects 2070 Baseline 2070 with Projects 220 200 Head (ft msl) 180 160 140 120 2020 2030 2040 2050 2070 2060 Date

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-064-RRBWSD Min. Threshold Meas. Objective Baseline 200 Baseline with Projects 2030 Baseline 2030 with Projects 180 2070 Baseline 2070 with Projects 160 Head (ft msl) 140 120 100 80 60

Date

2050

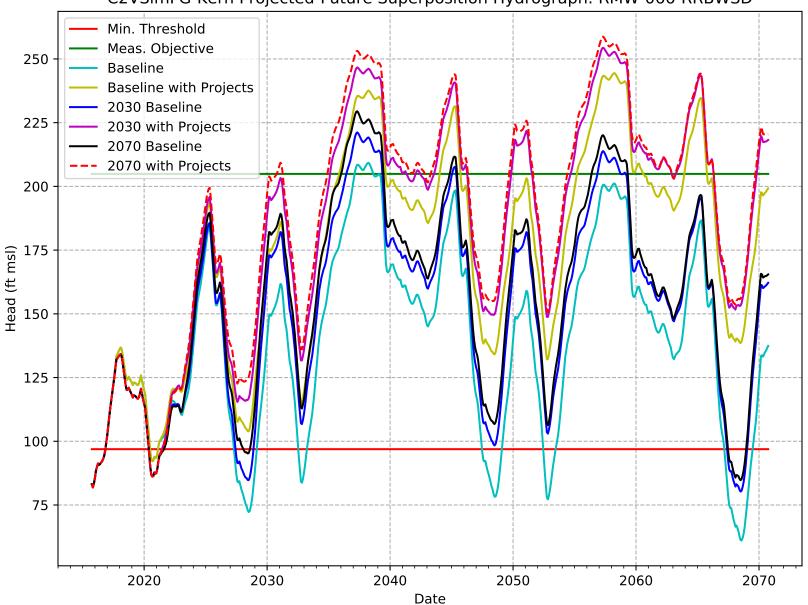
2070

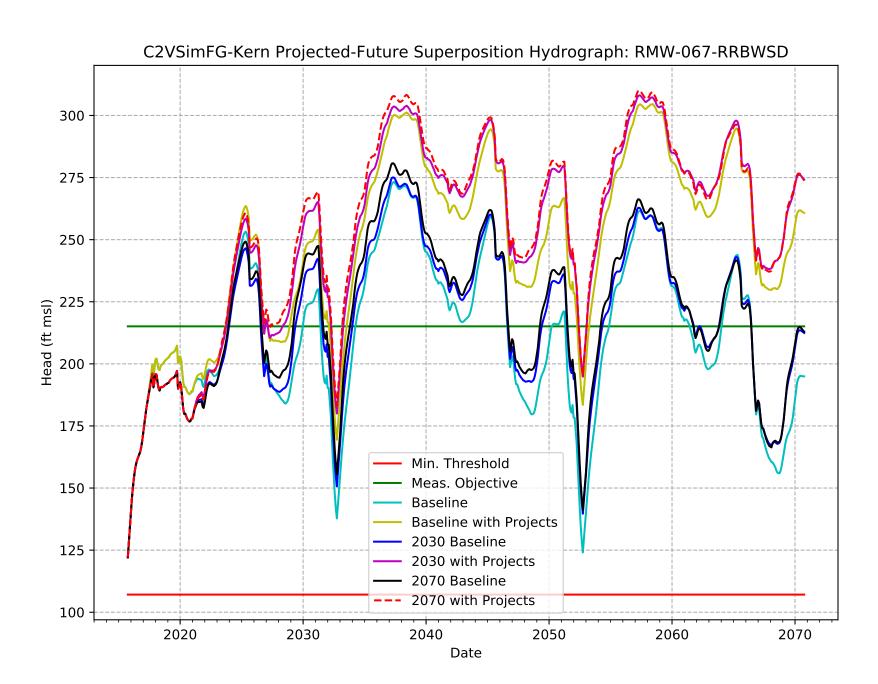
2060

2020

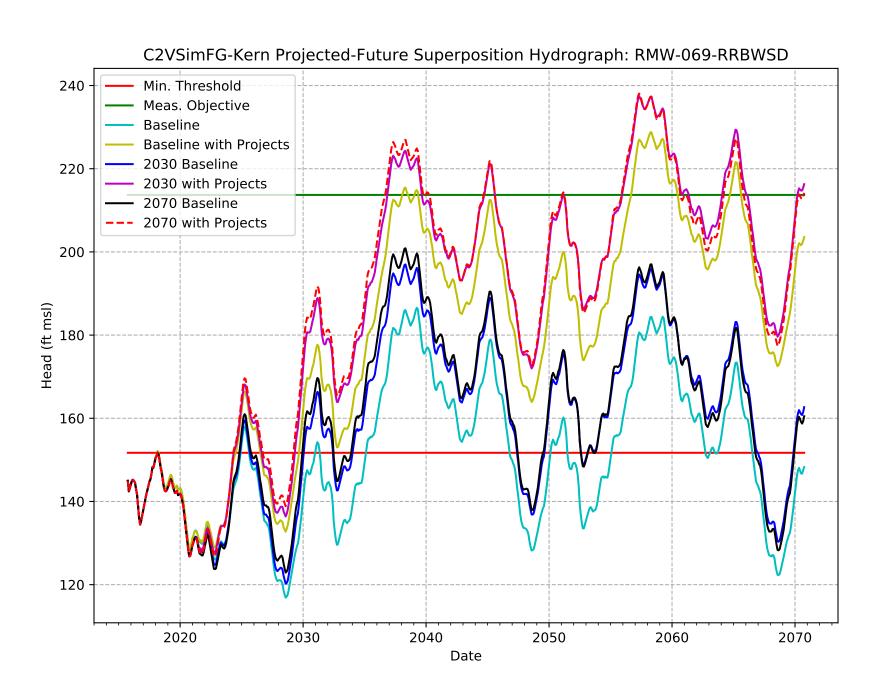
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-065-RRBWSD Min. Threshold Meas. Objective 200 Baseline Baseline with Projects 2030 Baseline 2030 with Projects 175 · 2070 Baseline 2070 with Projects 150 · Head (ft msl) 125 100 75 50 25

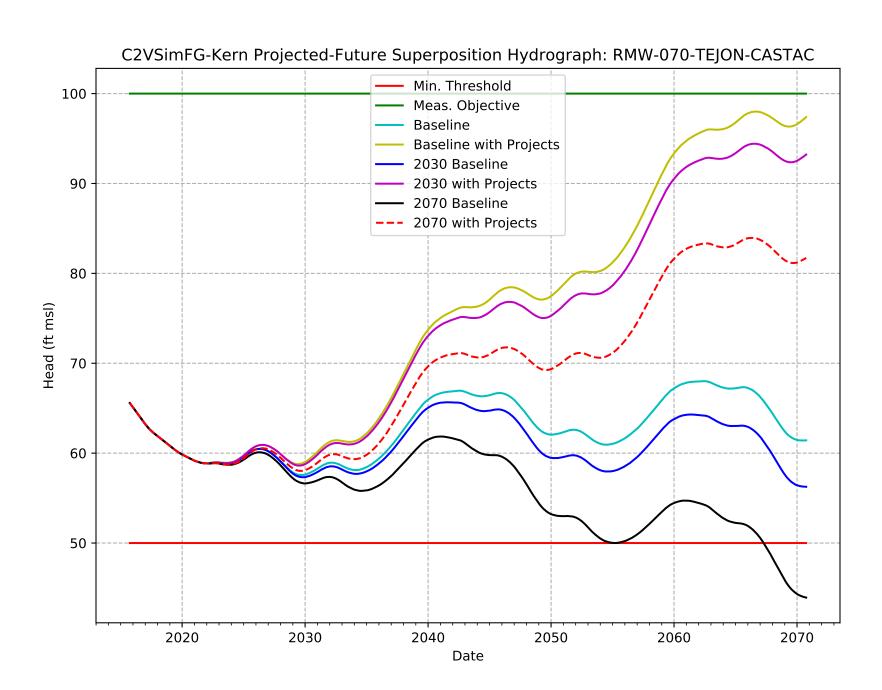
Date

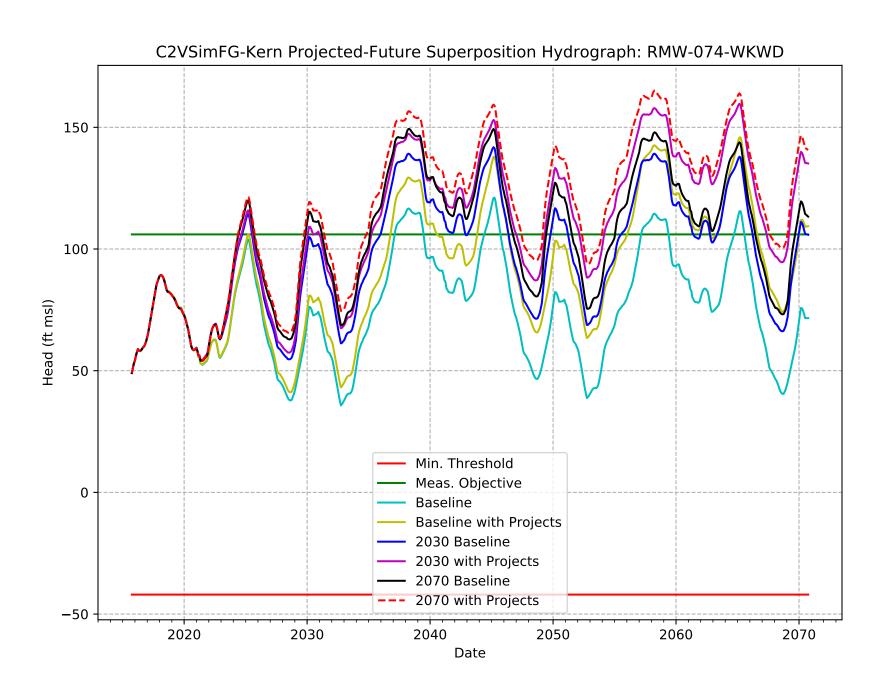

2050

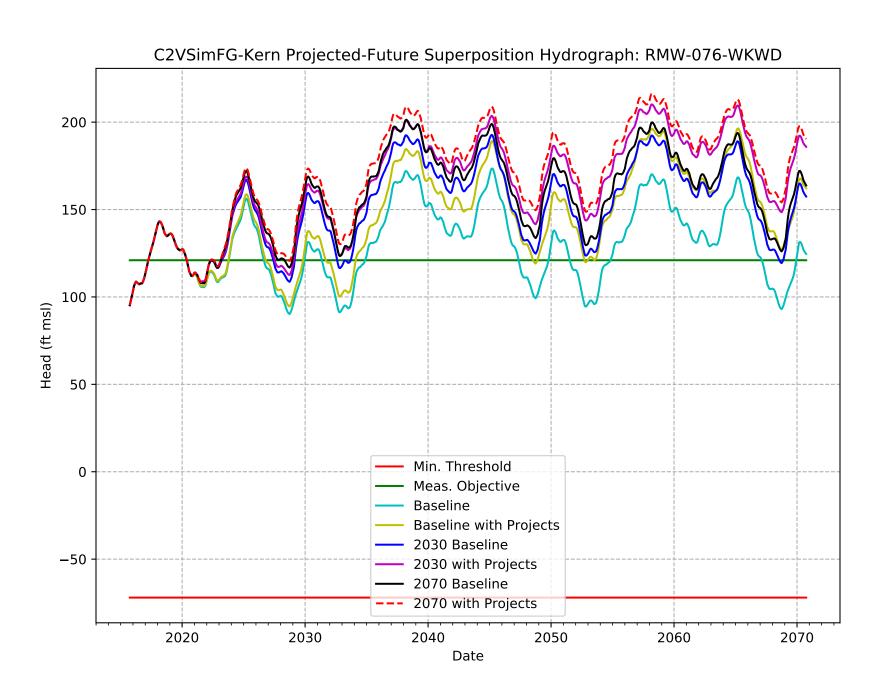

2070

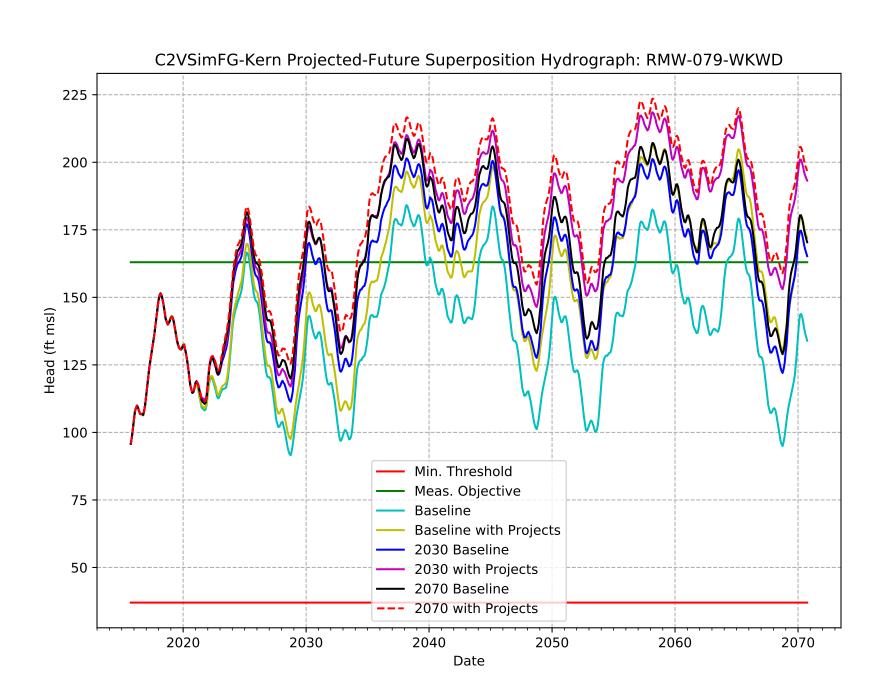
2060

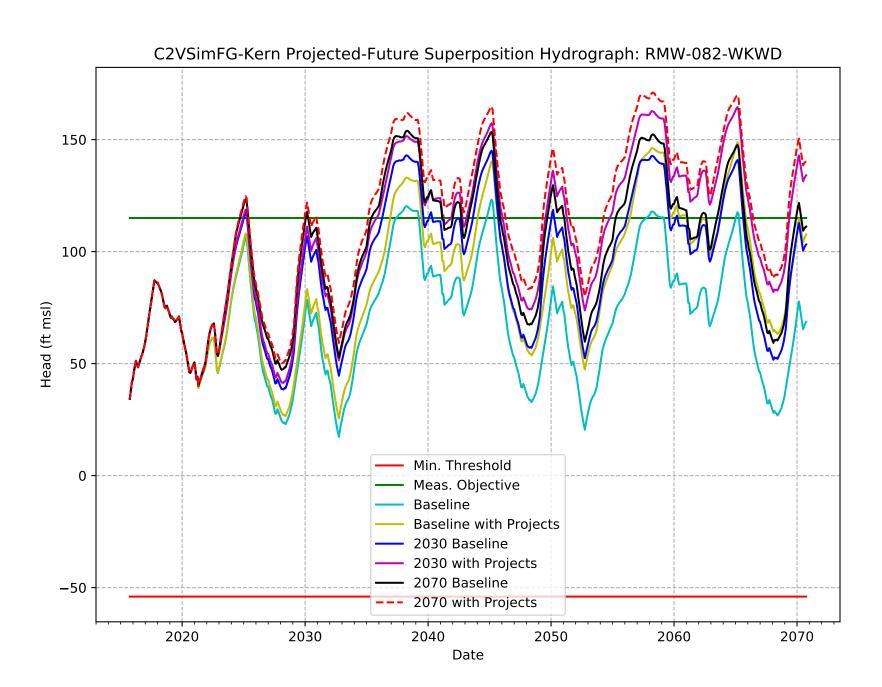

2020

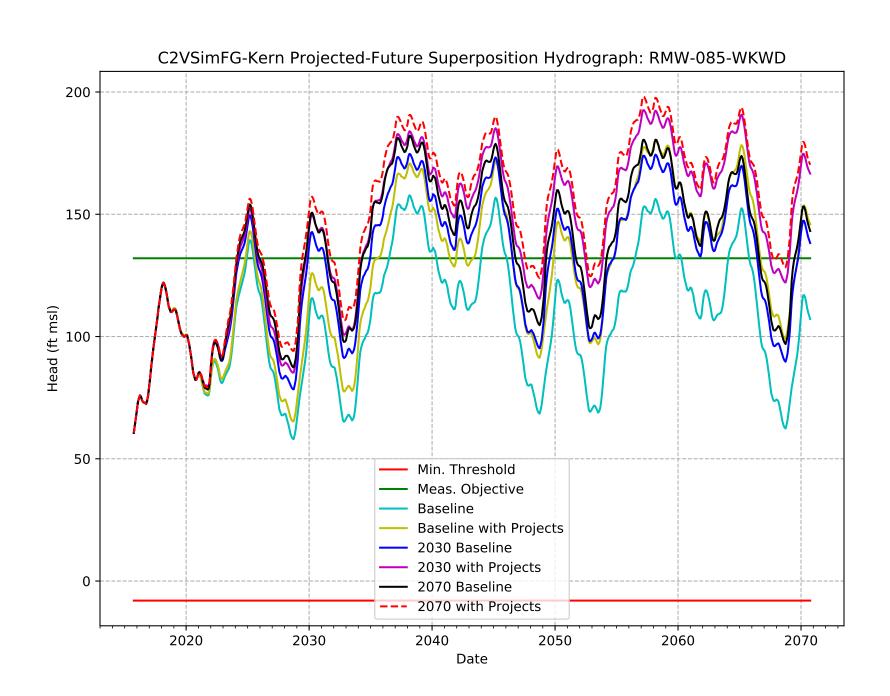

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-066-RRBWSD

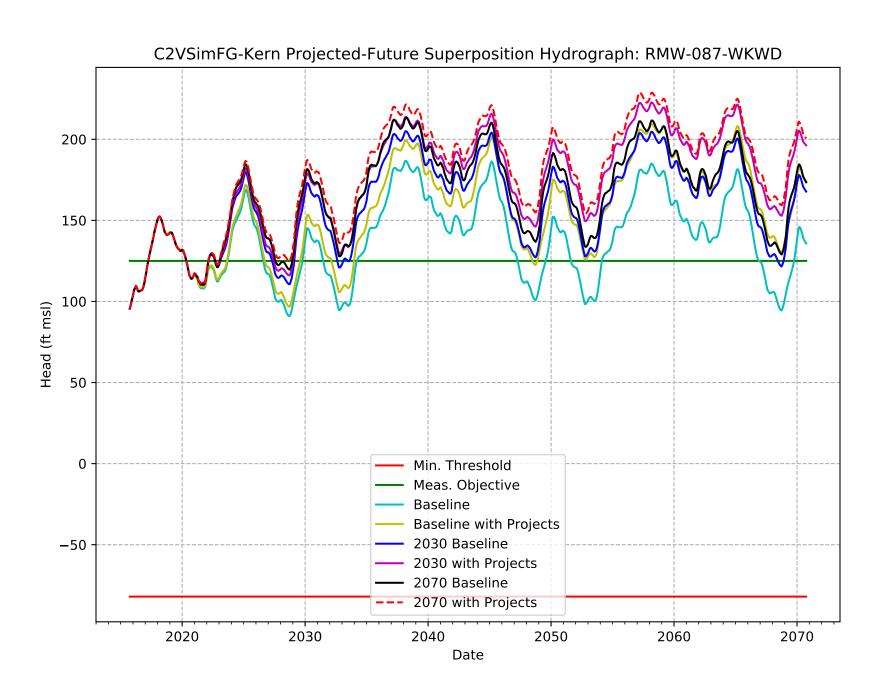

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-068-RRBWSD 200 Min. Threshold 180 Meas. Objective Head (ft msl) Baseline Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline 160 2070 with Projects 140 2020 2030 2040 2070 2050 2060 Date

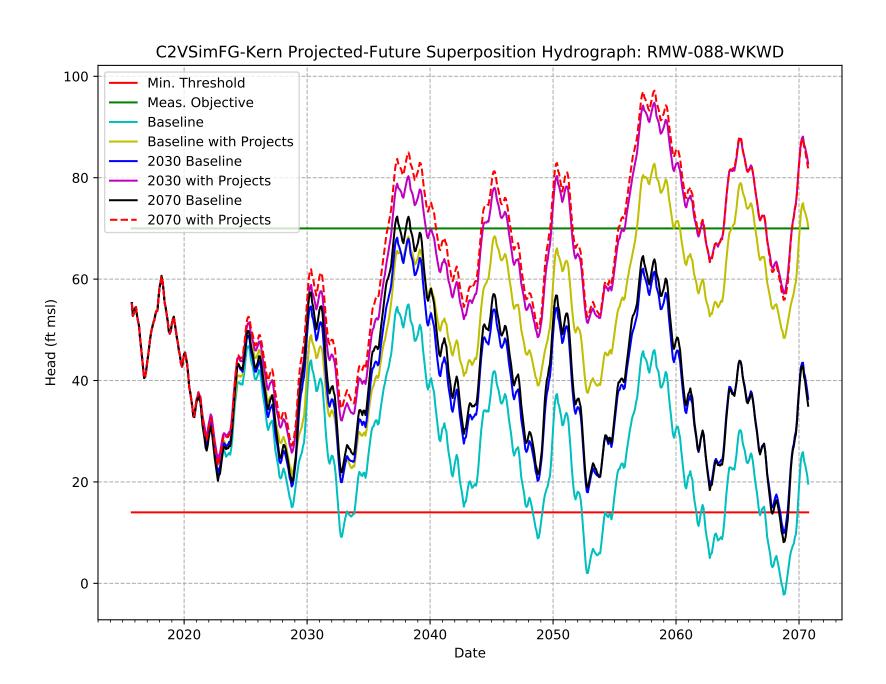


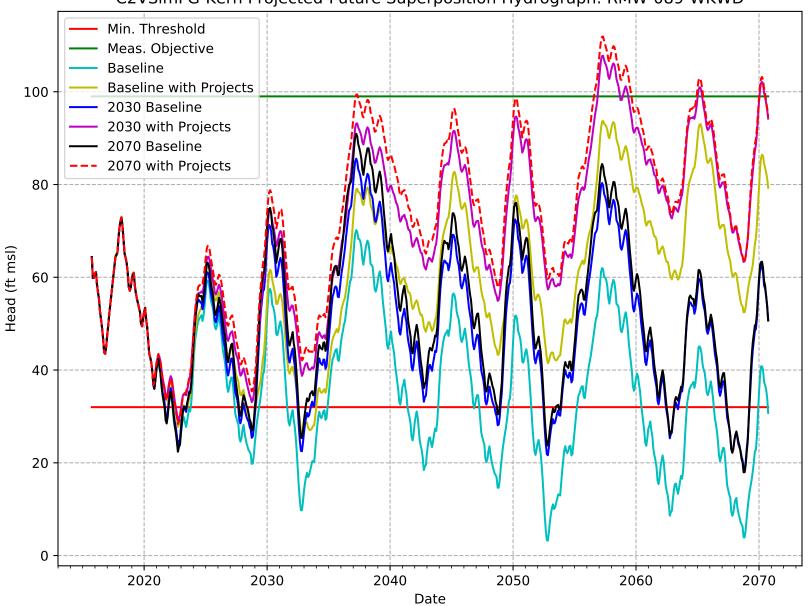


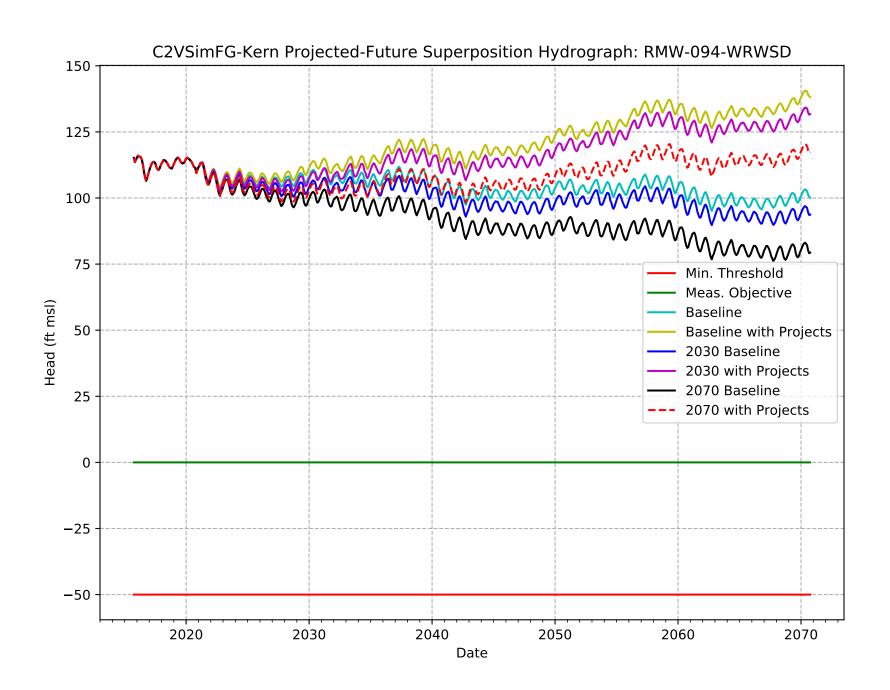

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-072-WKWD Min. Threshold Meas. Objective 200 Baseline Baseline with Projects 2030 Baseline 2030 with Projects 180 2070 Baseline 2070 with Projects 160 Head (ft msl) 140 120 100 80 2020 2030 2070 2040 2050 2060

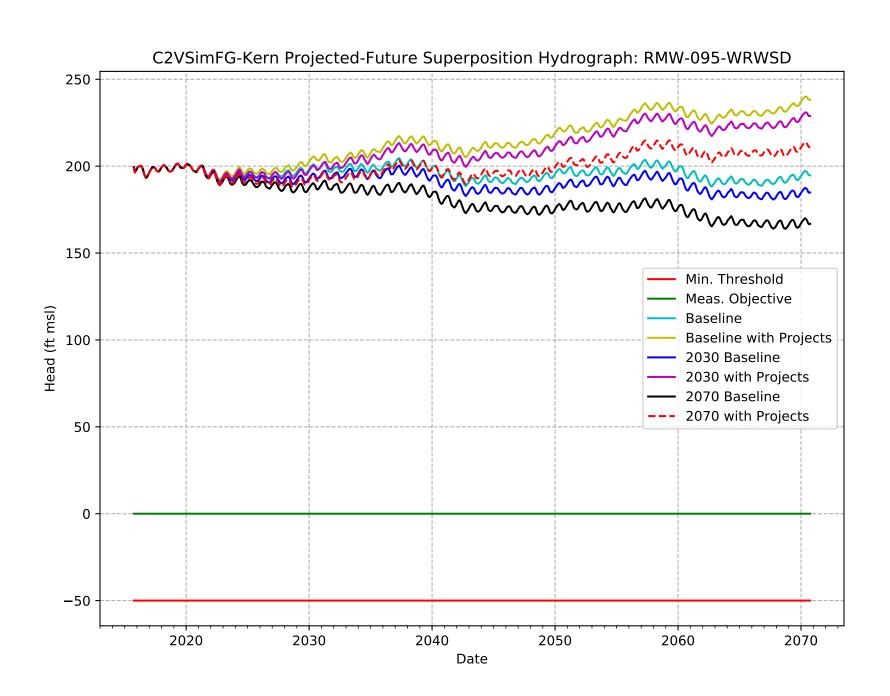

Date

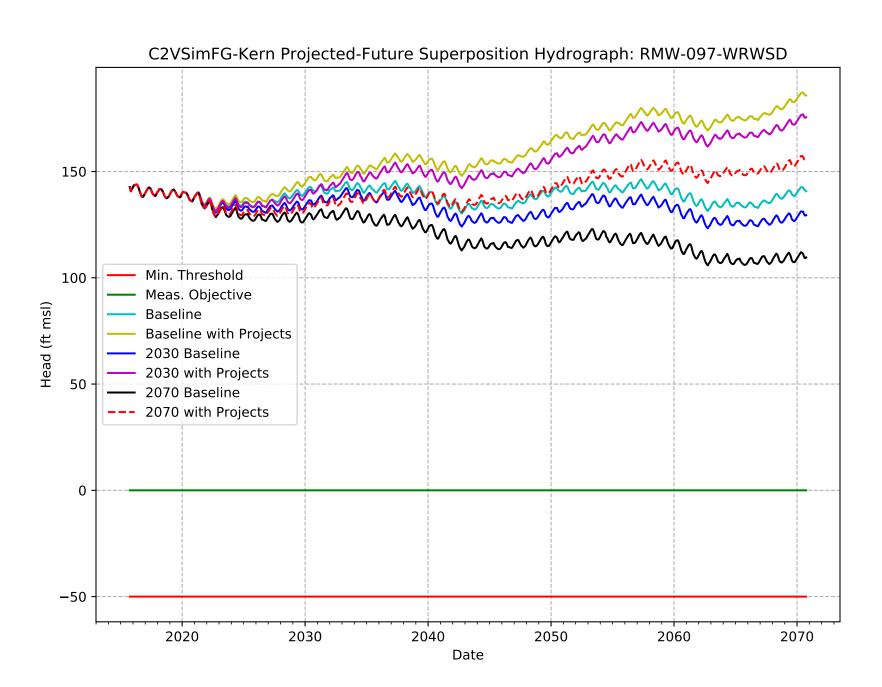


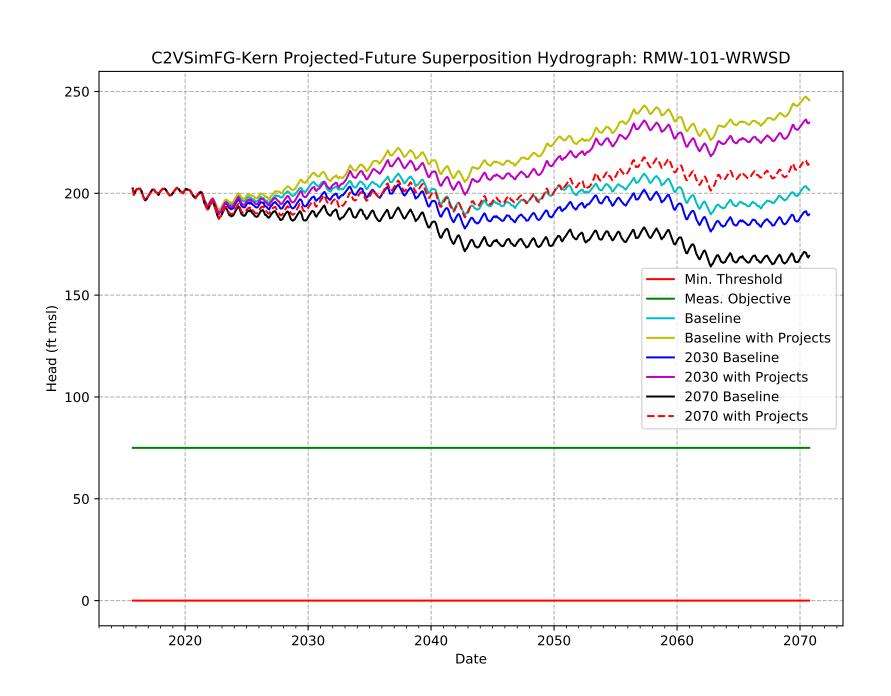


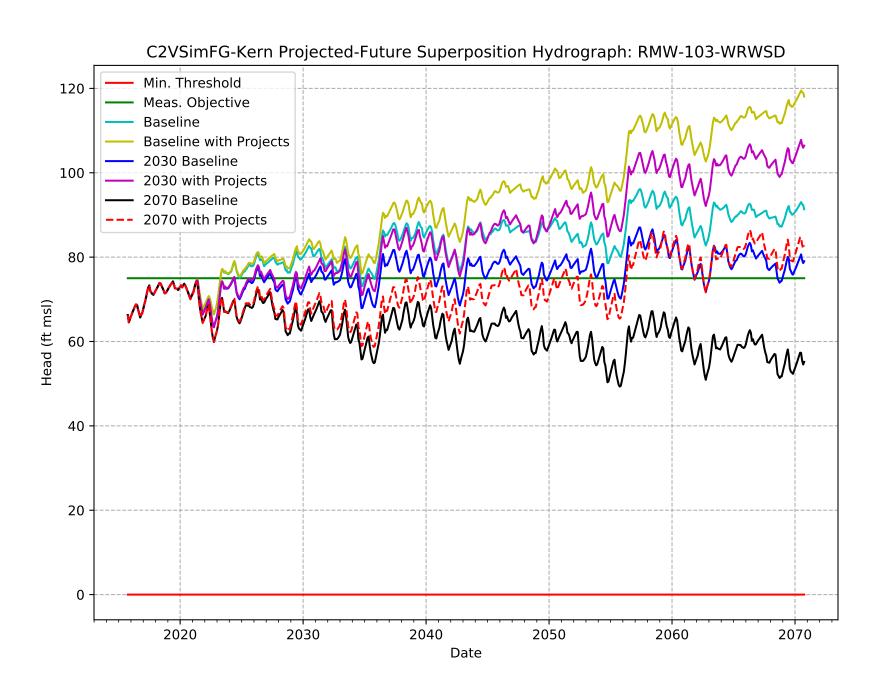


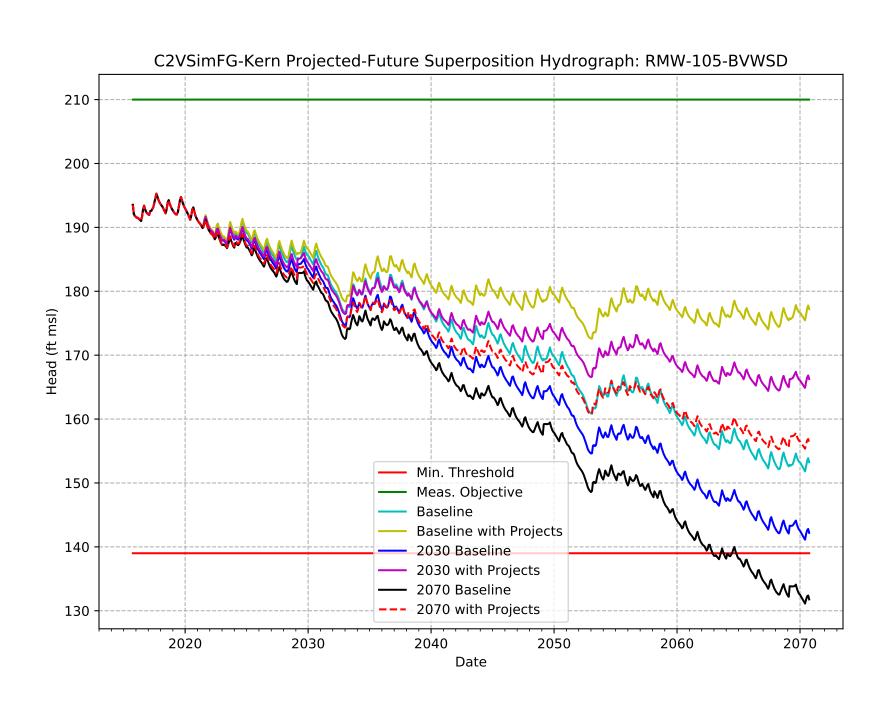


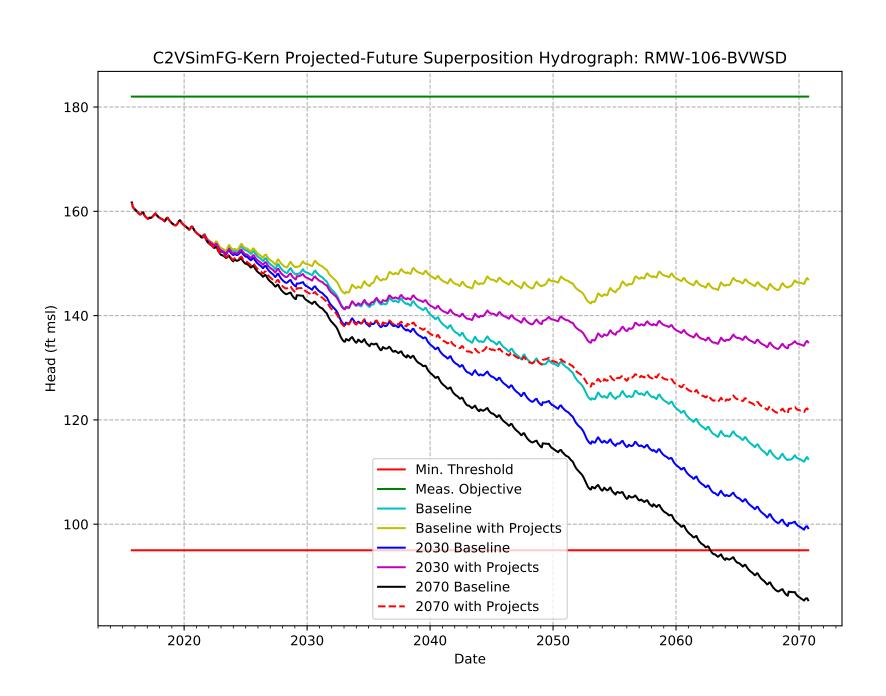


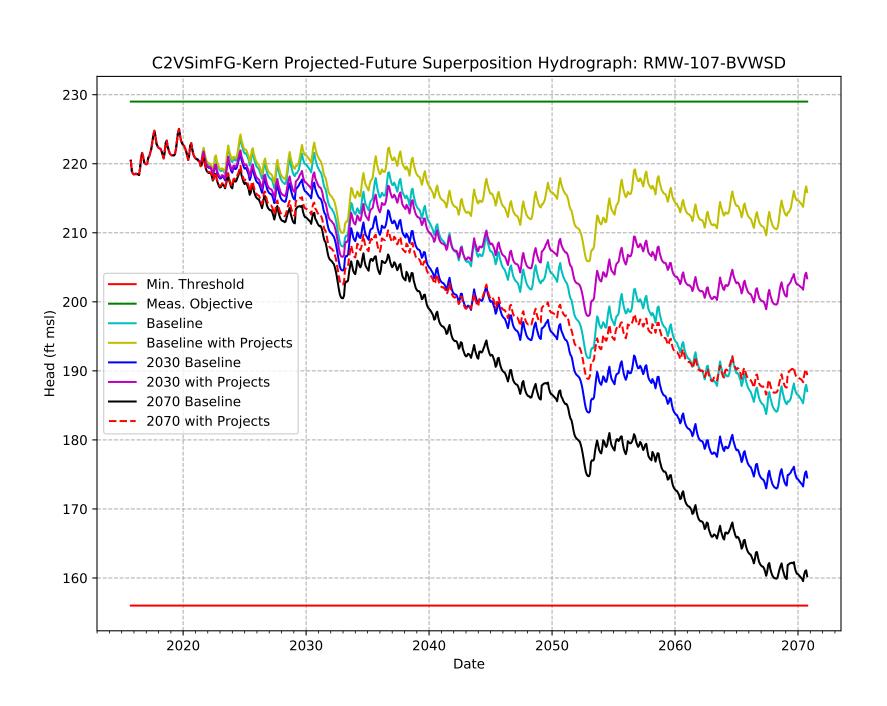


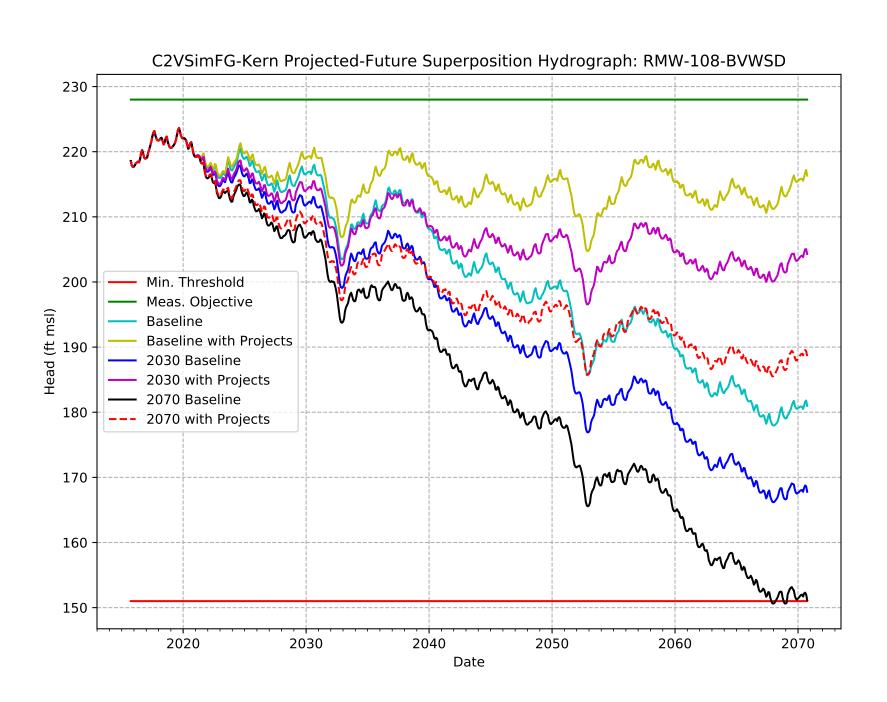

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-089-WKWD

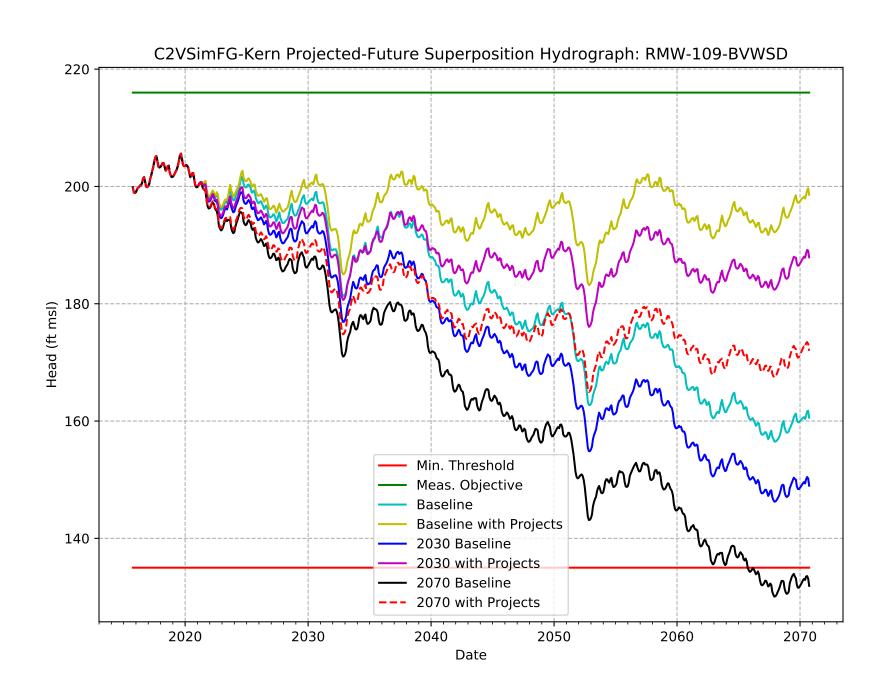


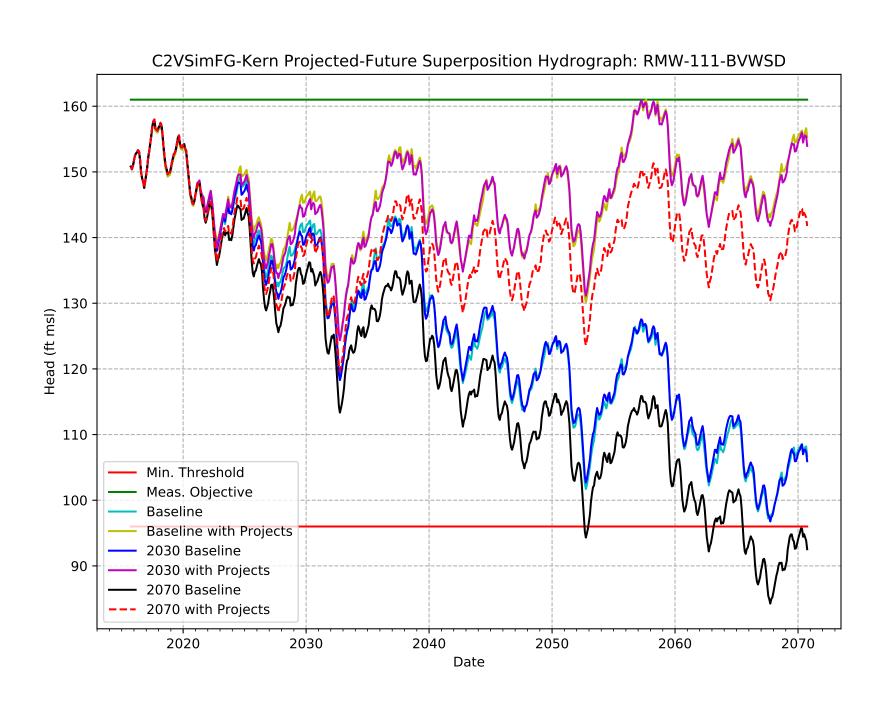


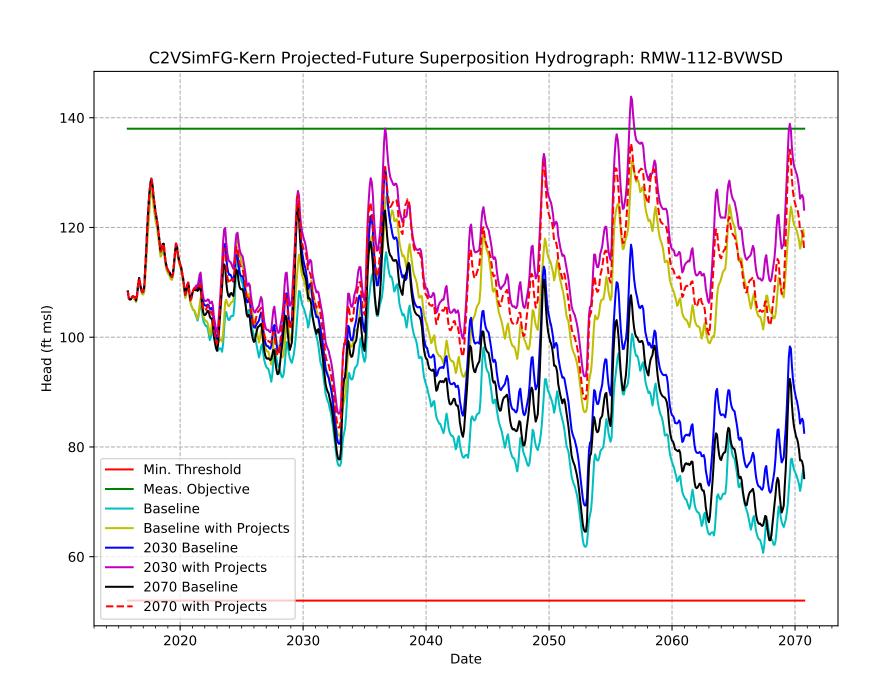


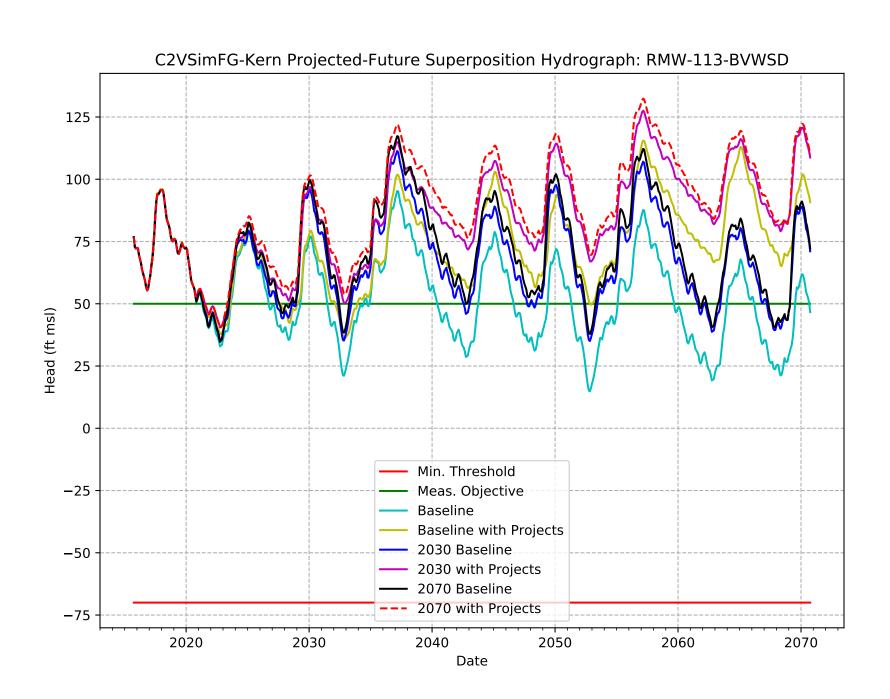


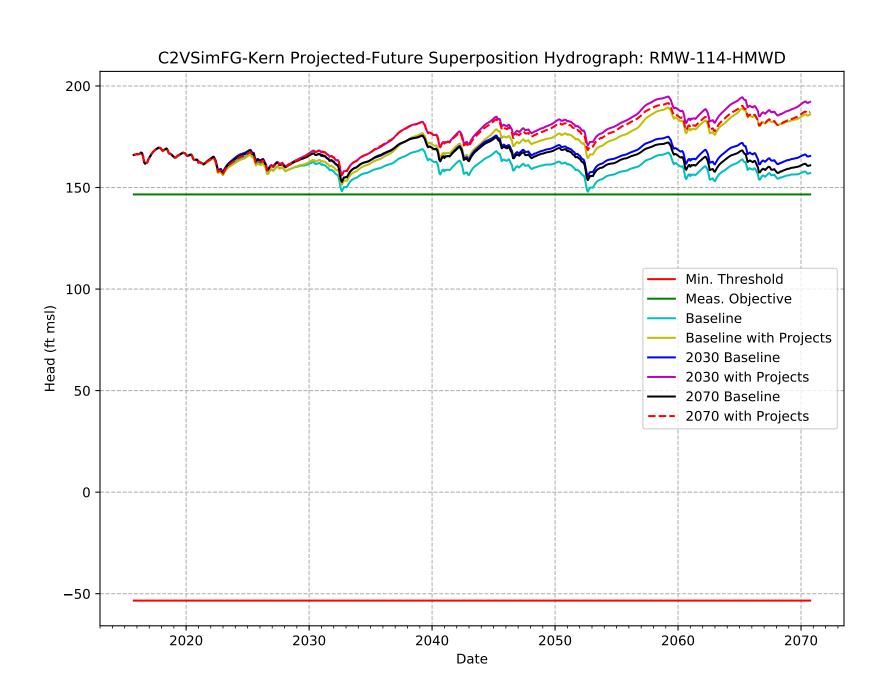


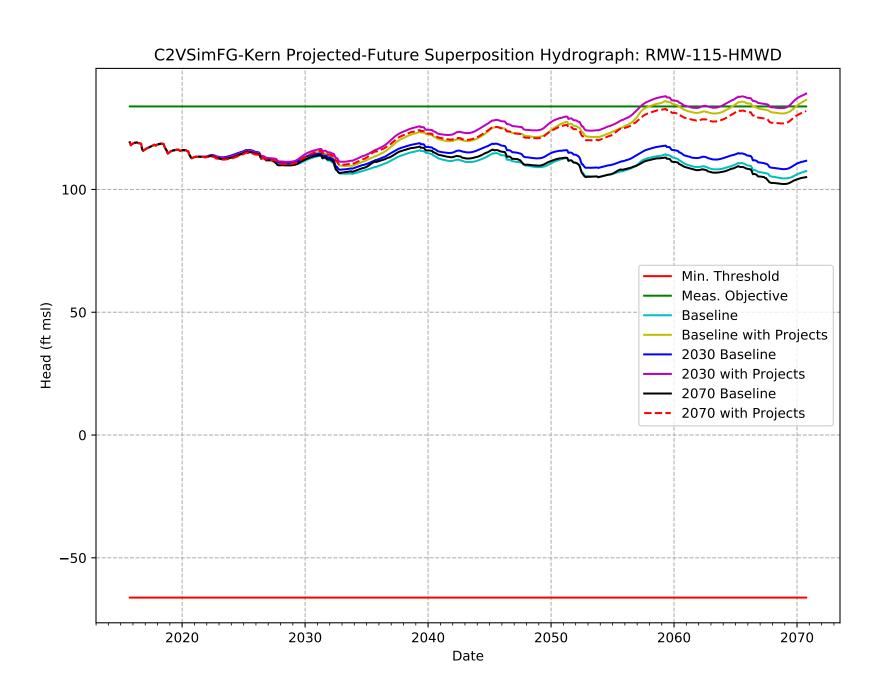


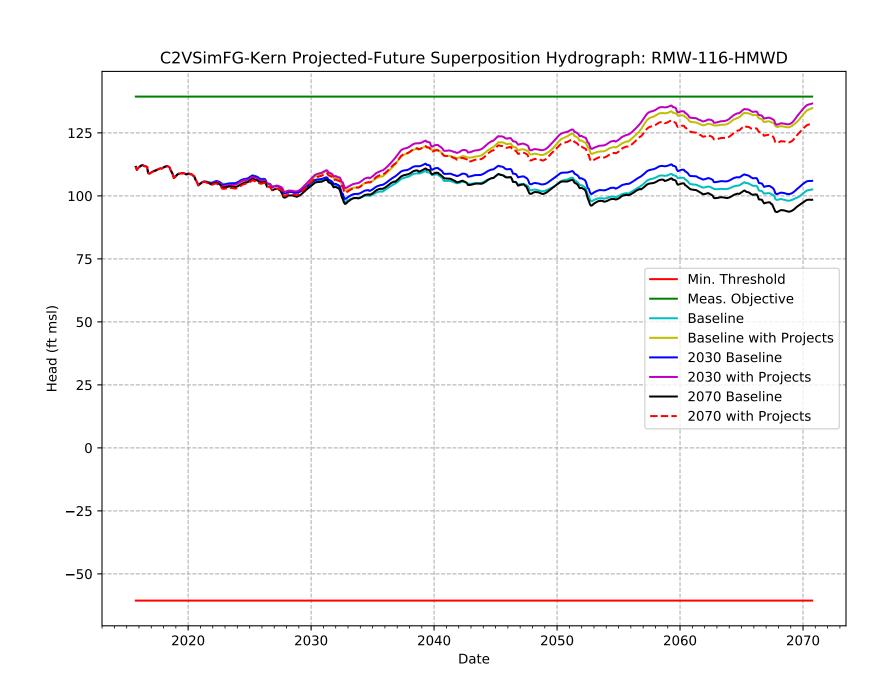


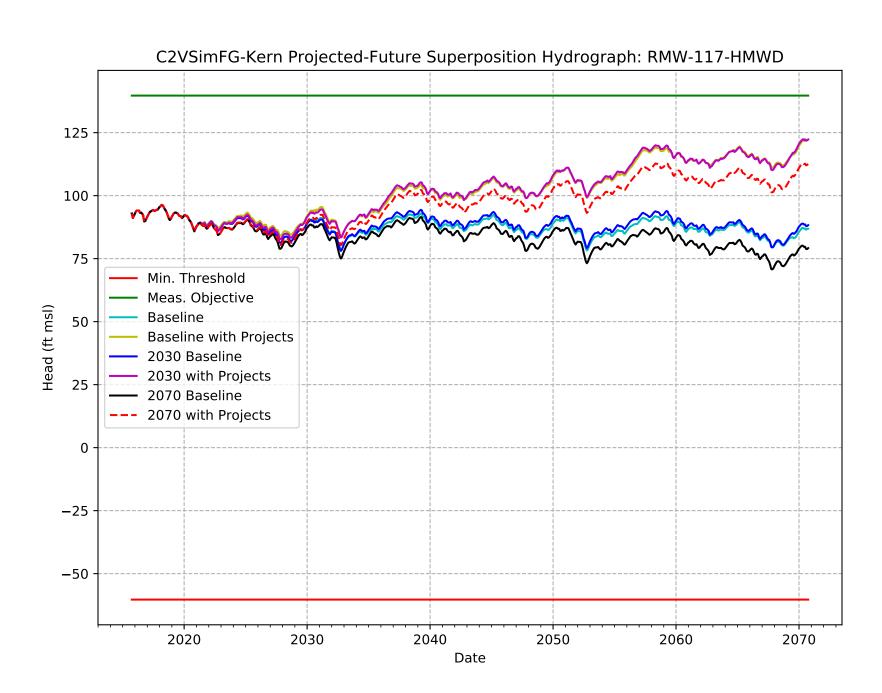


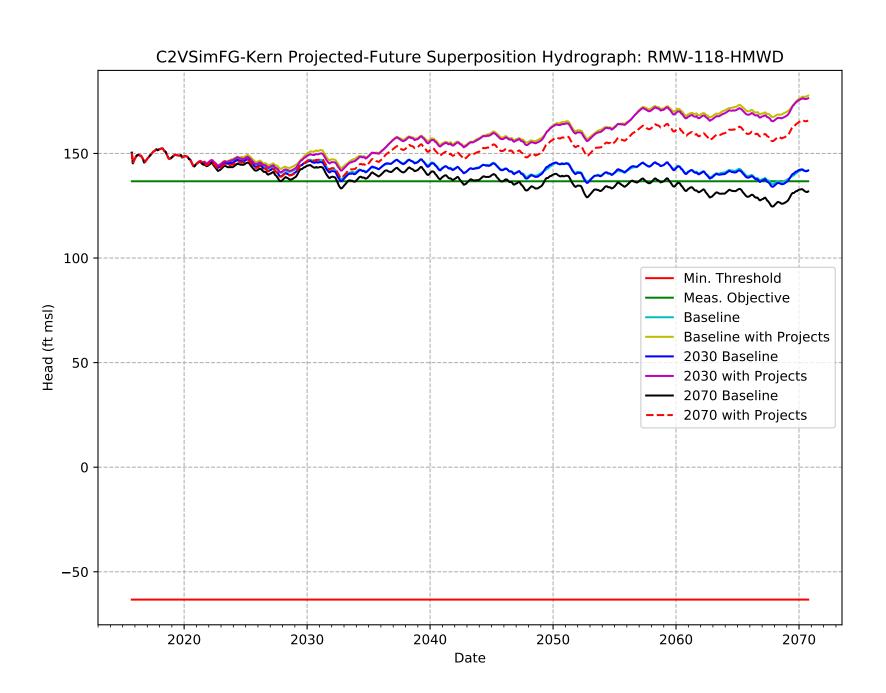


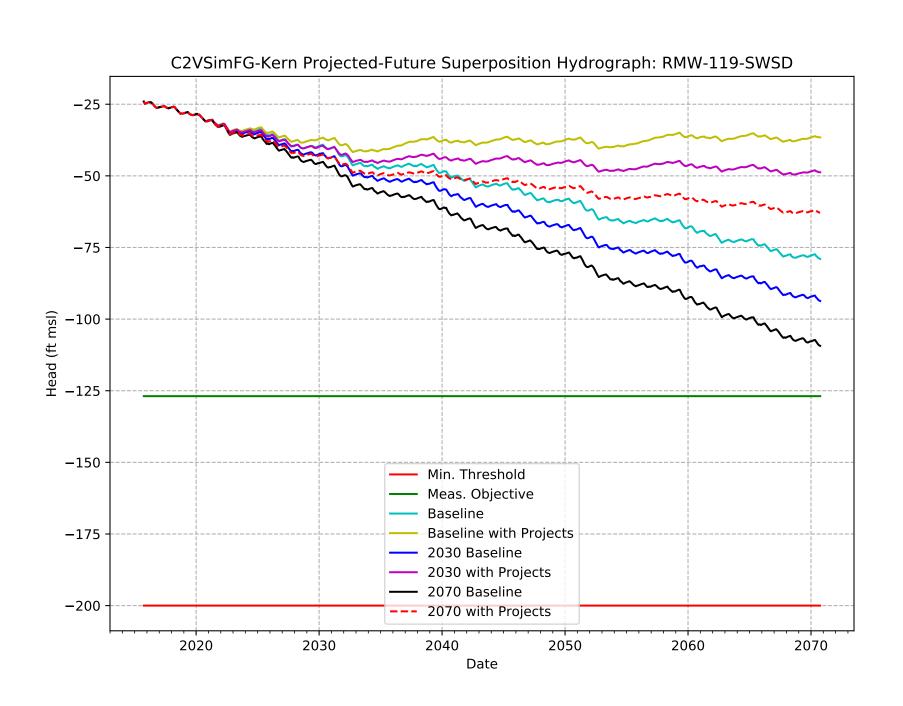

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-110-BVWSD Min. Threshold 200 Meas. Objective Baseline Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline 180 2070 with Projects 160 Head (ft msl) 140 120 100 2020 2070 2030 2040 2060 2050

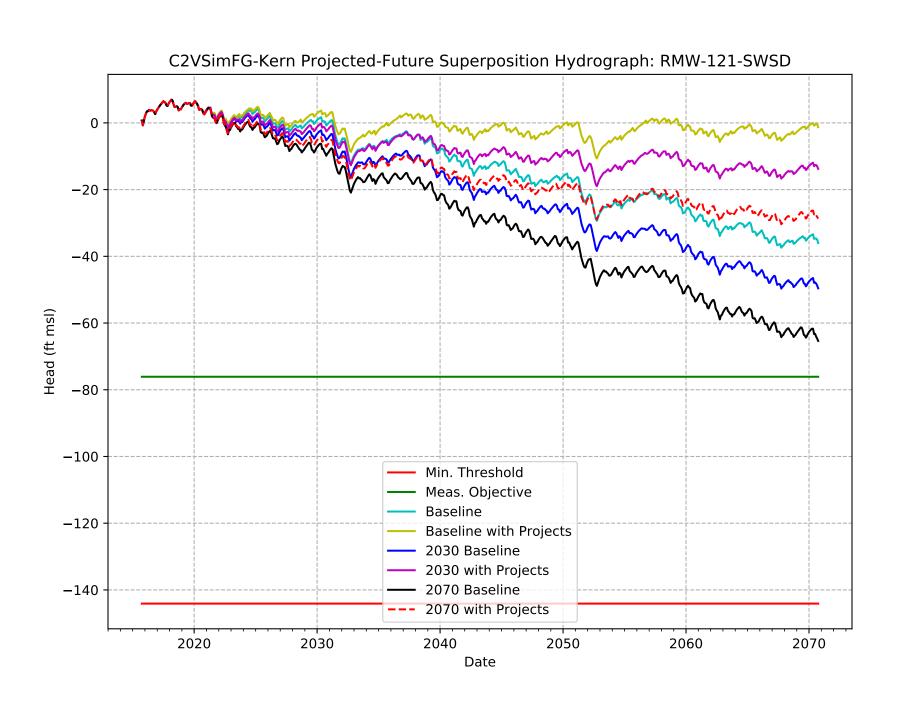

Date

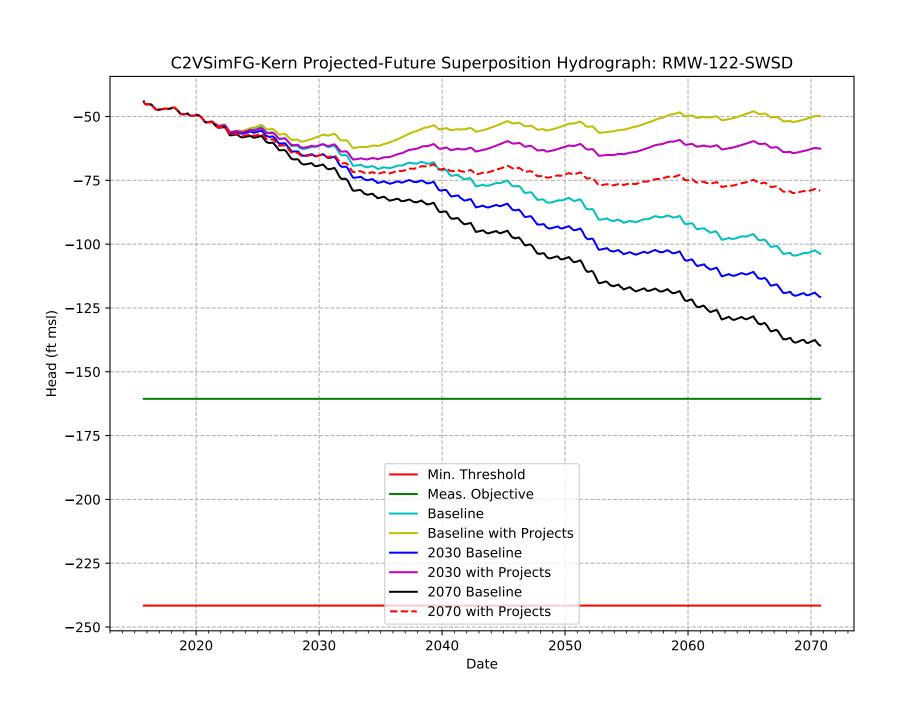


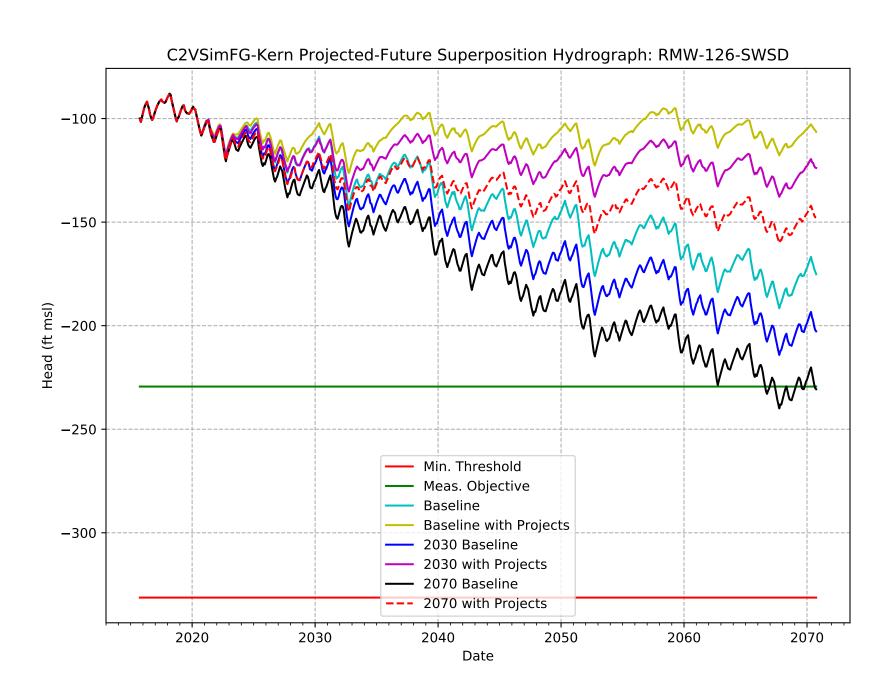


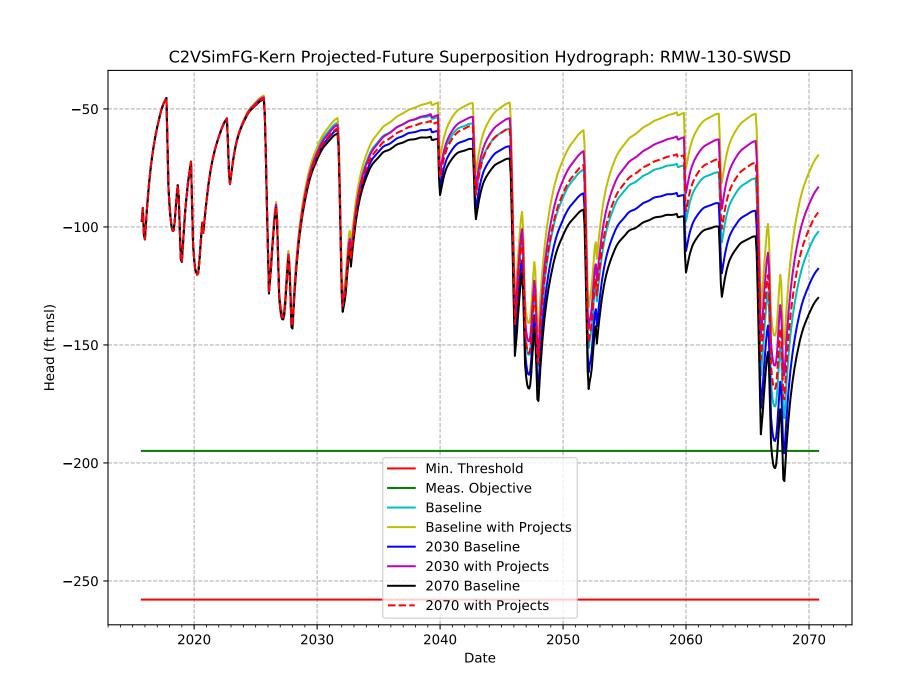


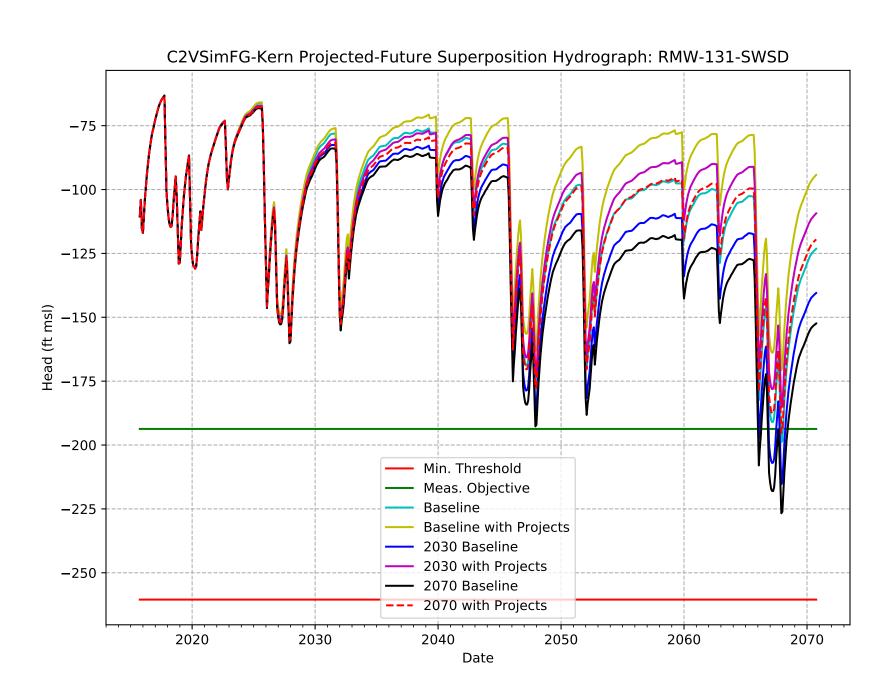


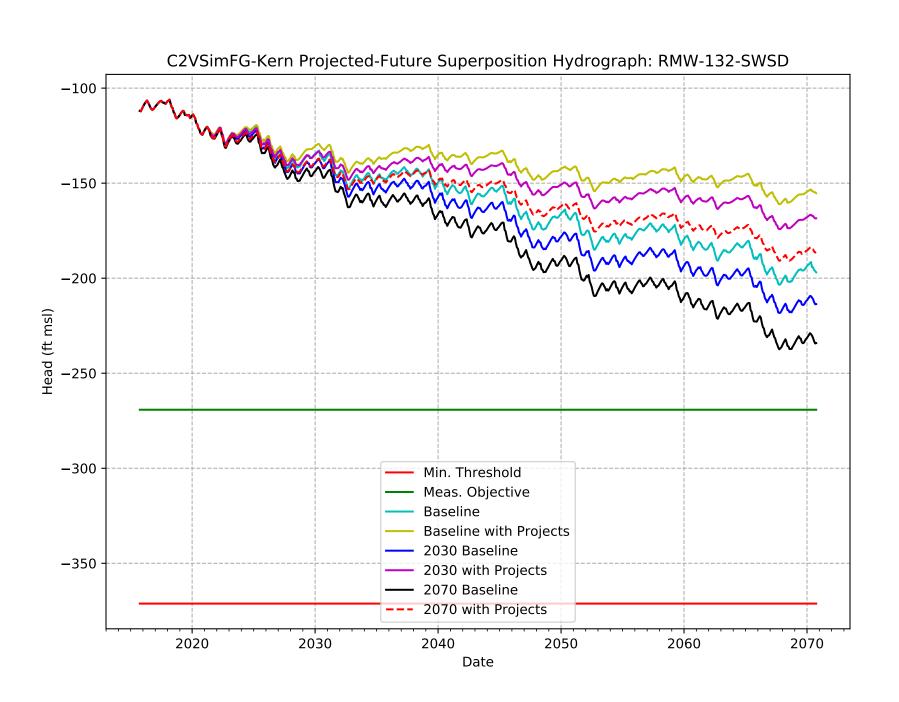


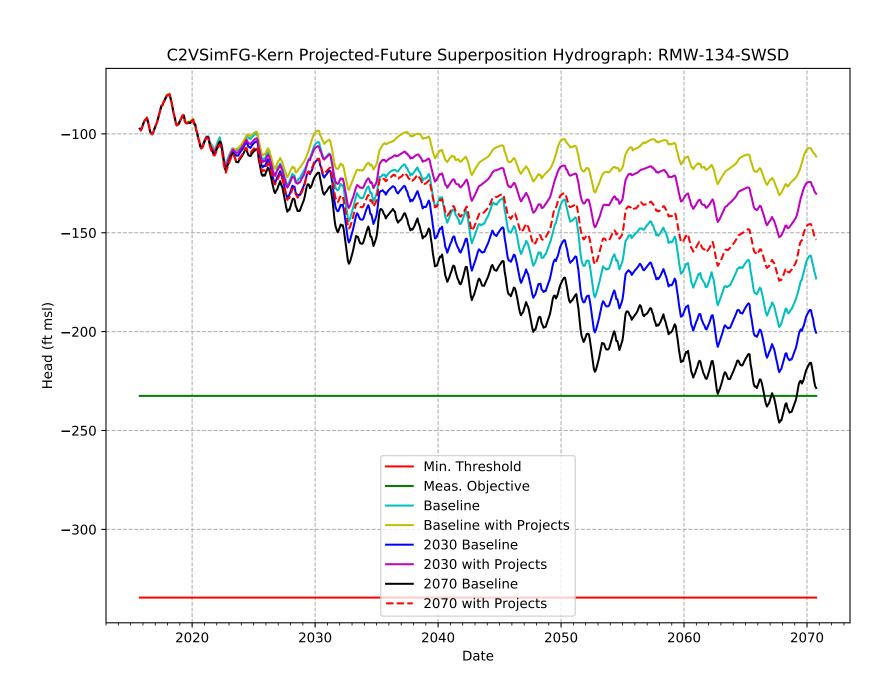


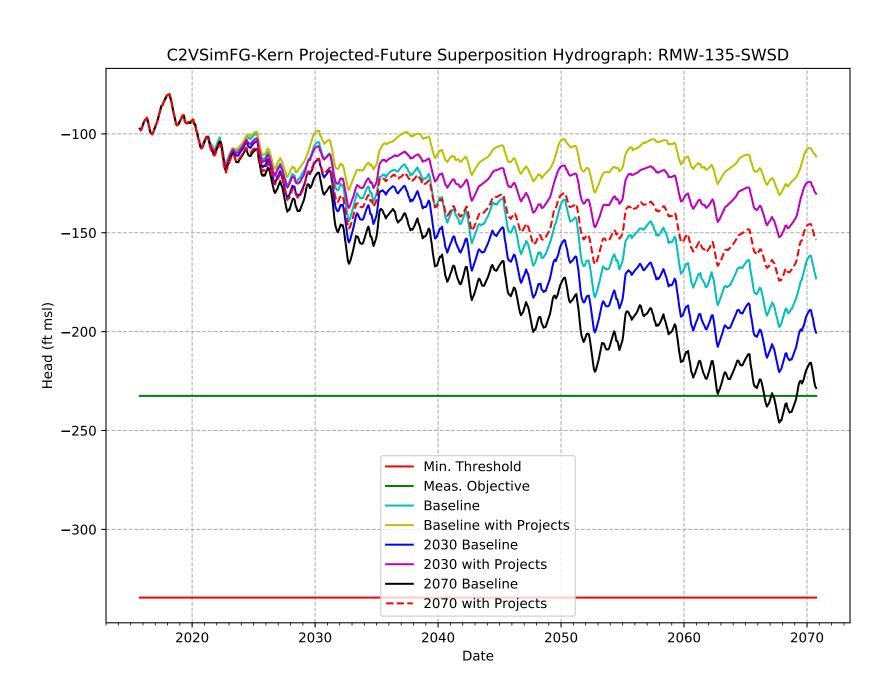


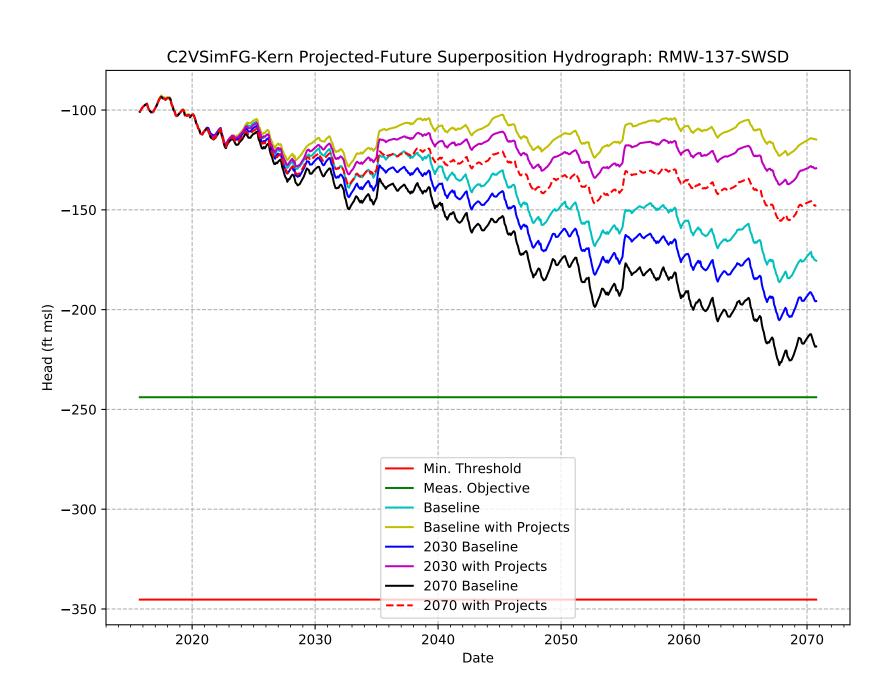


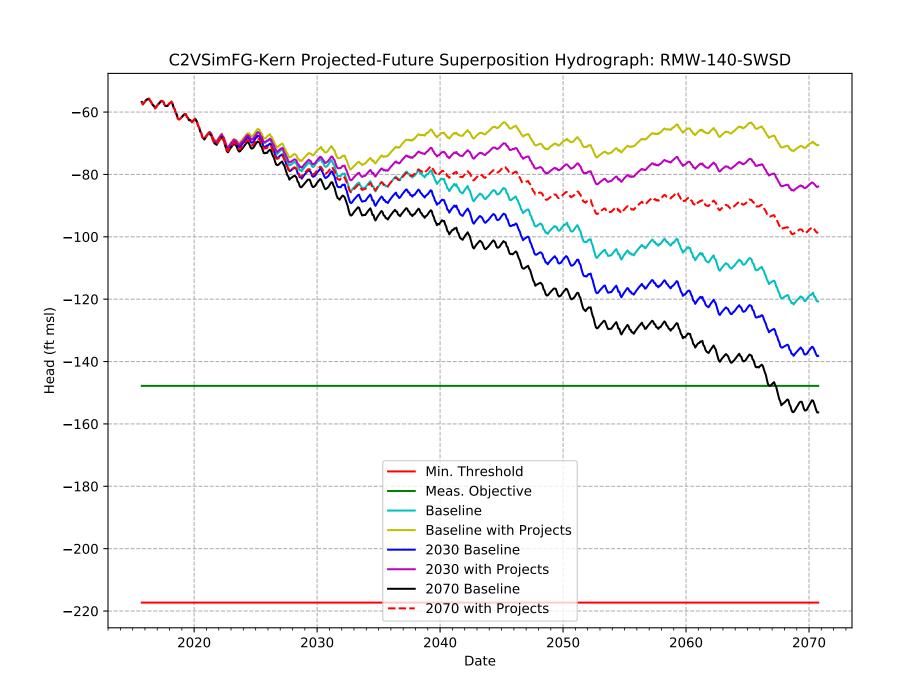


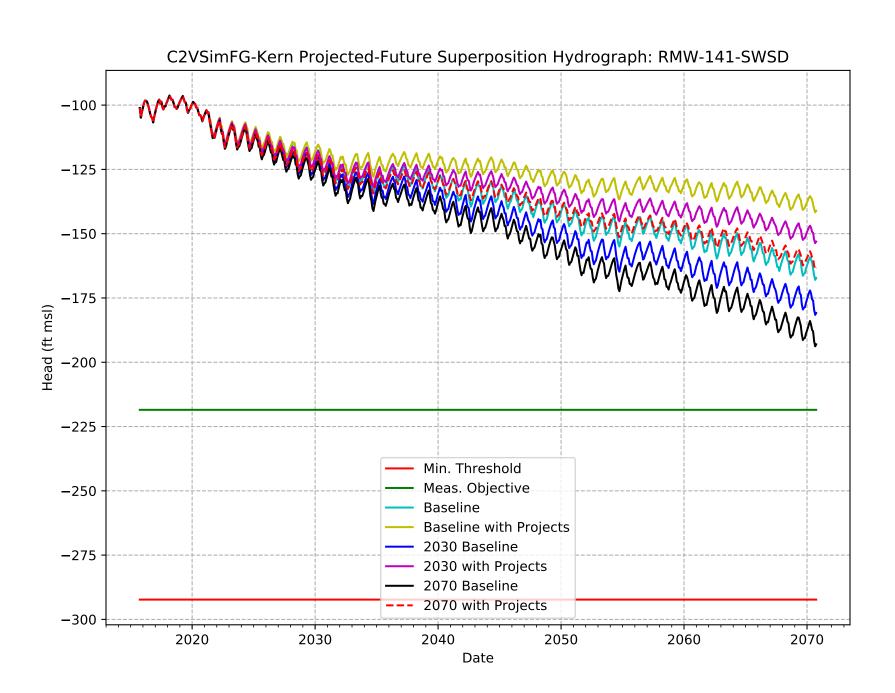

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-123-SWSD -100-150Head (ft msl) -200 Min. Threshold -250Meas. Objective Baseline Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline -300 2070 with Projects 2020 2030 2050 2070 2040 2060 Date



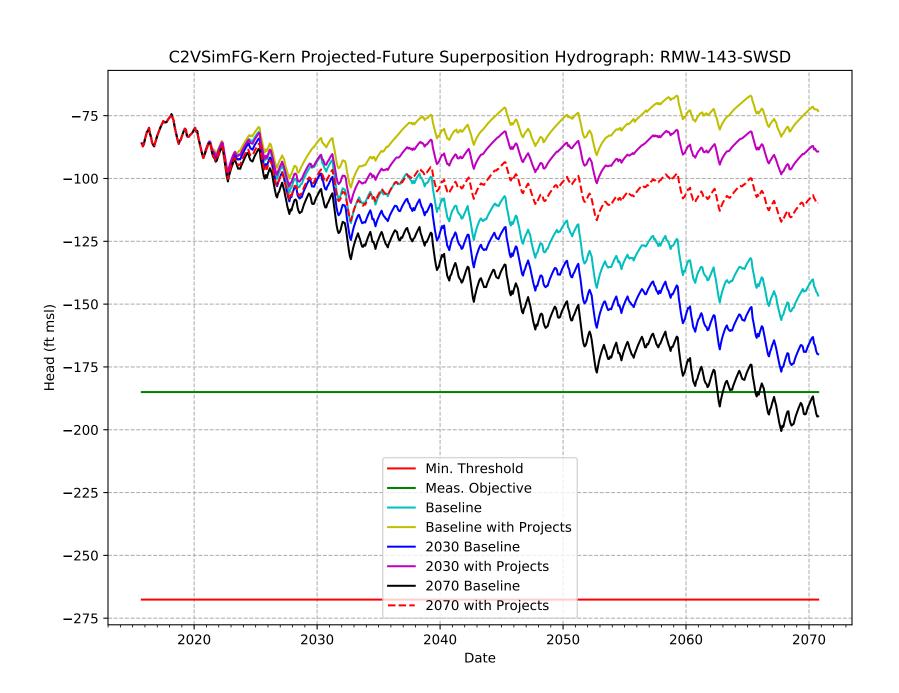

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-128-SWSD -50 -100Head (ft msl) -150Min. Threshold Meas. Objective Baseline Baseline with Projects -200 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 2020 2030 2050 2070 2040 2060 Date

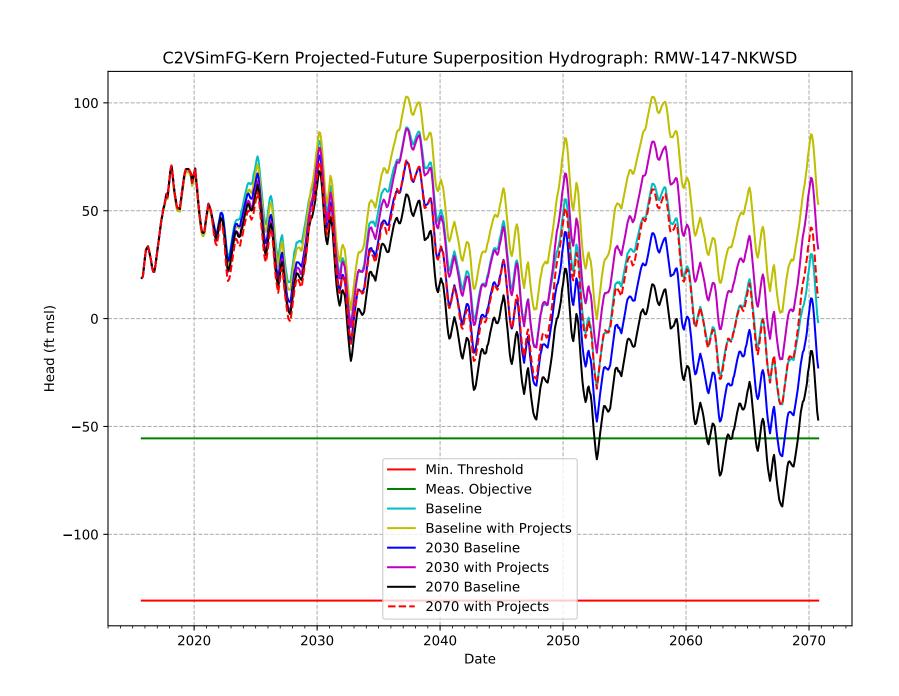


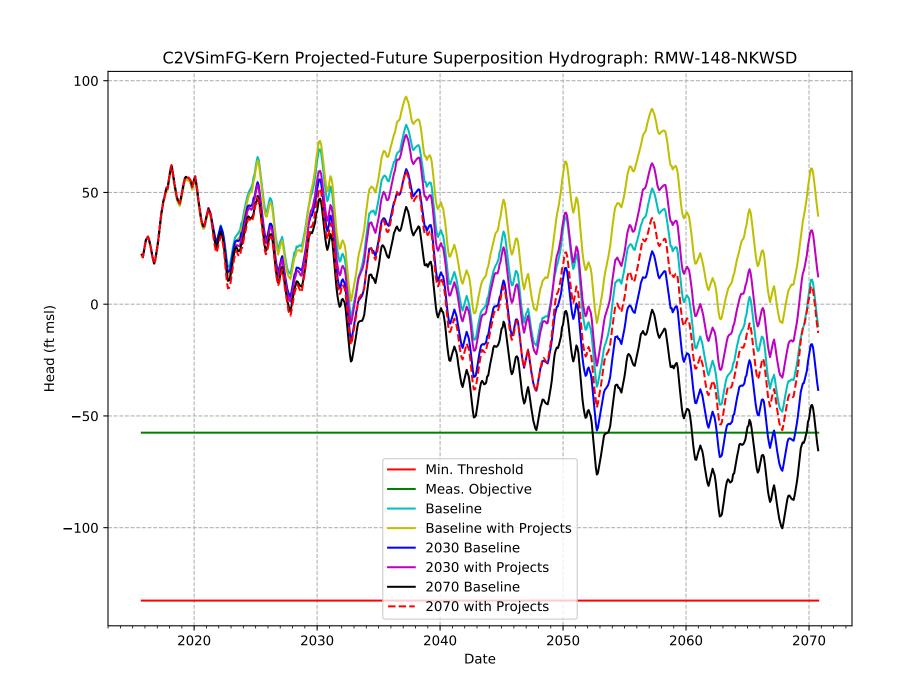


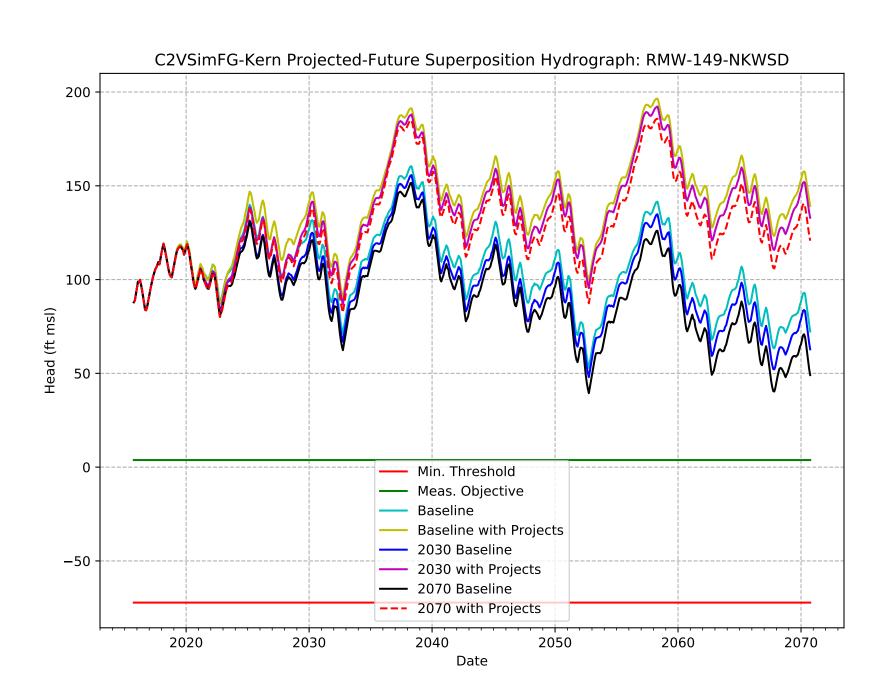


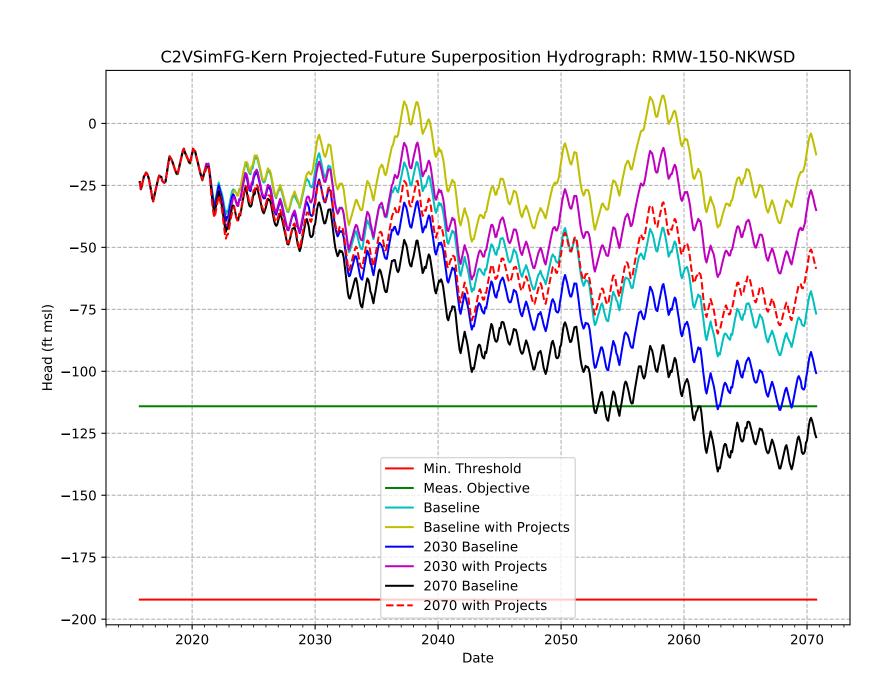
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-139-SWSD 0 -50 Head (ft msl) -100 Min. Threshold Meas. Objective Baseline Baseline with Projects -150 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 2020 2030 2050 2070 2040 2060


Date

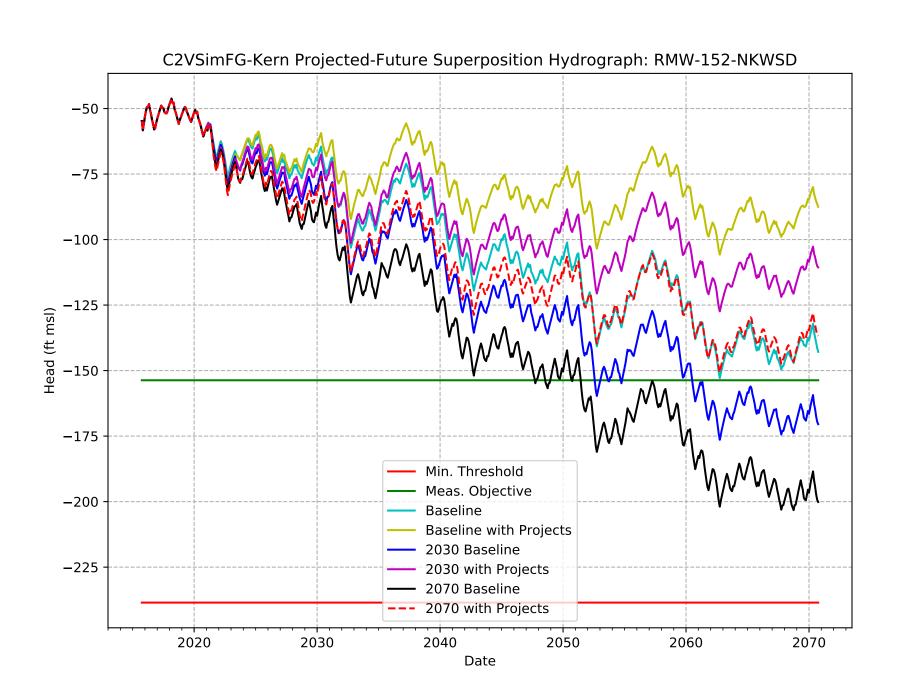

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-142-SWSD 0 -50 Head (ft msl) -100 Min. Threshold Meas. Objective Baseline Baseline with Projects -150 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 2020 2030 2050 2070 2040 2060

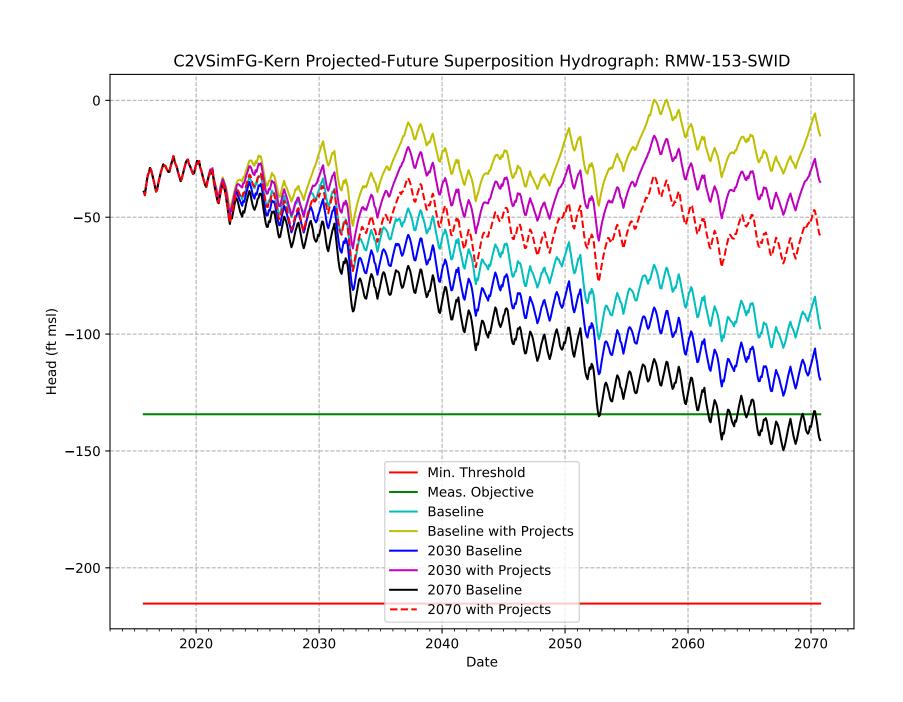

Date

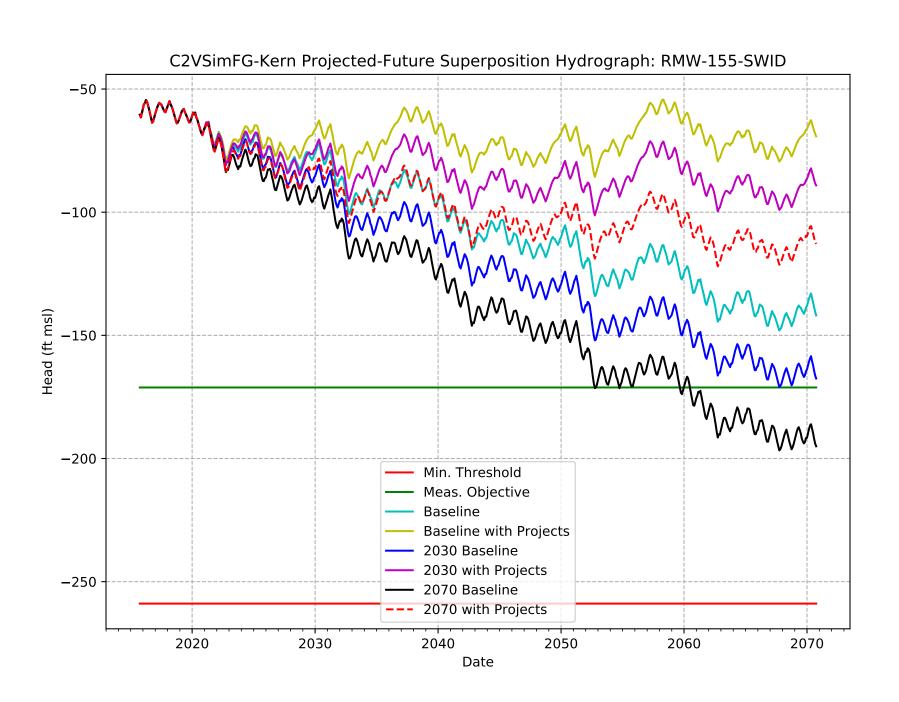


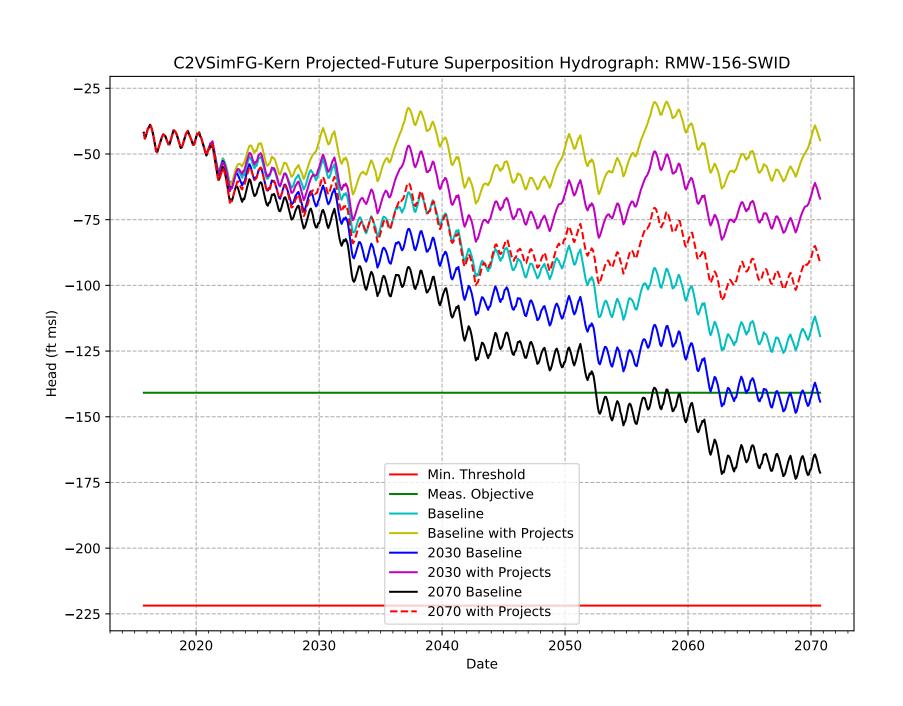

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-145-NKWSD 100 50 Head (ft msl) -50 Min. Threshold Meas. Objective Baseline Baseline with Projects 2030 Baseline -100 2030 with Projects 2070 Baseline 2070 with Projects 2020 2030 2040 2050 2070 2060 Date

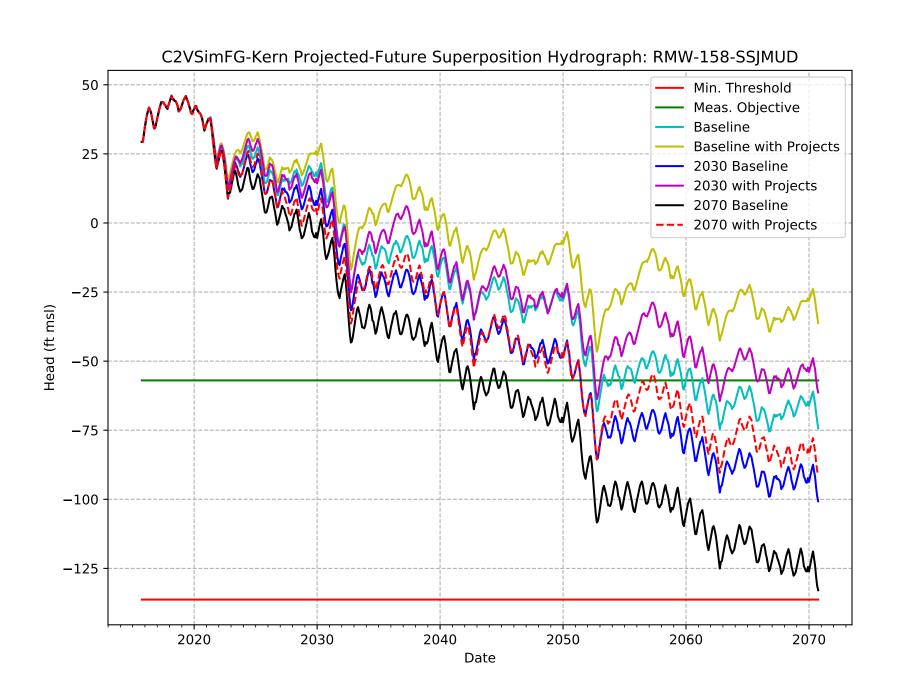
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-146-NKWSD 50 0 Head (ft msl) -50 Min. Threshold Meas. Objective -100Baseline Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects -1502020 2030 2040 2050 2060 2070 Date

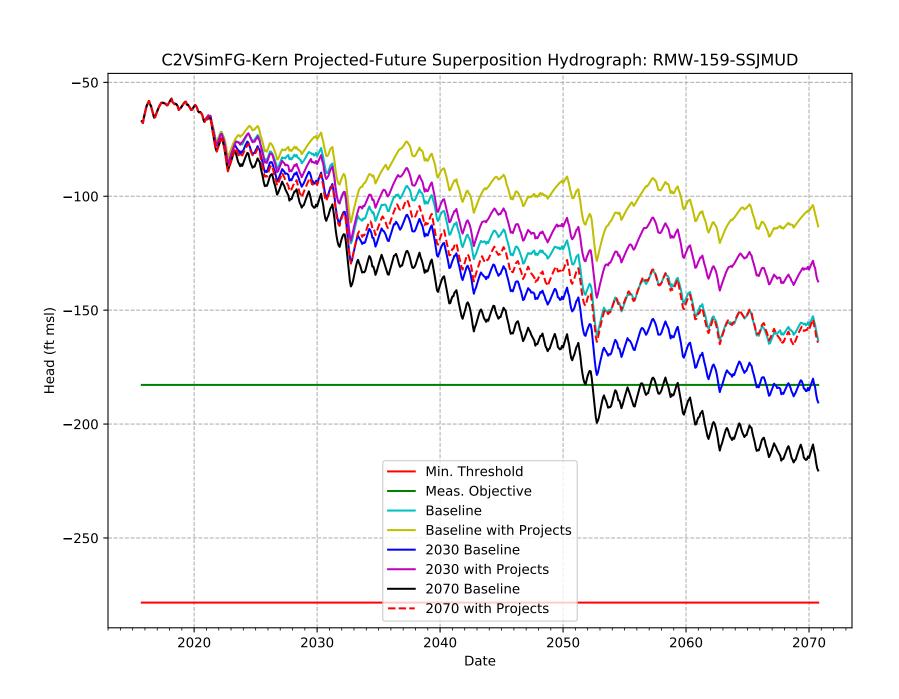


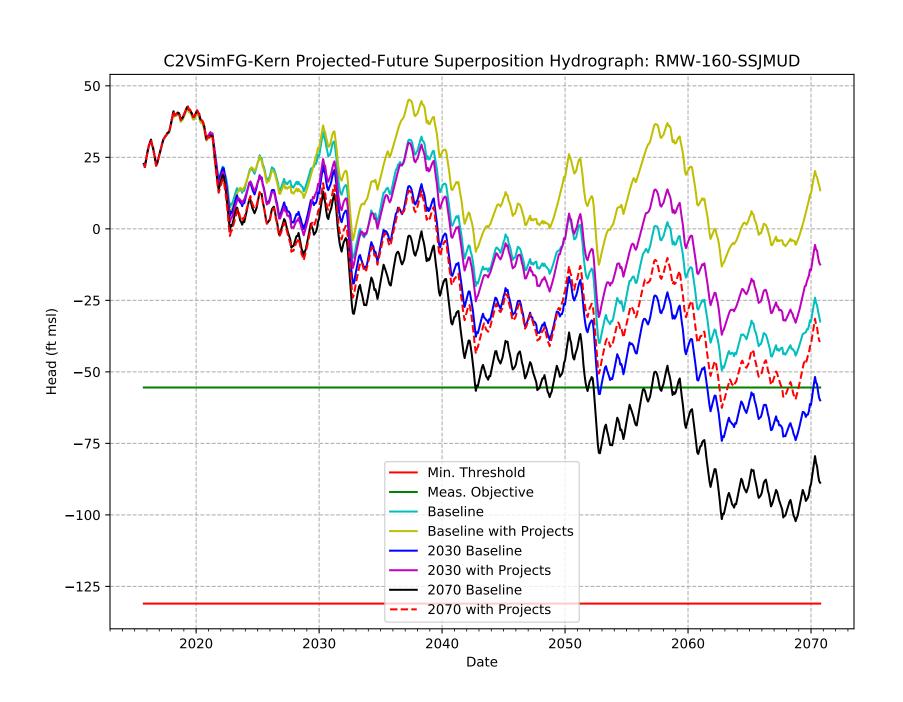


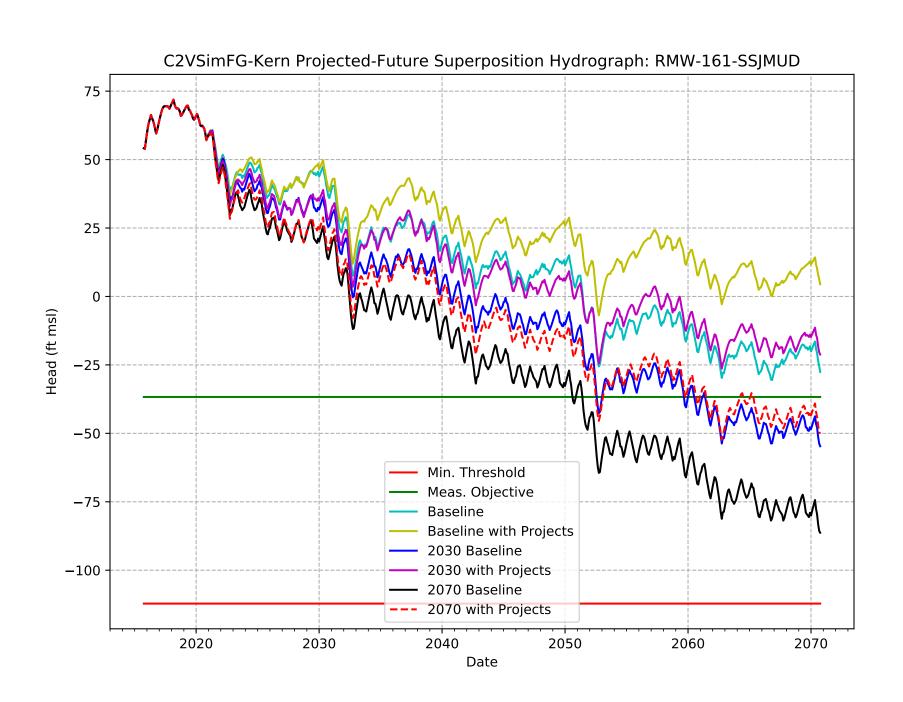


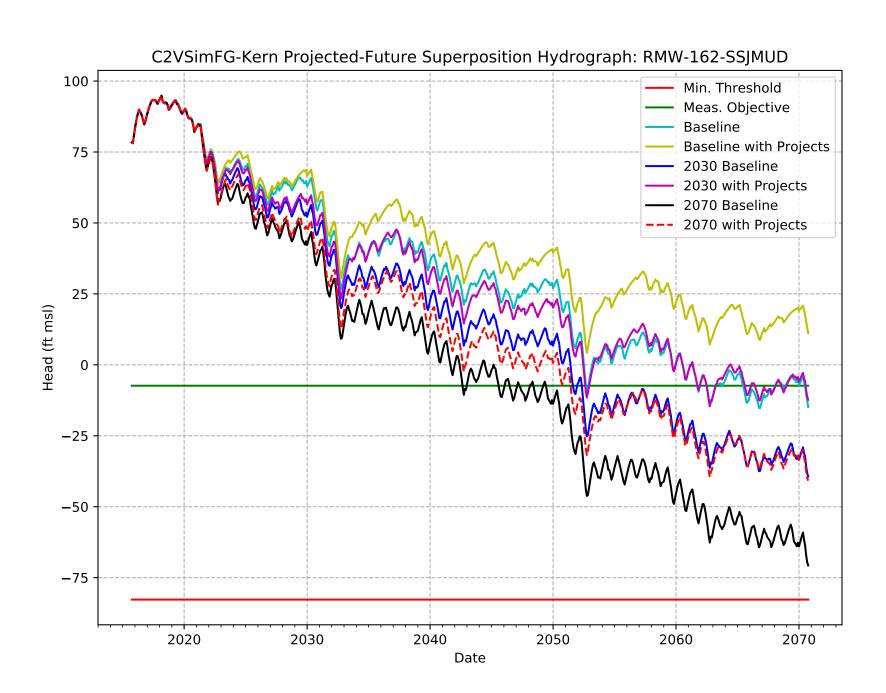

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-151-NKWSD -50-75-100Head (ft msl) -125-150 Min. Threshold Meas. Objective -175 Baseline Baseline with Projects 2030 Baseline -200 2030 with Projects 2070 Baseline 2070 with Projects 2020 2030 2040 2050 2070 2060 Date

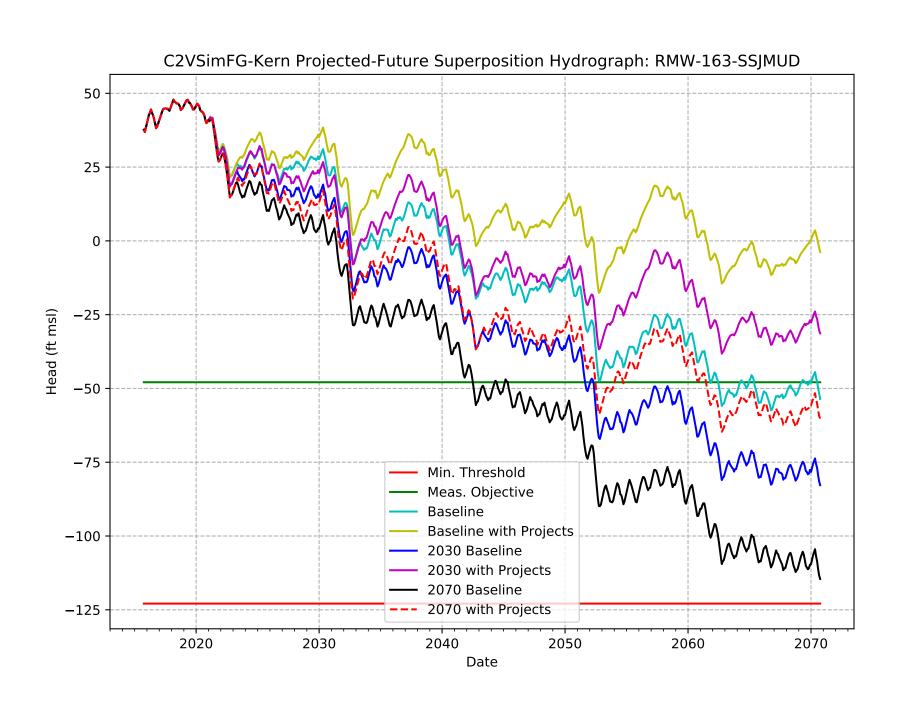


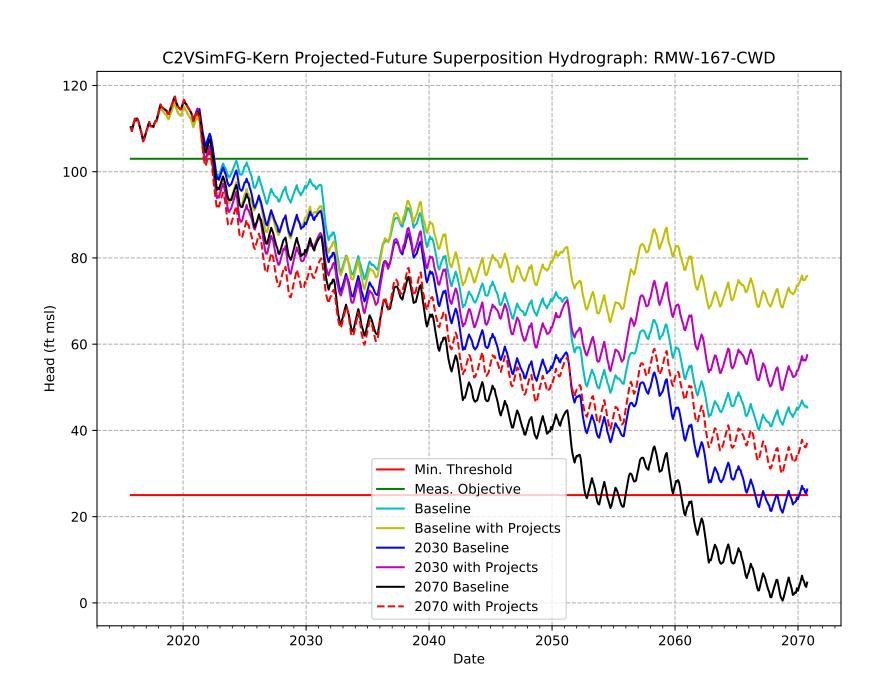

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-154-SWID 0 -50 Head (ft msl) -100 Min. Threshold Meas. Objective Baseline -150Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 2020 2030 2050 2070 2040 2060 Date

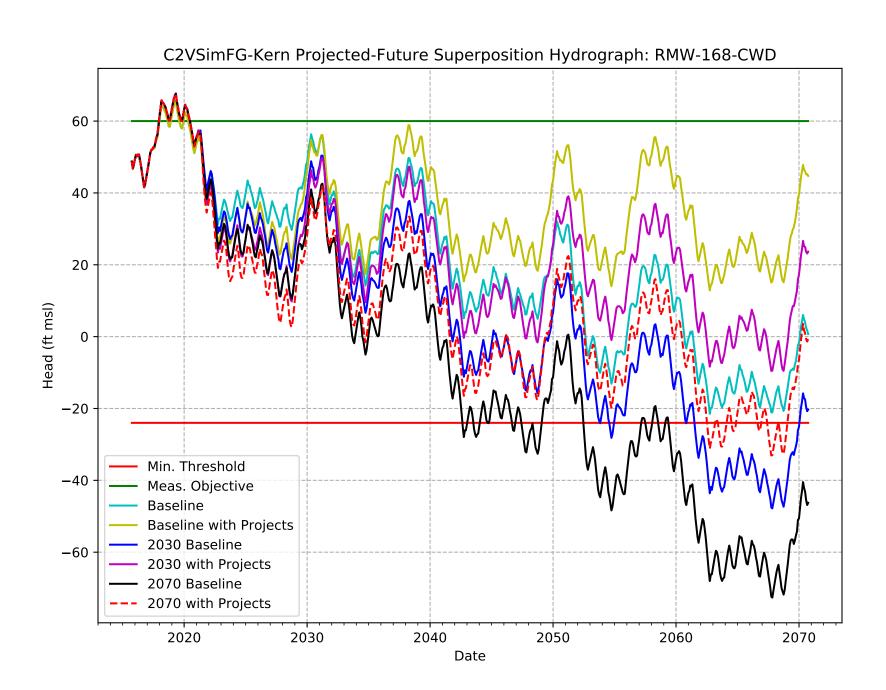


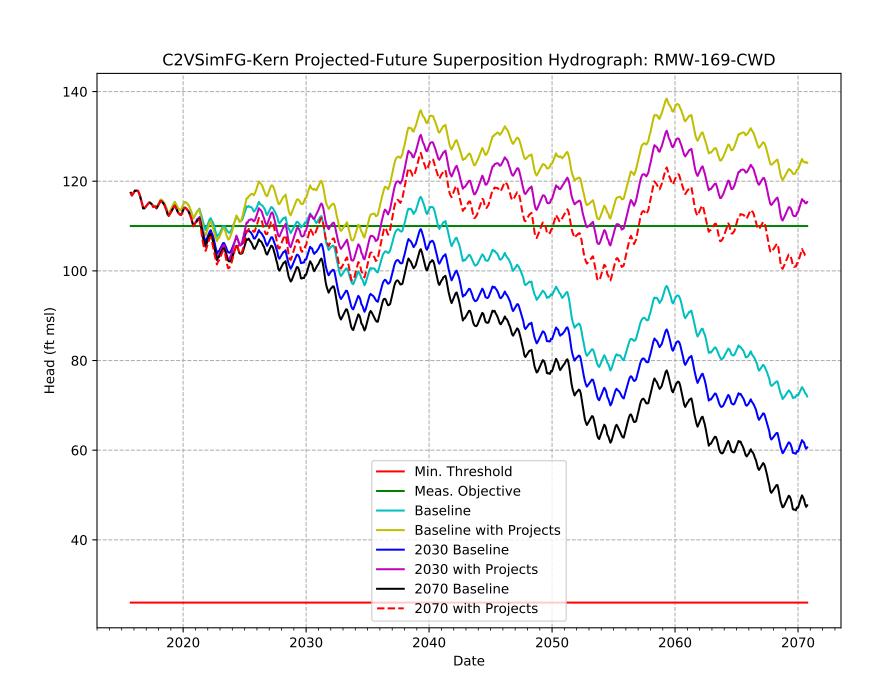


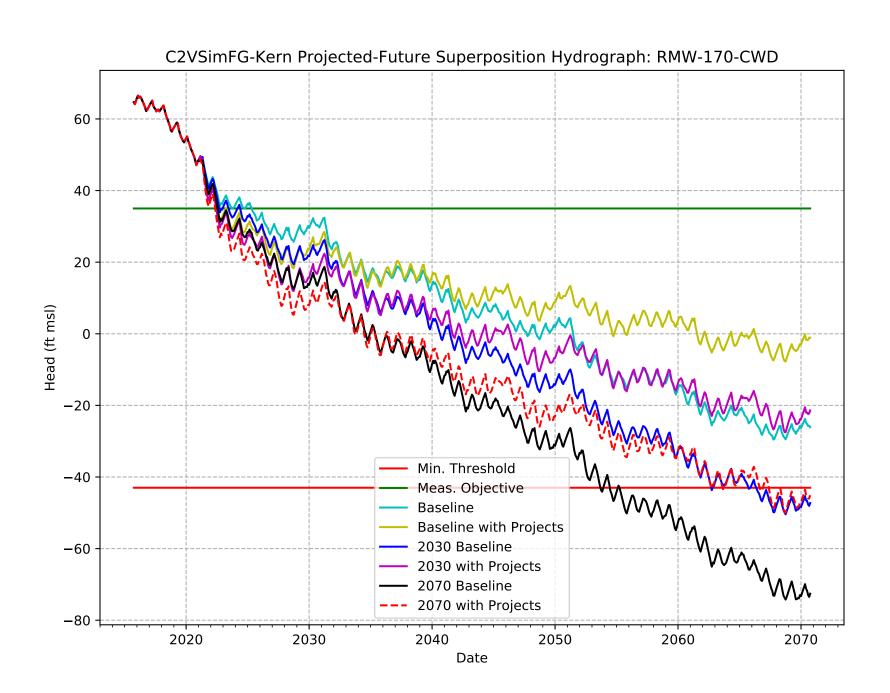

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-157-SSJMUD -100-150Head (ft msl) -200 -250 Min. Threshold Meas. Objective Baseline Baseline with Projects -3002030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 2020 2030 2050 2070 2040 2060 Date

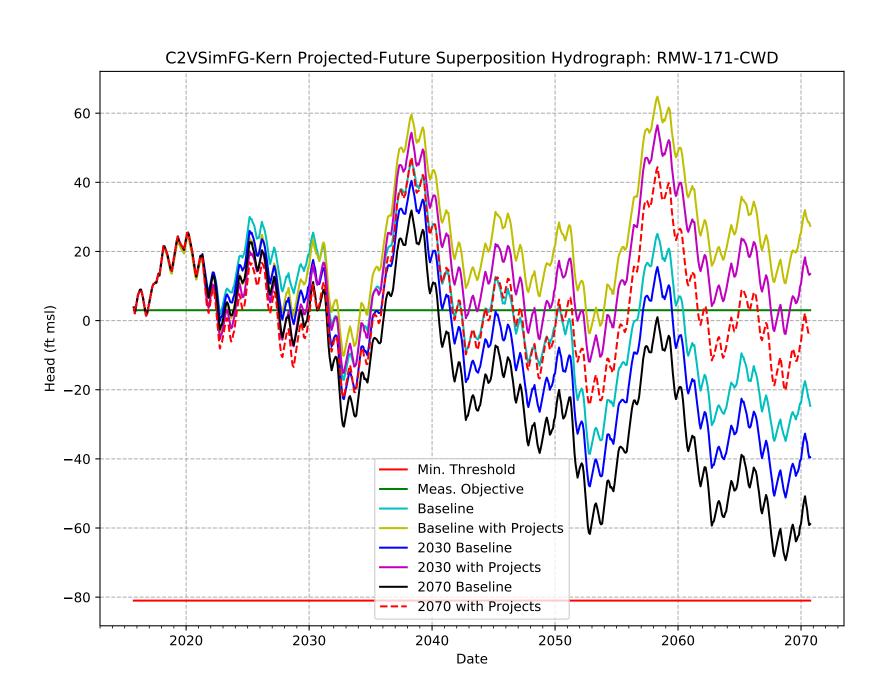


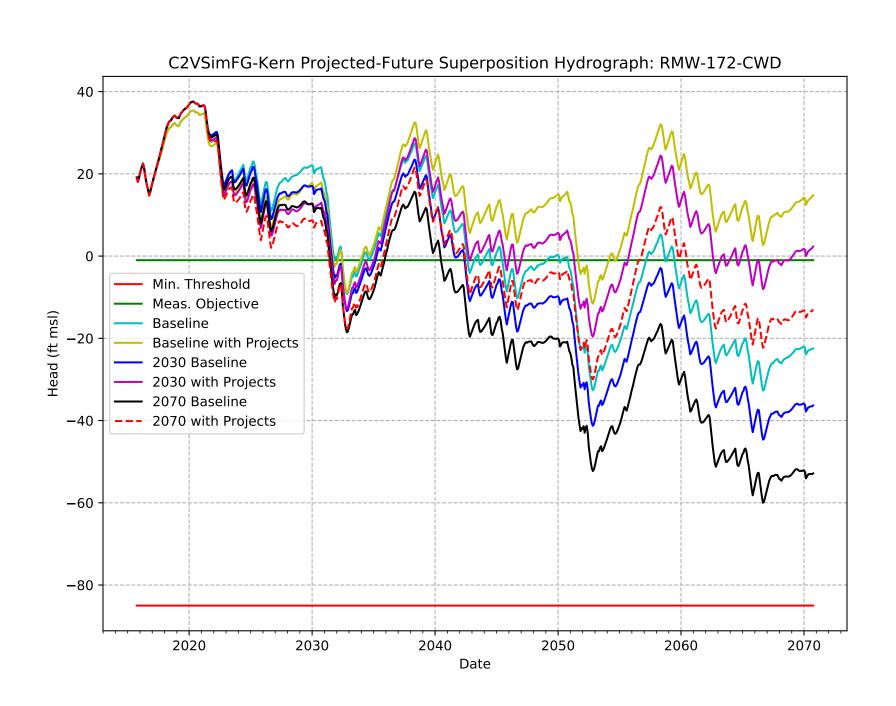


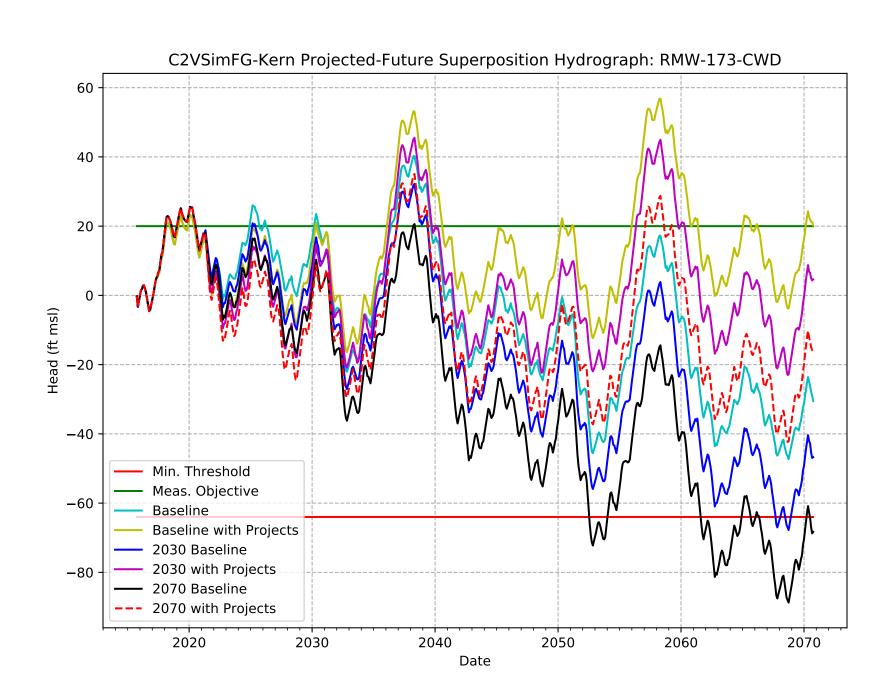


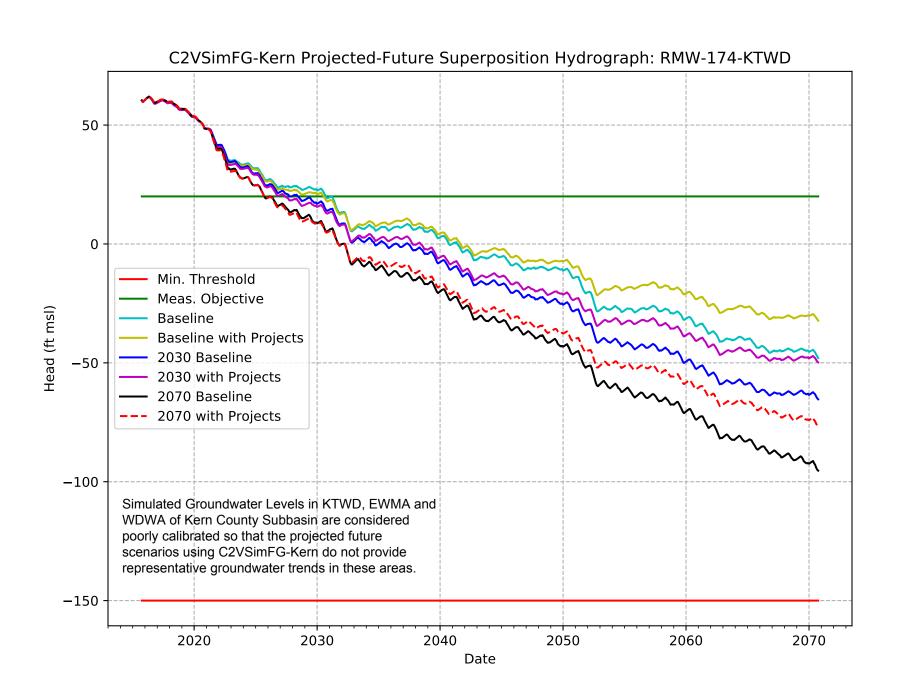


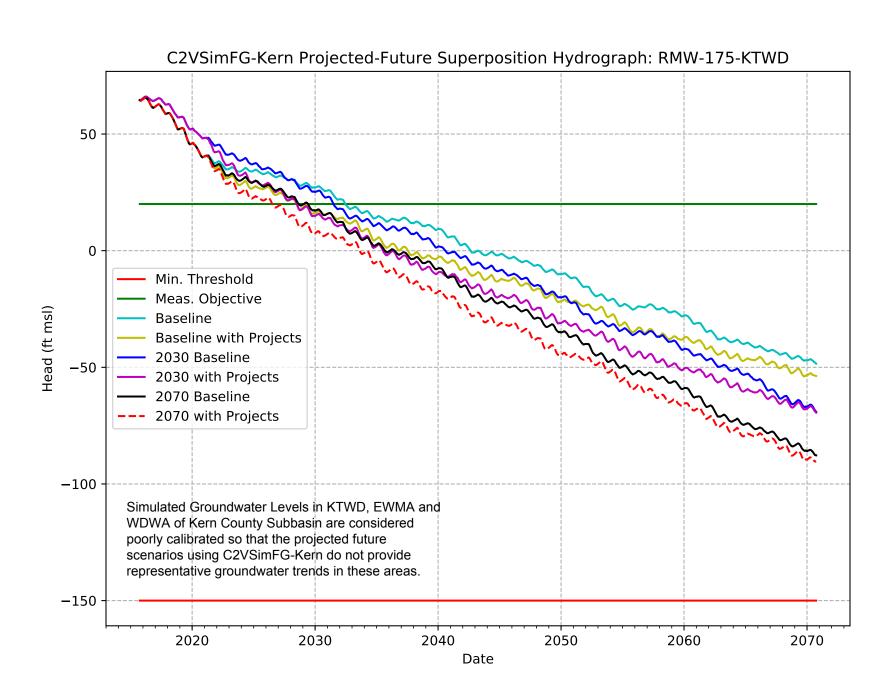


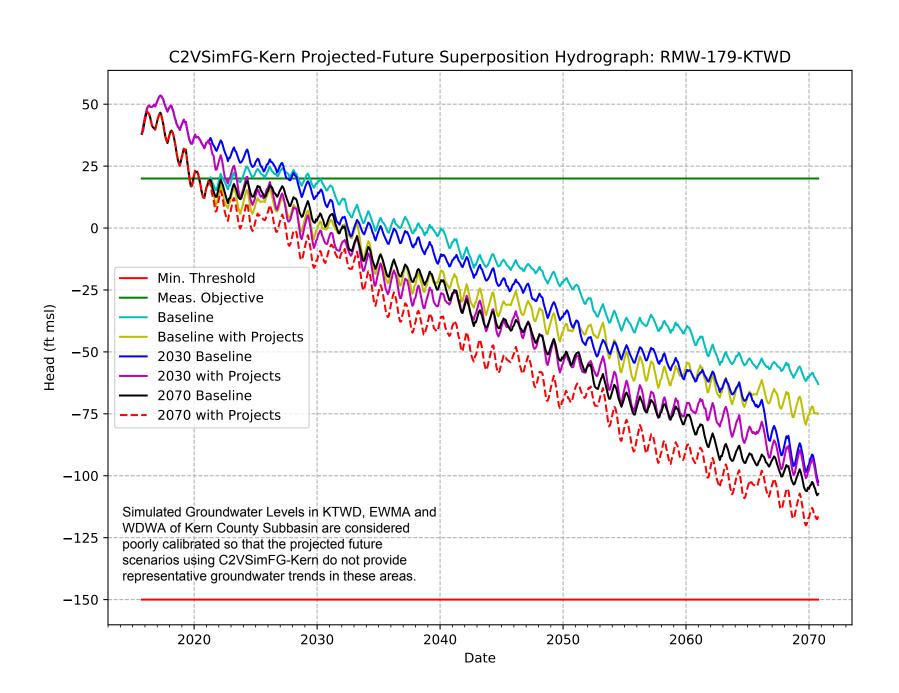




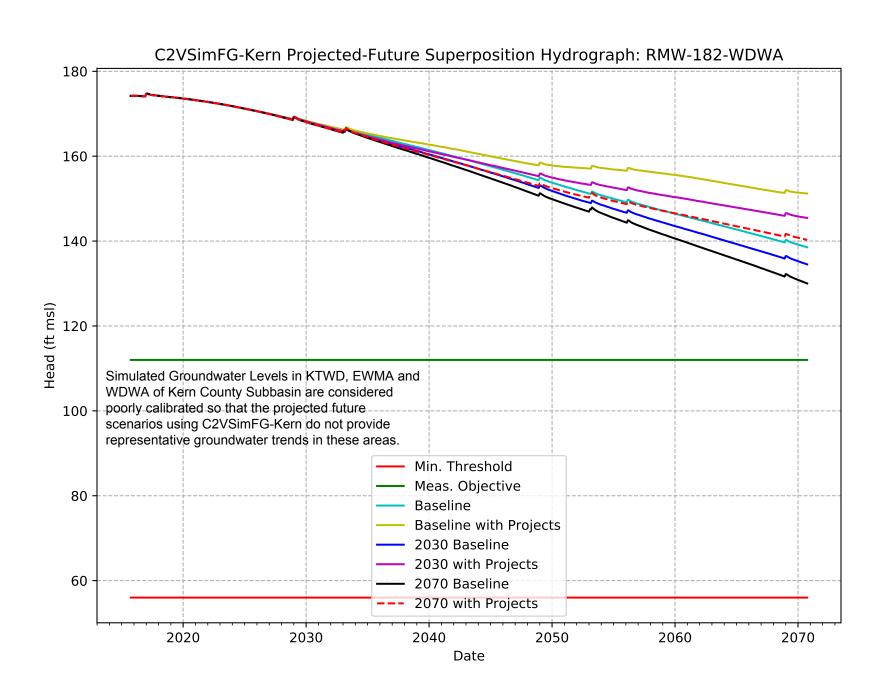








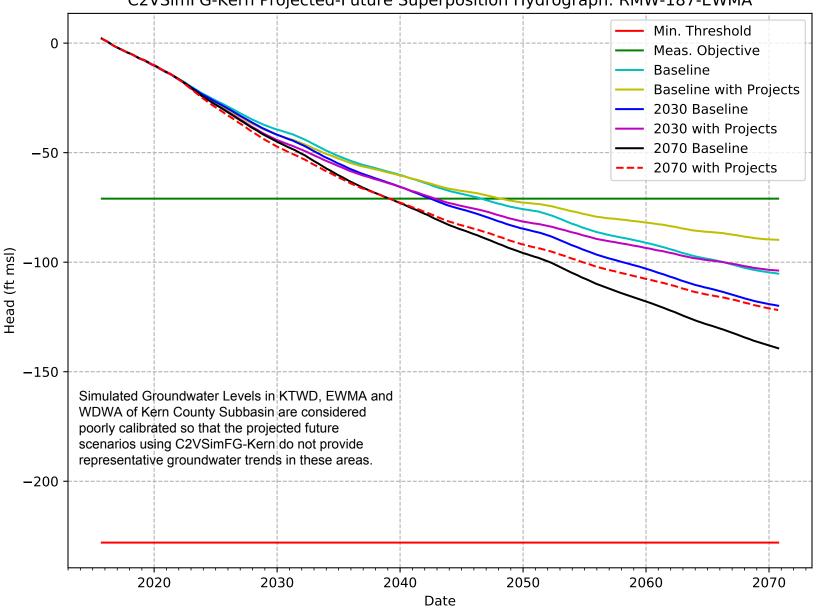
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-176-KTWD Min. Threshold 100 Meas. Objective Baseline Baseline with Projects 2030 Baseline 2030 with Projects 50 2070 Baseline 2070 with Projects 0 Head (ft msl) -50-100Simulated Groundwater Levels in KTWD, EWMA and WDWA of Kern County Subbasin are considered poorly calibrated so that the projected future scenarios using C2VSimFG-Kern do not provide representative groundwater trends in these areas. -1502020 2030 2040 2050 2060 2070 Date

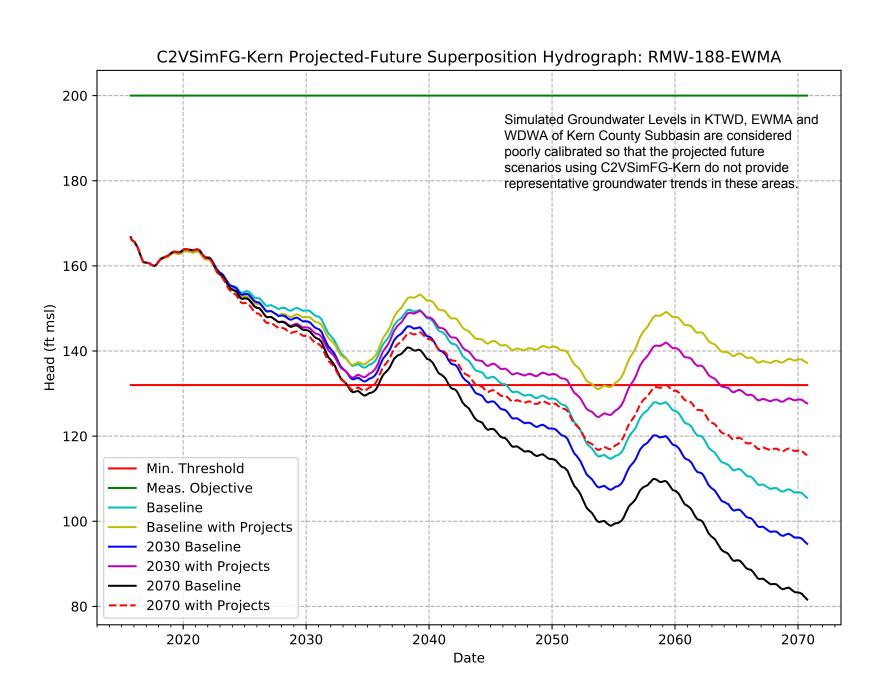

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-177-KTWD Min. Threshold 100 Meas. Objective Baseline Baseline with Projects 2030 Baseline 2030 with Projects 50 2070 Baseline 2070 with Projects 0 Head (ft msl) -50-100Simulated Groundwater Levels in KTWD, EWMA and WDWA of Kern County Subbasin are considered poorly calibrated so that the projected future scenarios using C2VSimFG-Kern do not provide representative groundwater trends in these areas. -1502020 2030 2040 2050 2060 2070

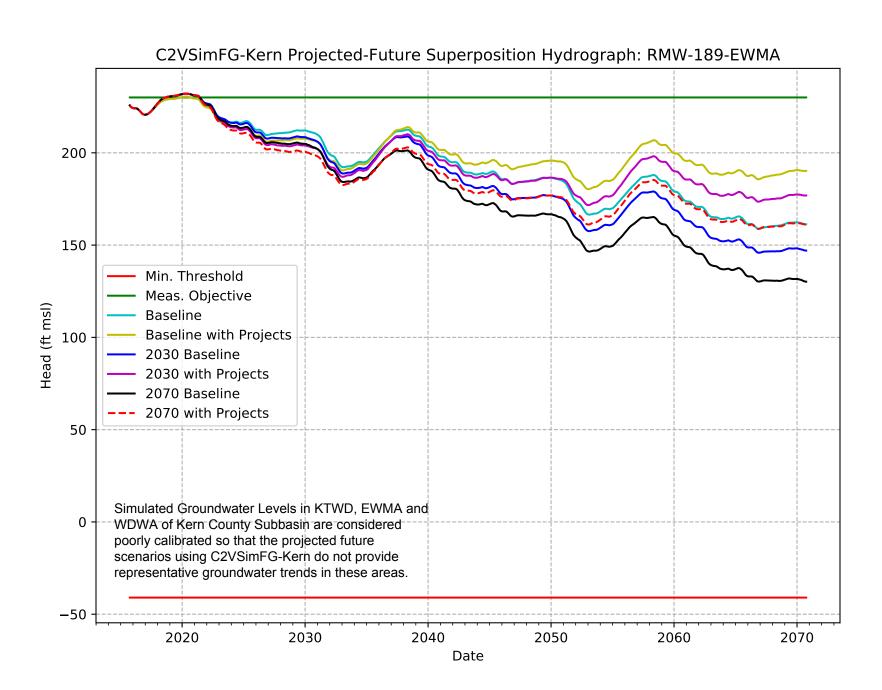
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-178-KTWD 50 0 Head (ft msl) -50Simulated Groundwater Levels in KTWD, EWMA and WDWA of Kern County Subbasin are considered poorly calibrated so that the projected future scenarios using C2VSimFG-Kern do not provide representative groundwater trends in these areas. Min. Threshold -100Meas. Objective Baseline Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline -1502070 with Projects 2020 2030 2050 2070 2040 2060

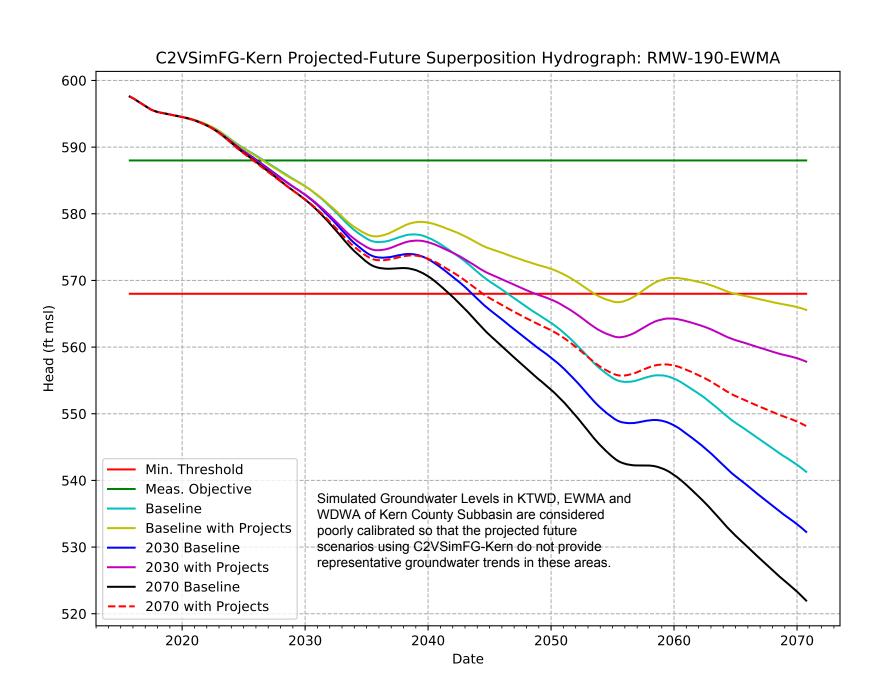
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-180-KTWD 50 0 Min. Threshold Meas. Objective Head (ft msl) Baseline Baseline with Projects 2030 Baseline 2030 with Projects -50 2070 Baseline 2070 with Projects -100Simulated Groundwater Levels in KTWD, EWMA and WDWA of Kern County Subbasin are considered poorly calibrated so that the projected future scenarios using C2VSimFG-Kern do not provide representative groundwater trends in these areas. -1502020 2030 2040 2050 2060 2070 Date

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-181-WDWA 20 0 -20Head (ft msl) Simulated Groundwater Levels in KTWD, EWMA and -WDWA of Kern-County-Subbasin are considered -40poorly calibrated so that the projected future scenarios using C2VSimFG-Kern do not provide representative groundwater trends in these areas. -60Min. Threshold -80 Meas. Objective Baseline Baseline with Projects 2030 Baseline -1002030 with Projects 2070 Baseline 2070 with Projects -1202020 2030 2040 2050 2060 2070 Date

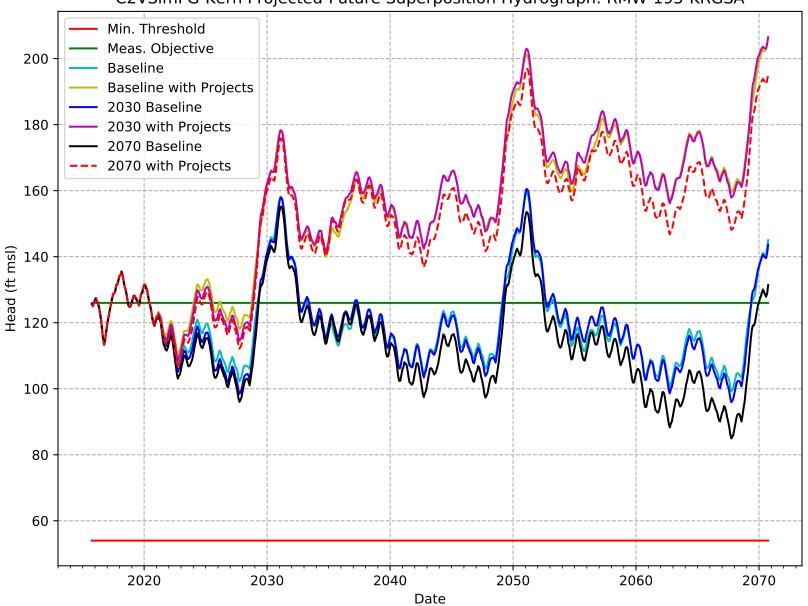


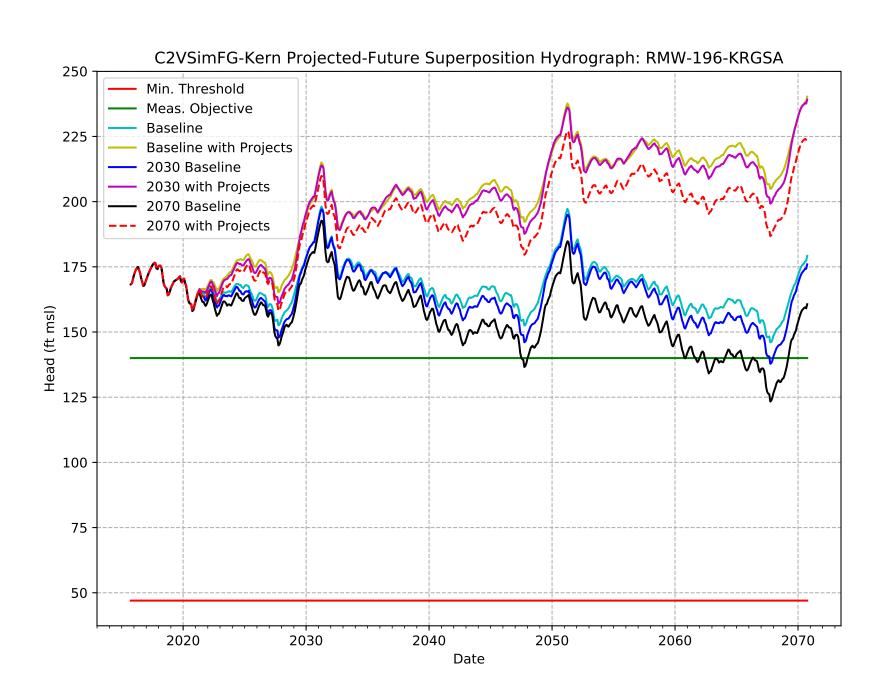

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-183-EWMA 100 Min. Threshold 50 Meas. Objective Head (ft msl) Baseline Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline 0 2070 with Projects -50 -Simulated Groundwater Levels in KTWD, EWMA and WDWA of Kern County Subbasin are considered poorly calibrated so that the projected future scenarios using C2VSimFG-Kern do not provide representative groundwater trends in these areas. 2020 2030 2040 2050 2060 2070 Date


C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-184-EWMA 40 20 0 Head (ft msl) -20-40-60Min. Threshold Meas. Objective Baseline -80 Baseline with Projects Simulated Groundwater Levels in KTWD, EWMA and 2030 Baseline WDWA of Kern County Subbasin are considered poorly calibrated so that the projected future 2030 with Projects scenarios using C2VSimFG-Kern do not provide -100 -2070 Baseline representative groundwater trends in these areas. 2070 with Projects 2020 2030 2040 2050 2060 2070 Date

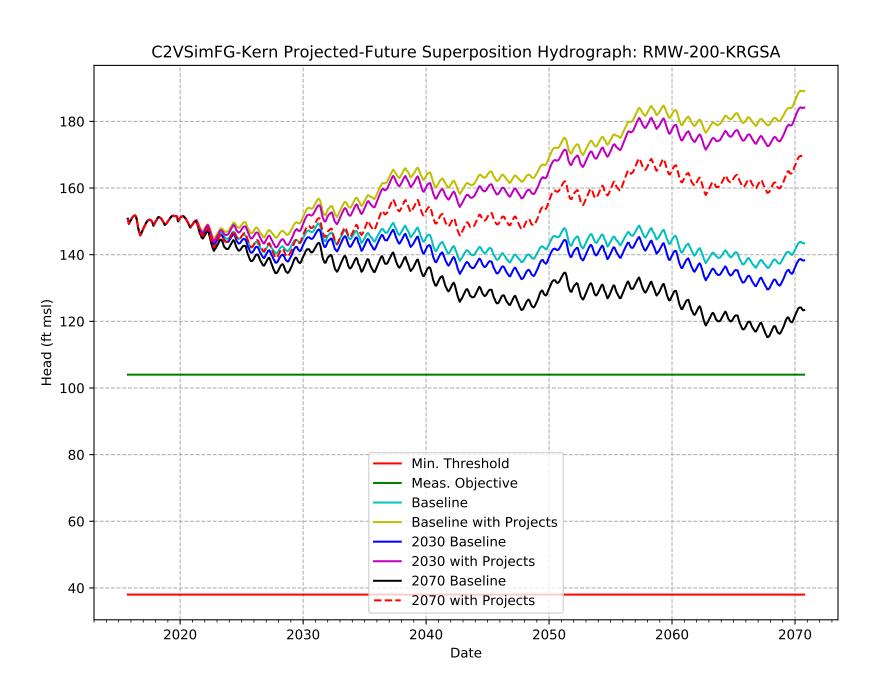

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-185-EWMA 100 50 Min. Threshold Meas. Objective Head (ft msl) Baseline Baseline with Projects 2030 Baseline 2030 with Projects 0 2070 Baseline 2070 with Projects -50 Simulated Groundwater Levels in KTWD, EWMA and WDWA of Kern County Subbasin are considered poorly calibrated so that the projected future scenarios using C2VSimFG-Kern do not provide representative groundwater trends in these areas. -1002020 2030 2040 2050 2060 2070 Date

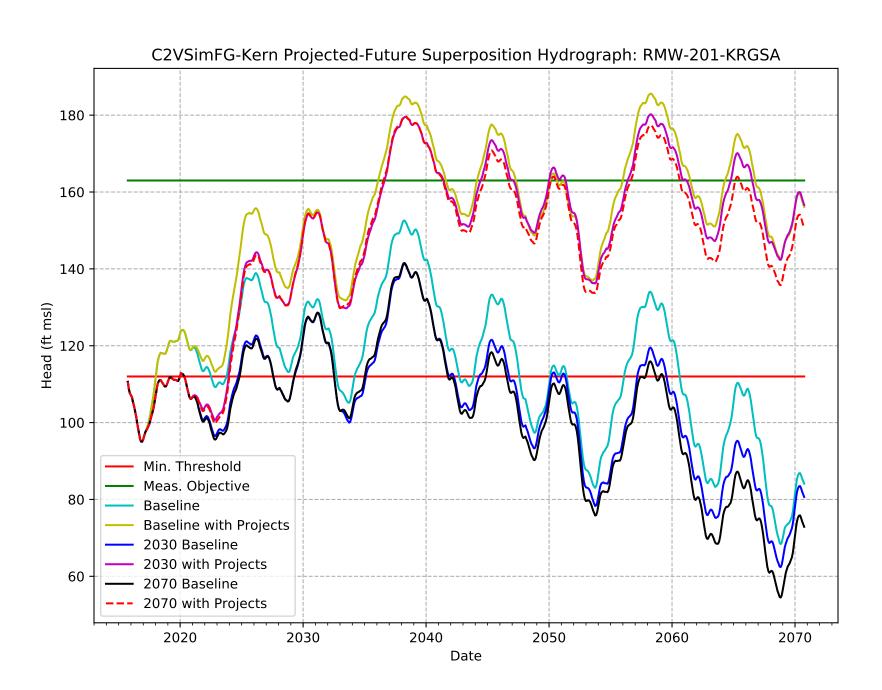
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-187-EWMA

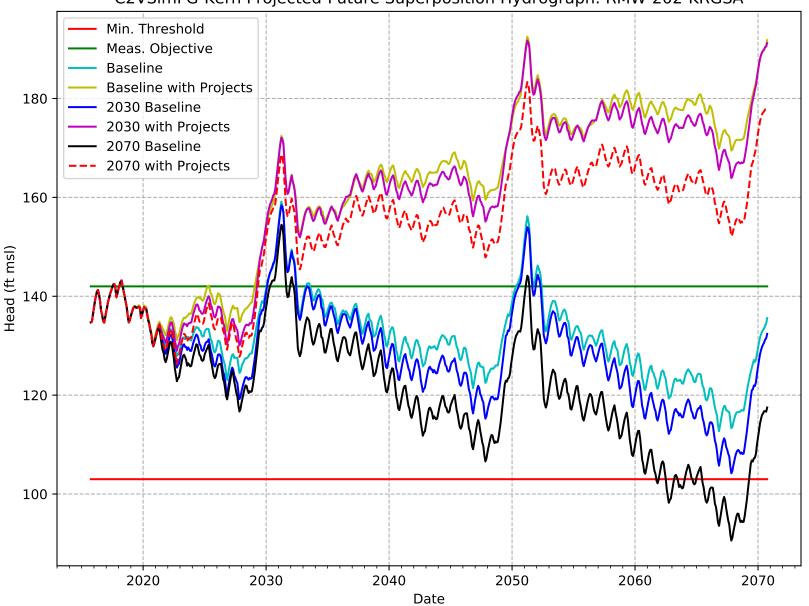


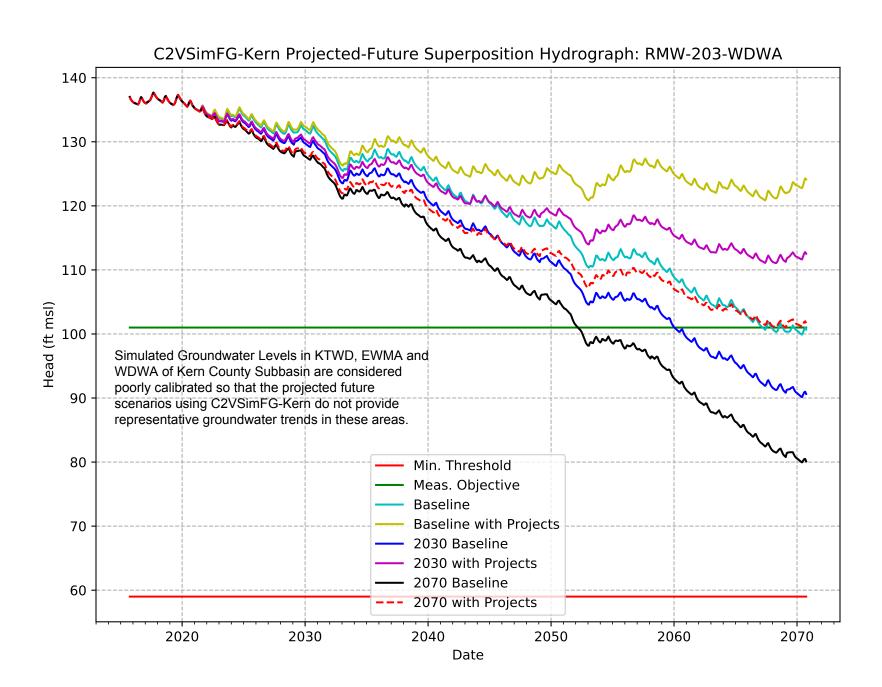


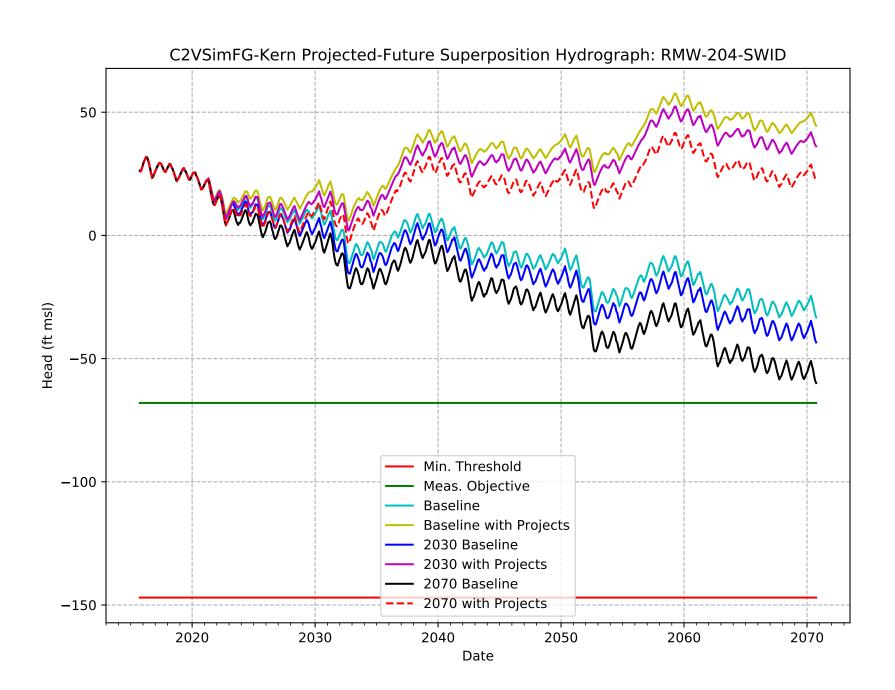
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-192-KRGSA 200 Min. Threshold Meas. Objective Baseline Baseline with Projects 175 · 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 150 (ft ms] Head (ft ms] 100 75 50 25 2020 2030 2050 2070 2040 2060

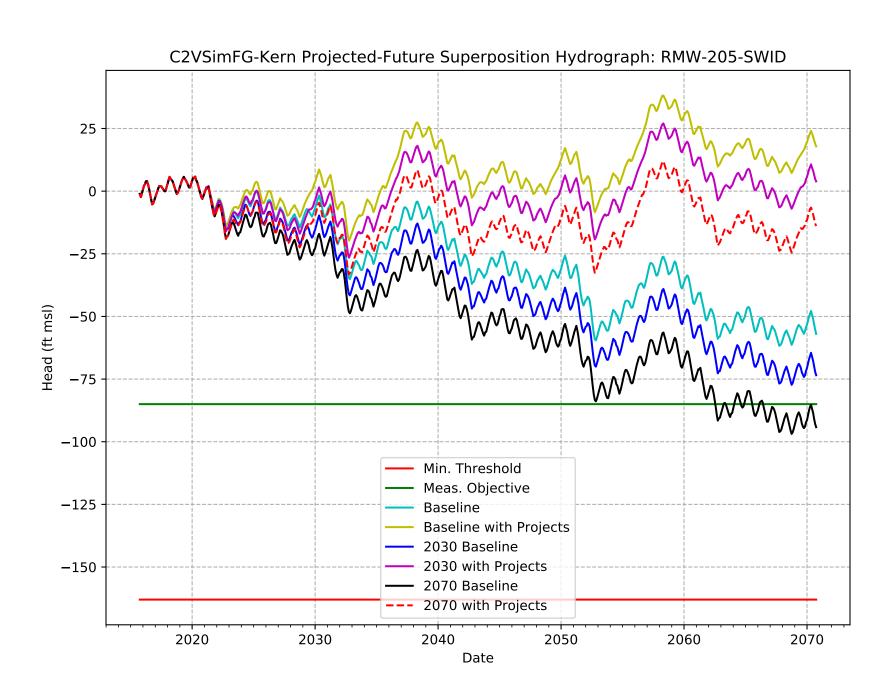

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-193-KRGSA 250 200 Head (ft msl) 150 100 Min. Threshold Meas. Objective Baseline 50 Baseline with Projects 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 0 2020 2030 2050 2070 2040 2060 Date

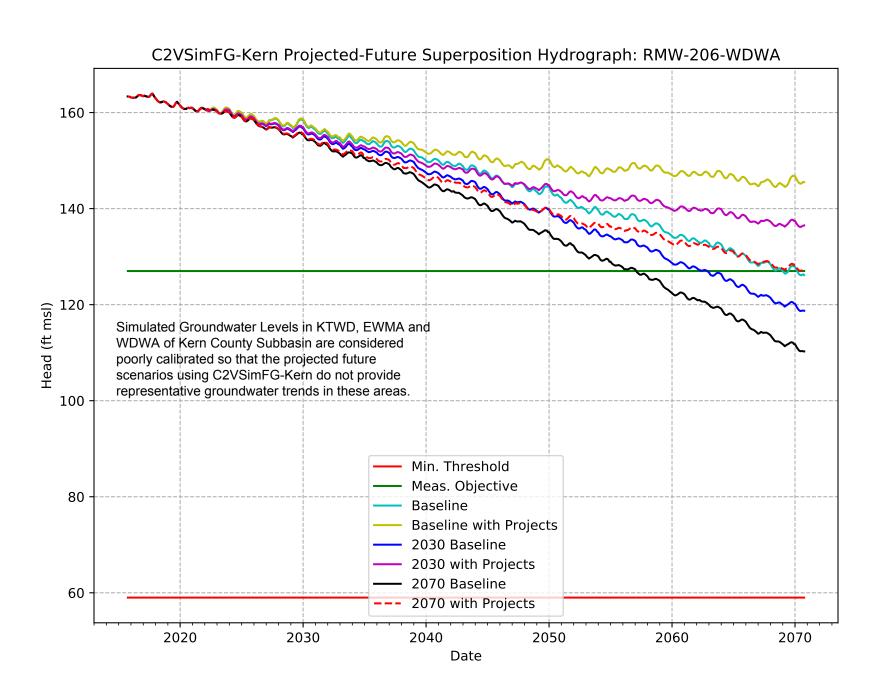

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-195-KRGSA

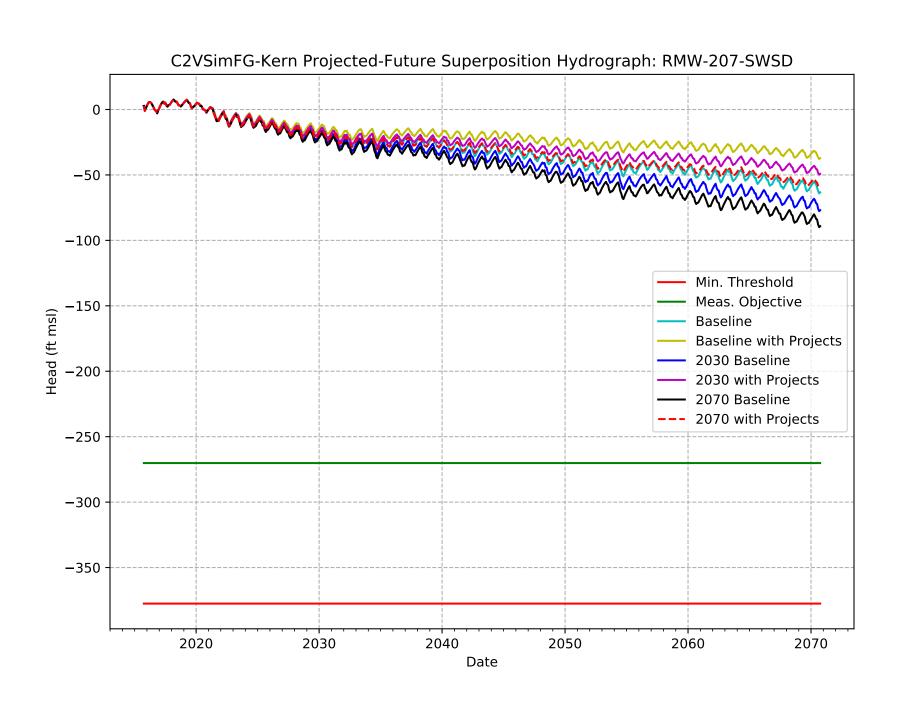


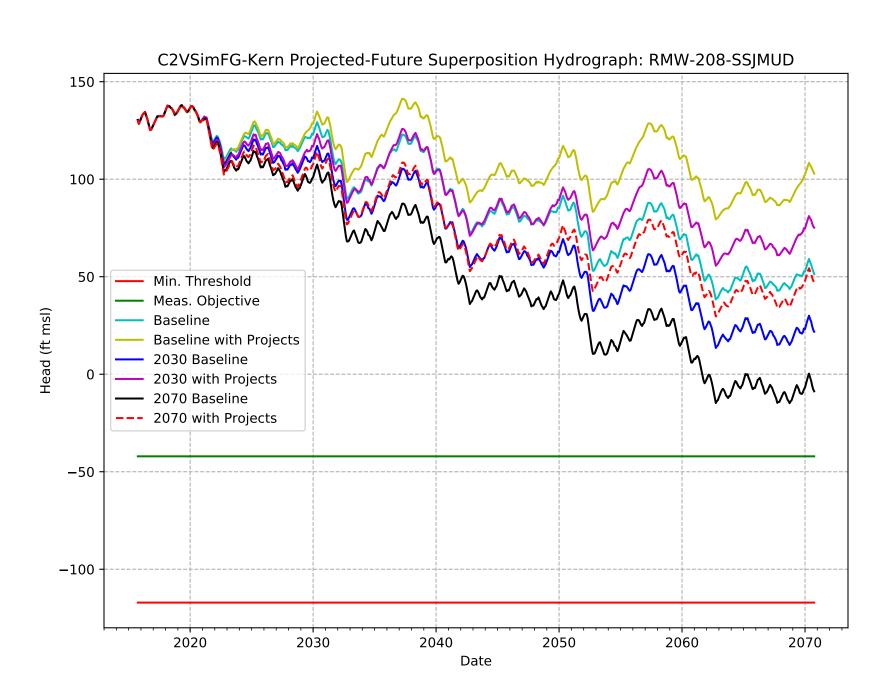

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-197-KRGSA 175 -Min. Threshold Meas. Objective Baseline Baseline with Projects 150 2030 Baseline 2030 with Projects 2070 Baseline 2070 with Projects 125 · Head (ft msl) 100 75 50 25 2030 2050 2070 2020 2040 2060

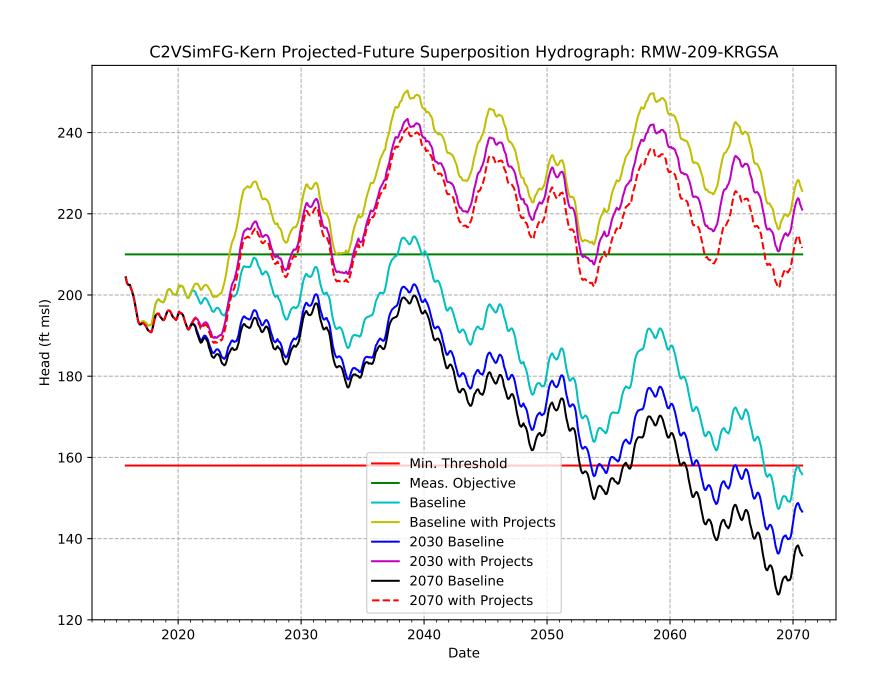


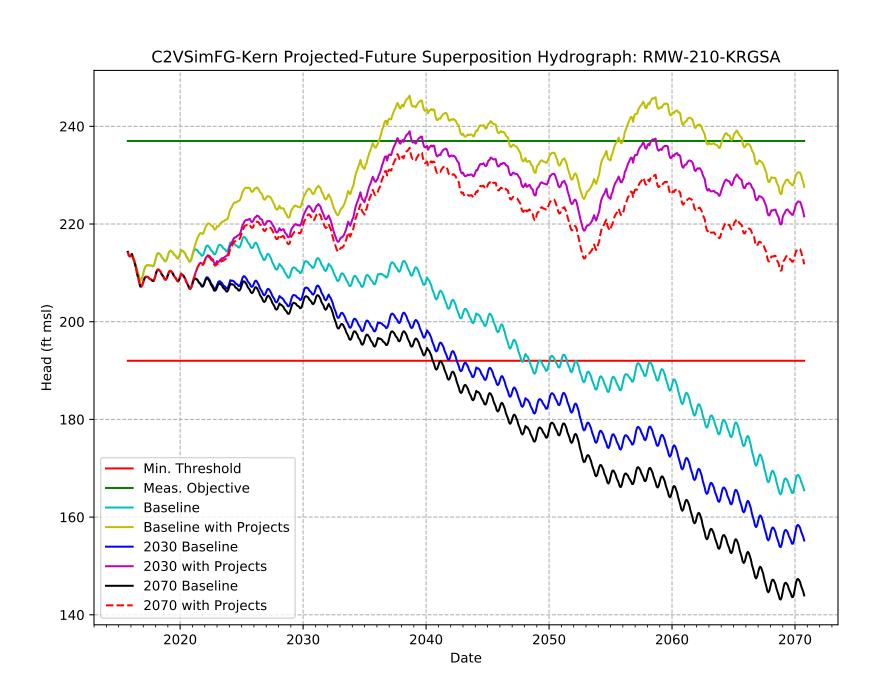


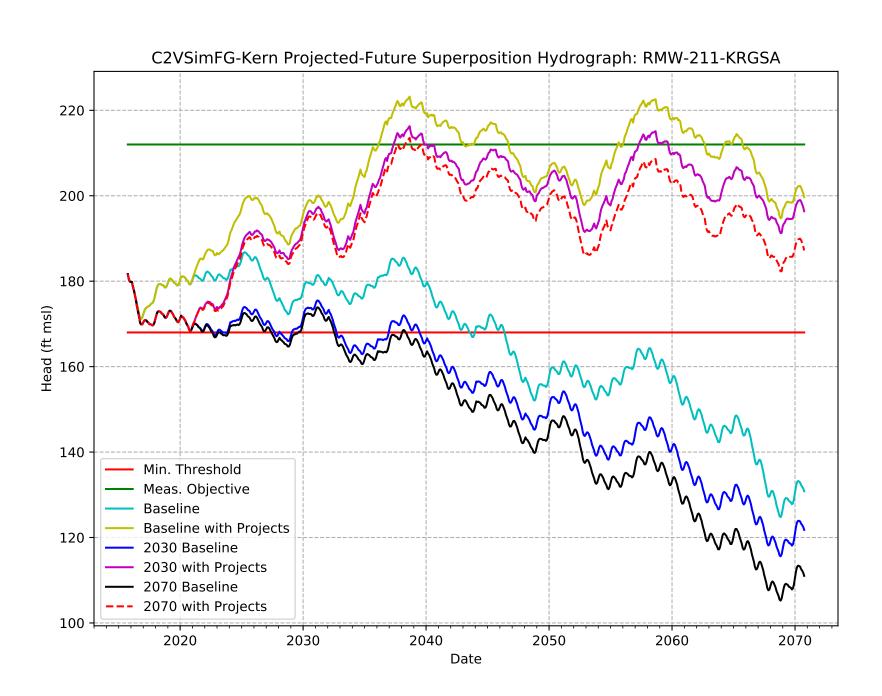

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-202-KRGSA

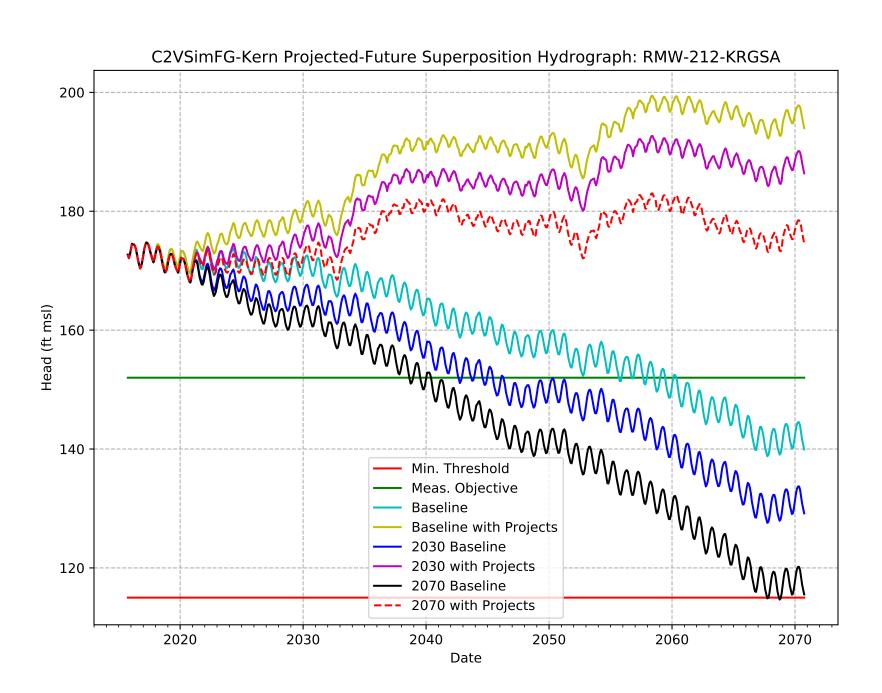


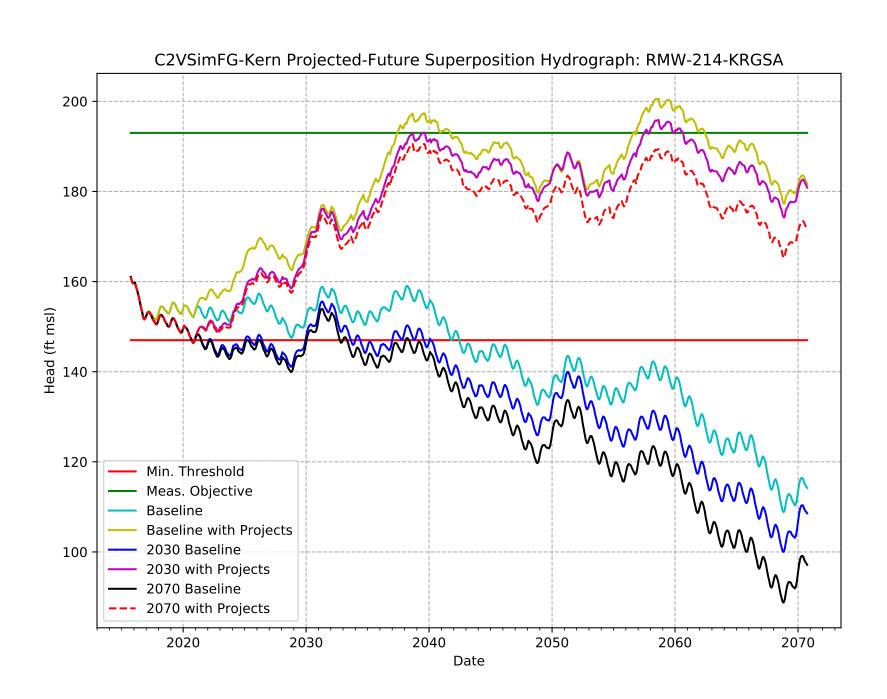


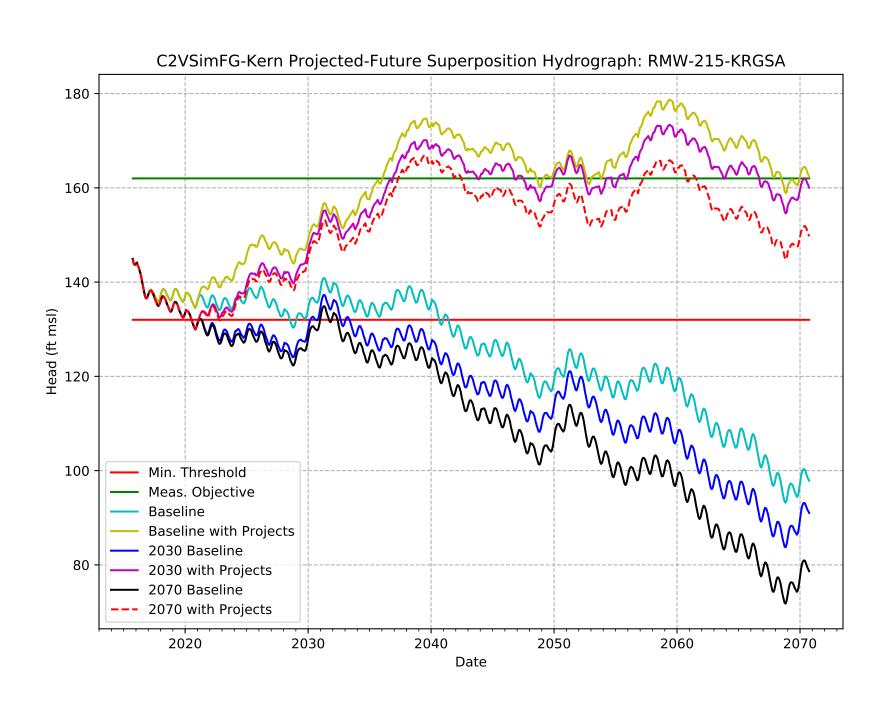




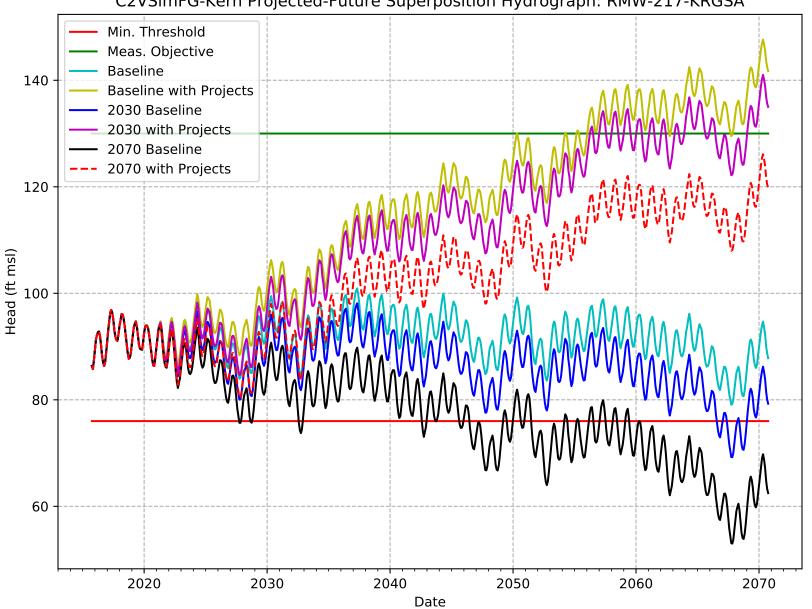


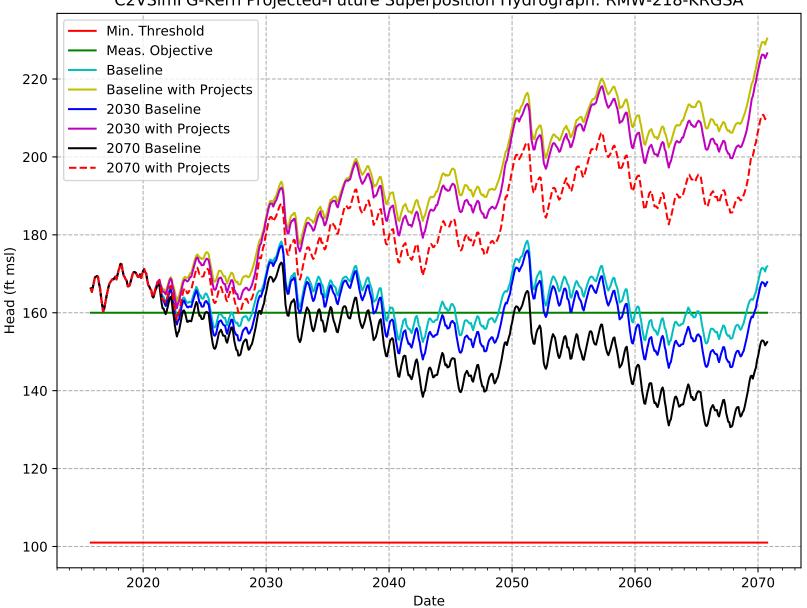




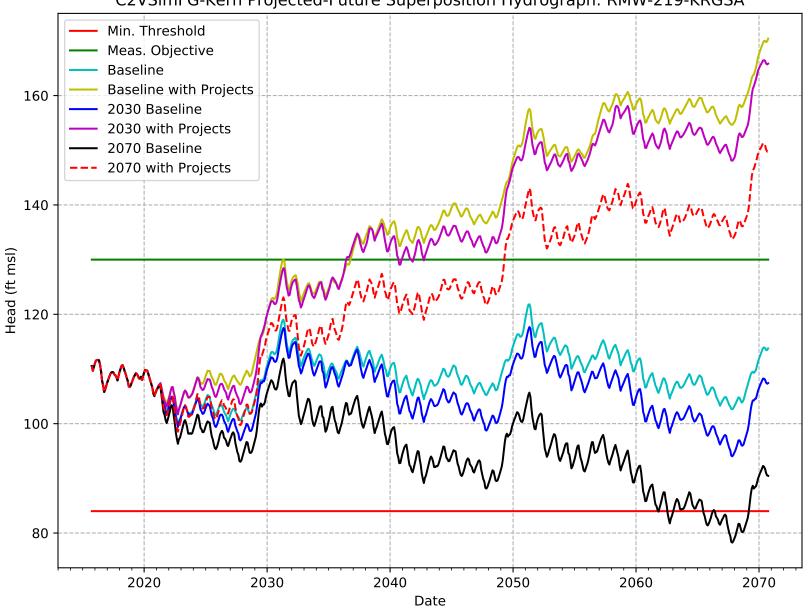


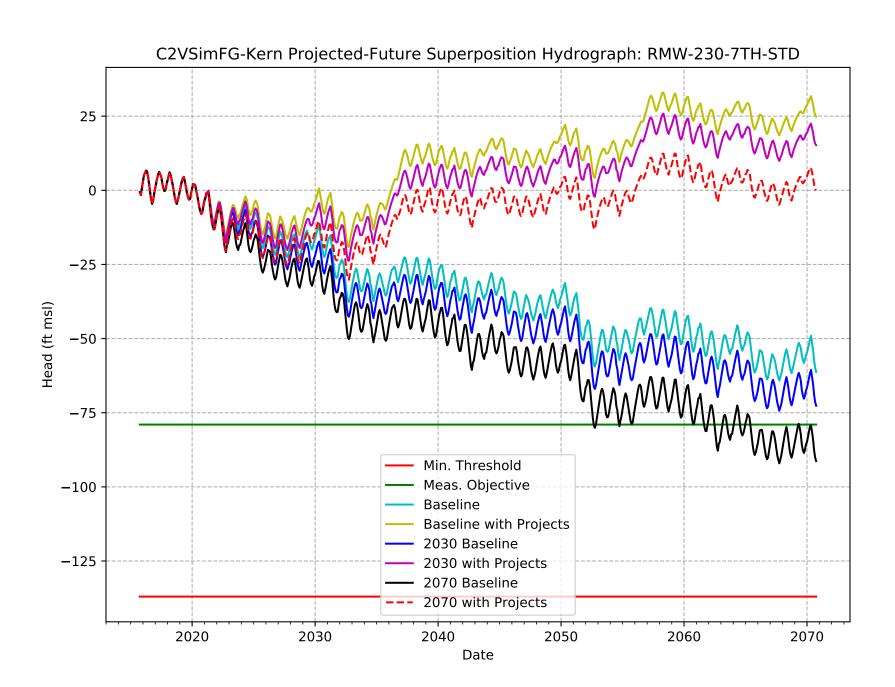
C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-213-KRGSA 240 220 200 Head (ft msl) 180 Min. Threshold 160 Meas. Objective Baseline Baseline with Projects 2030 Baseline 140 2030 with Projects 2070 Baseline 2070 with Projects 2020 2030 2040 2050 2070 2060 Date

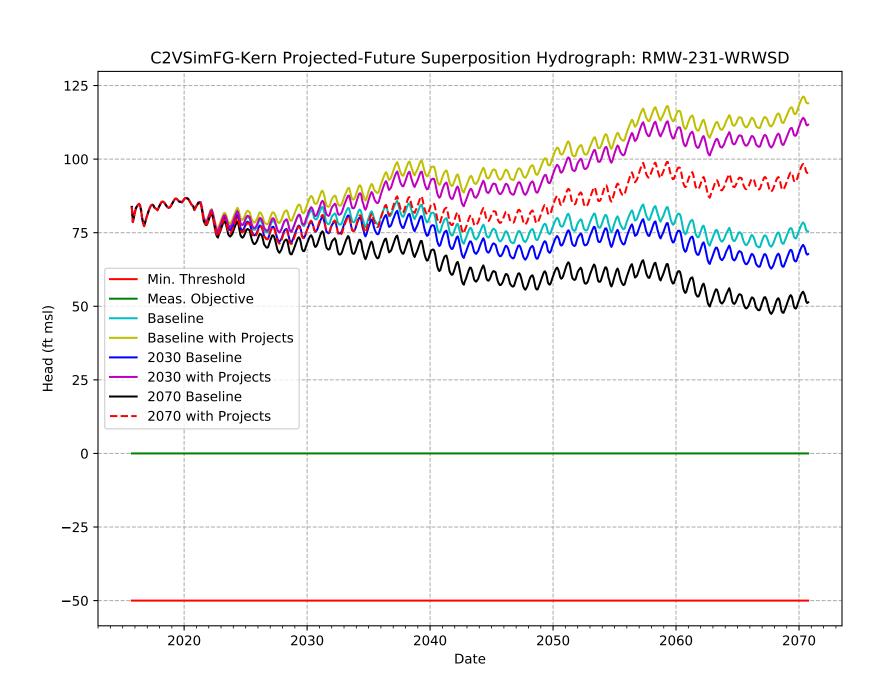


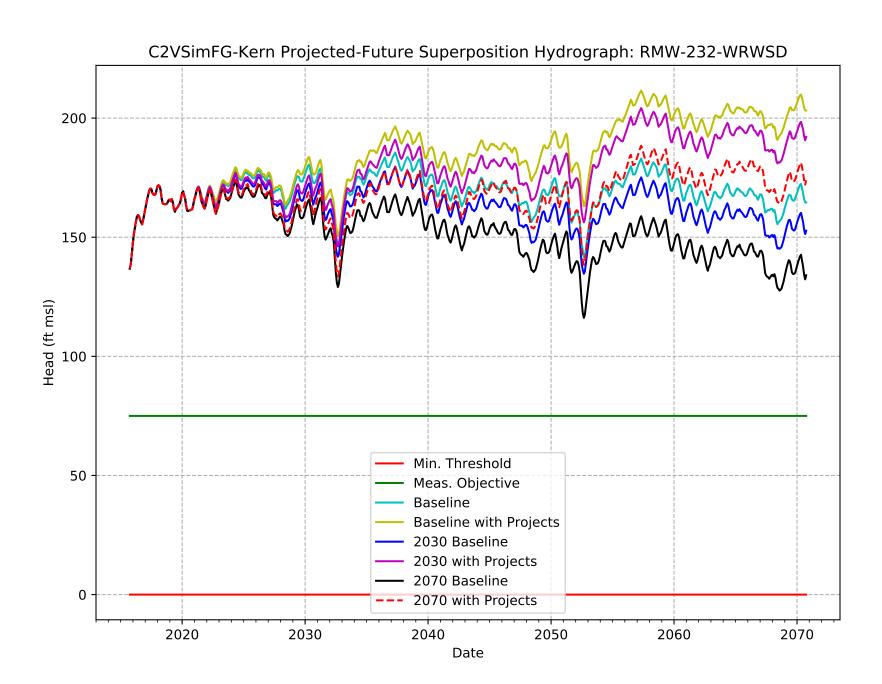

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-216-KRGSA 180 Min. Threshold Meas. Objective Baseline Baseline with Projects 2030 Baseline 2030 with Projects 160 -2070 Baseline 2070 with Projects 140 Head (ft msl) 120 100 80 2020 2070 2030 2040 2050 2060

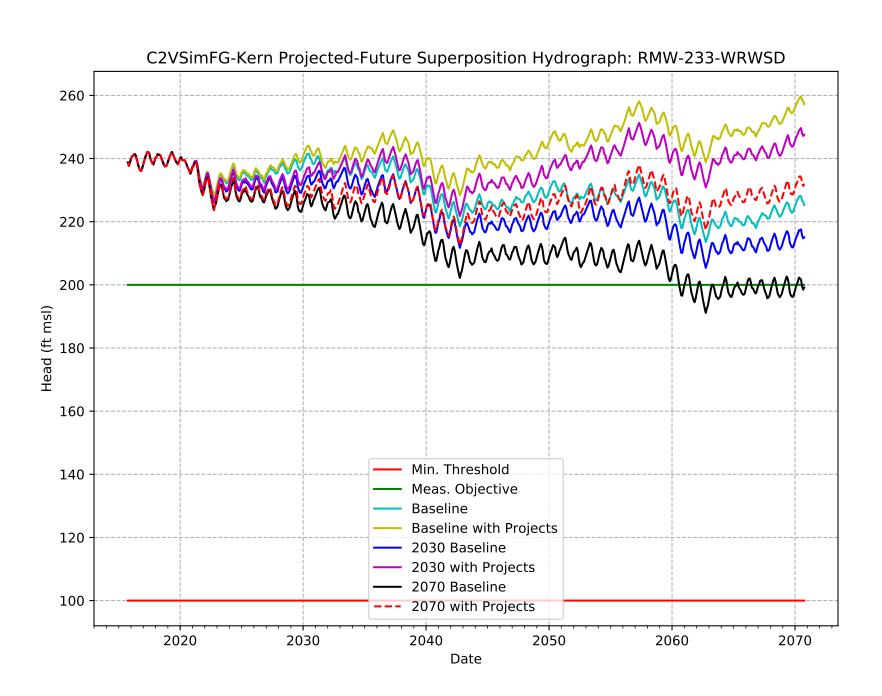
Date

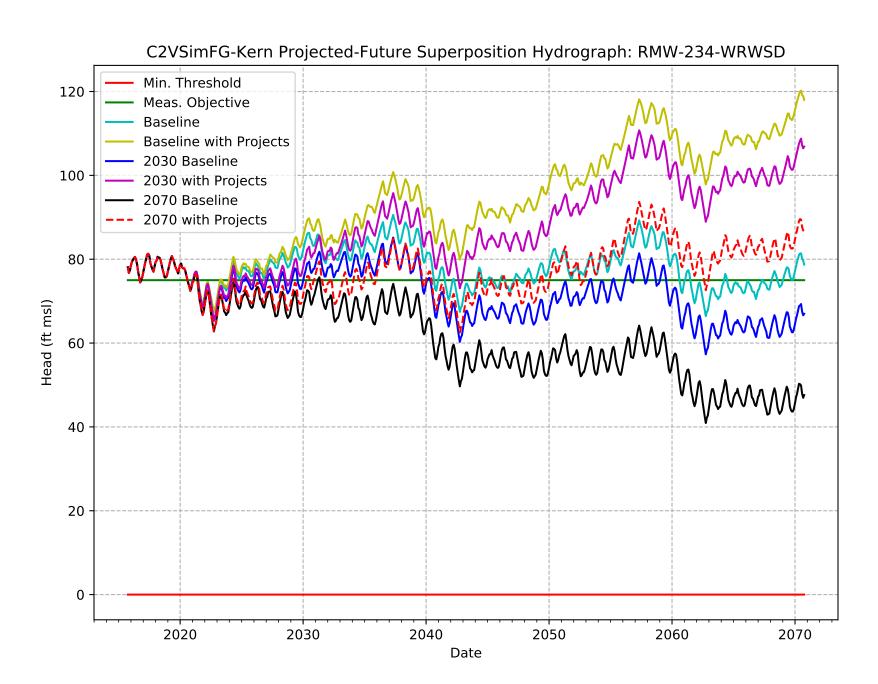

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-217-KRGSA

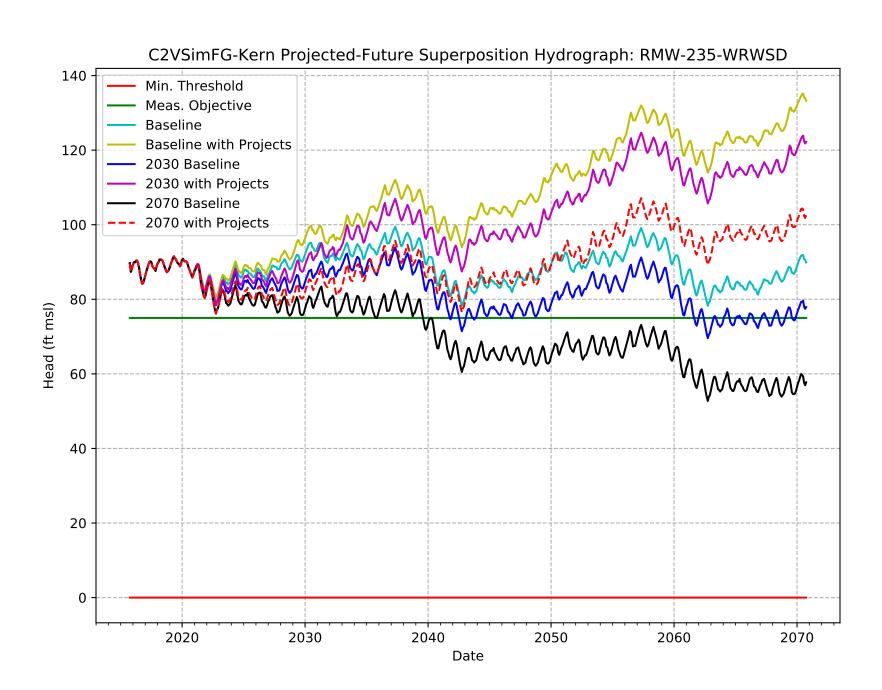


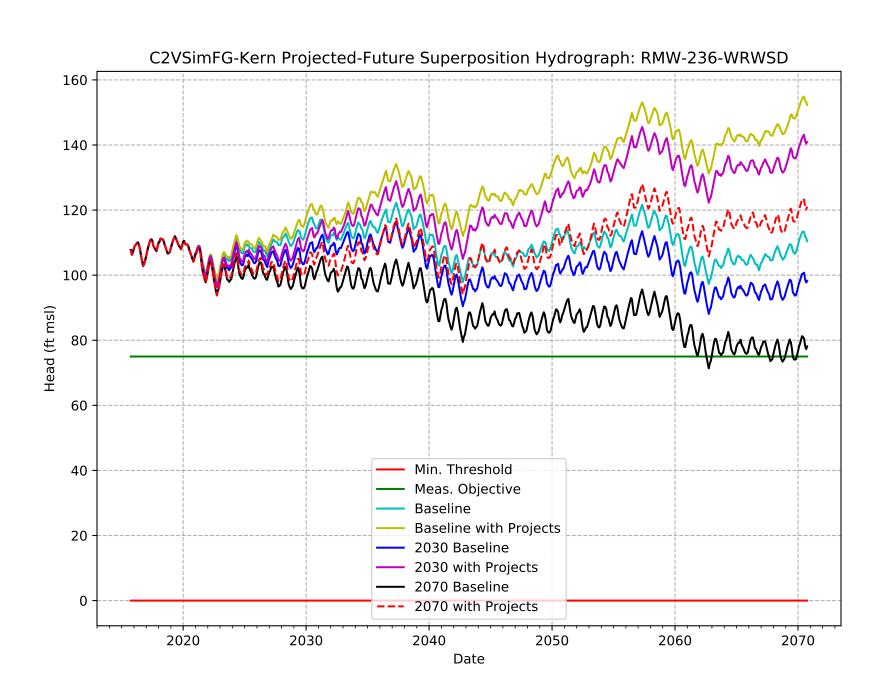

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-218-KRGSA

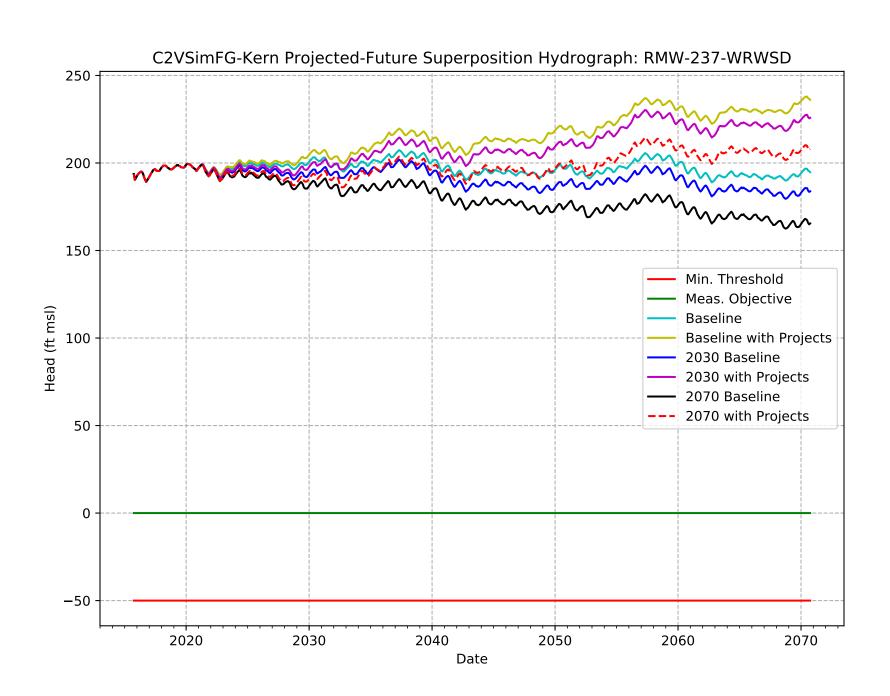


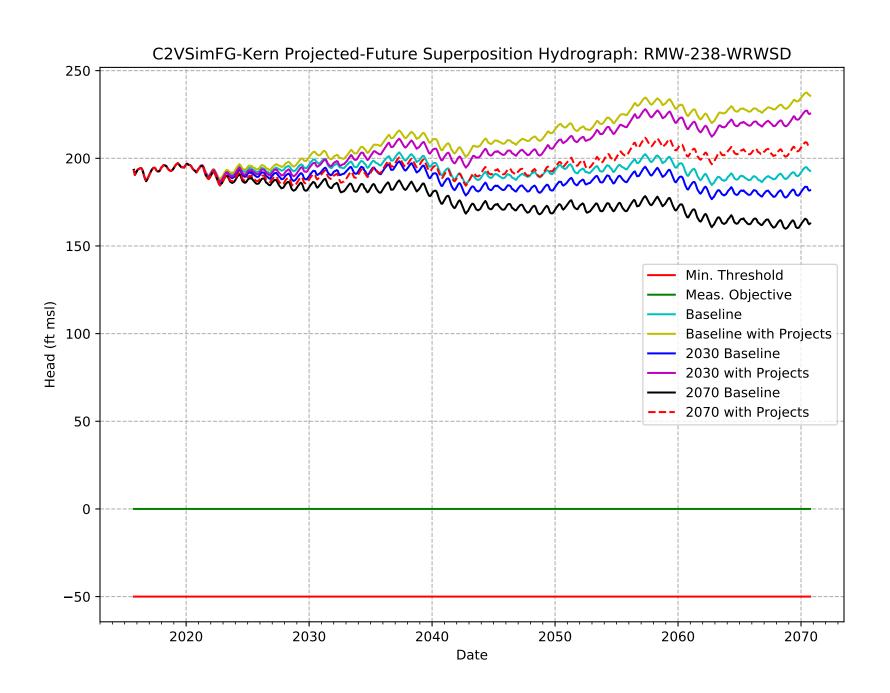

C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-219-KRGSA

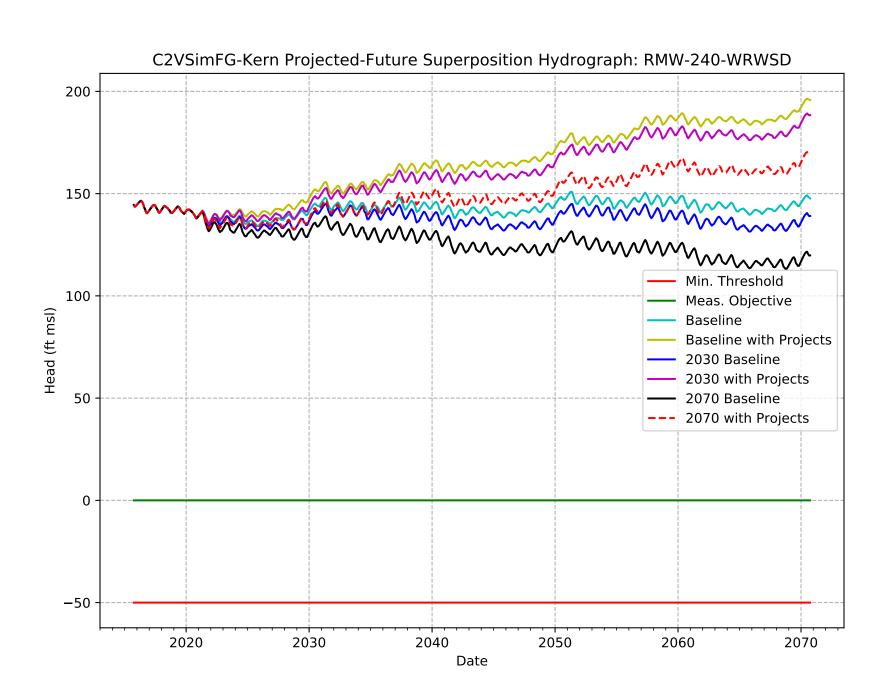


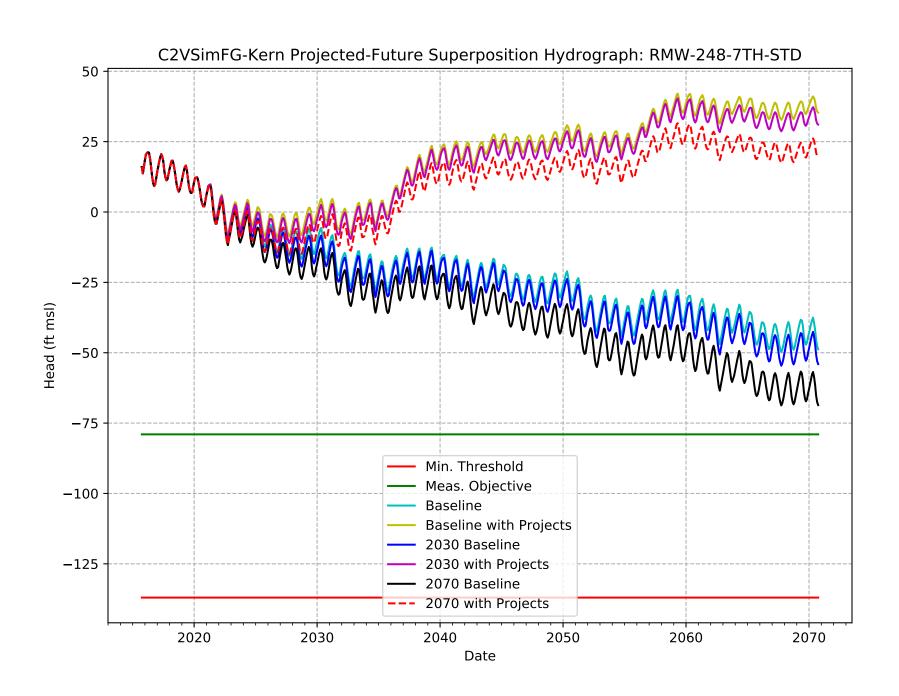


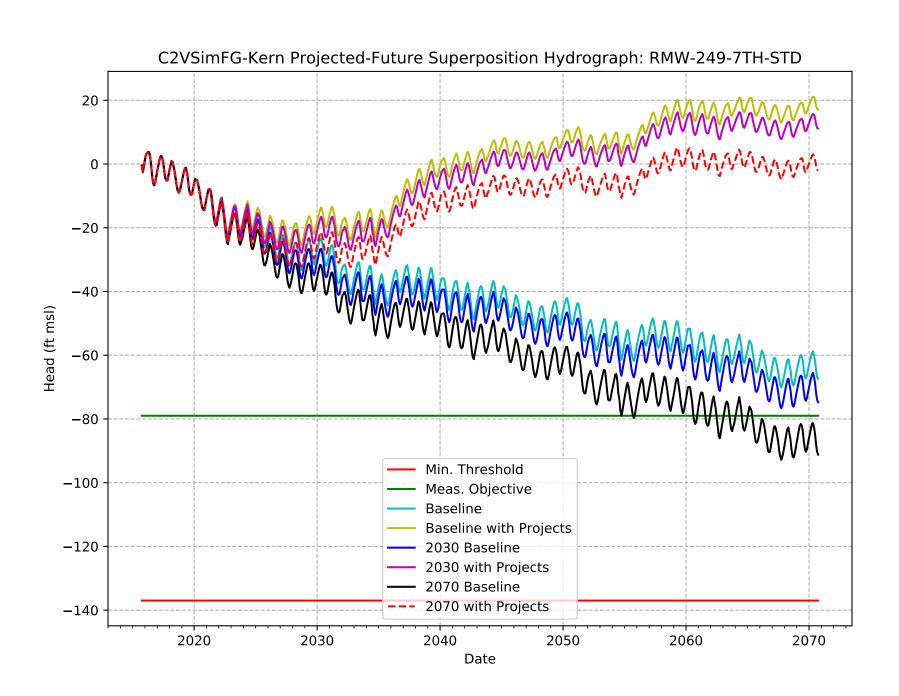












C2VSimFG-Kern Projected-Future Superposition Hydrograph: RMW-239-WRWSD 275 250 225 Head (ft msl) 200 175 150 Min. Threshold Meas. Objective Baseline Baseline with Projects 125 2030 Baseline 2030 with Projects 2070 Baseline 100 2070 with Projects 2020 2050 2030 2040 2070 2060 Date

