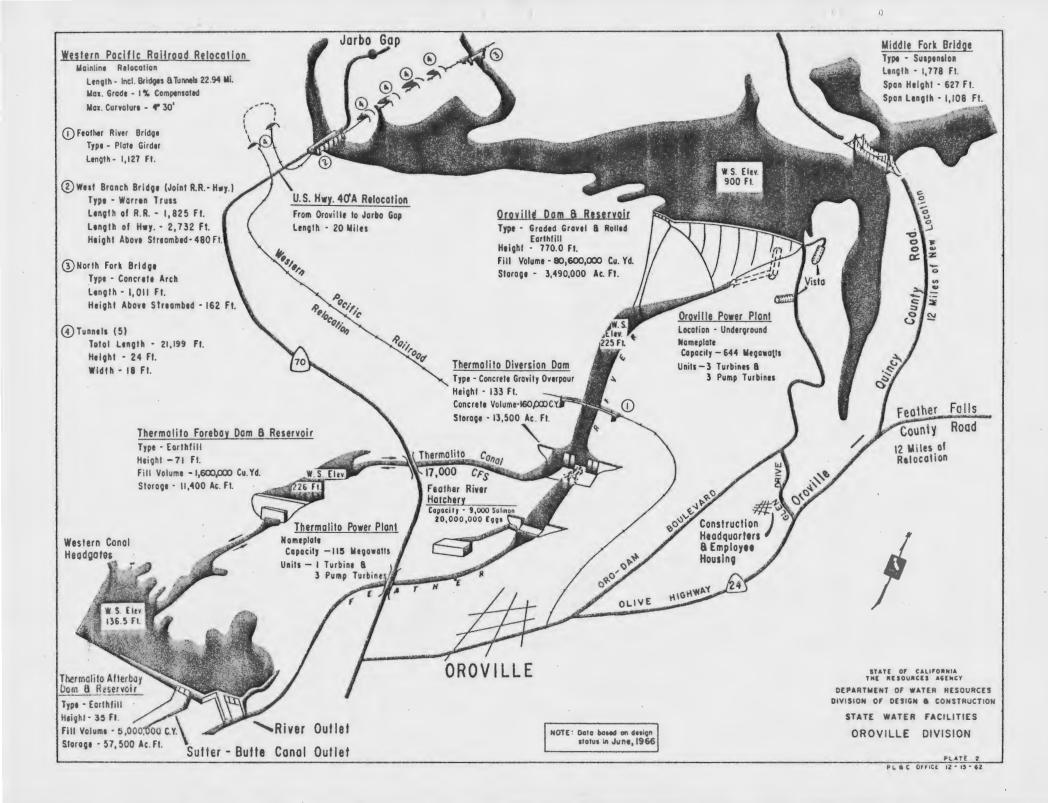
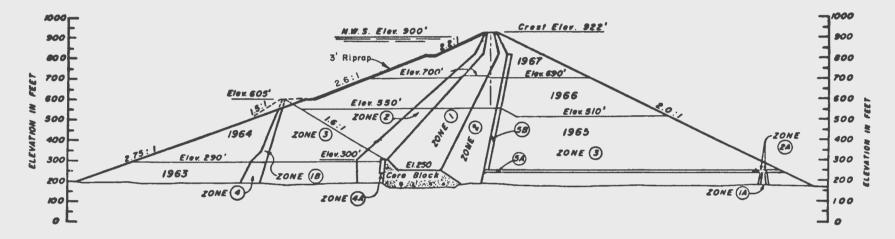


STATE OF CALIFORNIA The Resources Agency

Department of Water Resources

Oroville Dam


Key Unit of the STATE WATER PROJECT


RONALD REAGAN Governor State of California WILLIAM R. GIANELLI Director Department of Water Resources

California's State Water Project

SCHEDULE OF MATERIALS REQUIREMENTS, CUBIC YARDS

CONSTR. YEAR	RIPRAP	PERVIOUS	TRANSITION	IMPERVIOUS	TOTAL	CONCRETE
1962	0	0	0	0	0	0
1963	0	1,600,000	200,000	200,000	2,000.000	290, 700
1964	0	12,600,000	300,000	400,000	13,300,000	0
1965	5,000	16,000 ,000	3,500,000	3,100,000	22,600 ,000	0
1966	114,000	16,500.000	3,200,000	2,600,000	22,400,000	0
1967	294,000	14,400,000	2,300 ,000	2,700.000	19,700 ,000	0
TOTAL	413,000	61,100,000	9,500.000	9,000,000	80,000,000	290,700

FEET 0 200 400

OROVILLE DAM MAXIMUM SECTION SHOWING PROPOSED CONSTRUCTION SCHEDULE

***** MINIMUM 1964 PERVIOUS REQUIREMENT TO CONSTRUCT EMBANKMENT TO ELEVATION 605 IS 9,655,000

EMBANKMENT SECTION WITH ESTIMATED MATERIAL QUANTITIES

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES Division of Operations and Maintenance

OROVILLE FIELD DIVISION FACILITIES State Water Project

BASIC DATA

OROVILLE DAM

Type - Zoned Earthfill With Inclined Core and Graded Gravel Shells		
Crest Elevation Above Sea Level	922 ft.	
Maximum Normal Water Surface Elevation	900 ft.	
Reservoir Shore Line at Elevation 900	167 mi.	ł
Freeboard	22 ft.	
Maximum Height of Dam	770 ft.	,
Crest Width	50.6 ft.	
Crest Length	6,920 ft.	,
Side Slopes:		
Upstream	2.75:1, 2.6:1 & 2.2:1	
Downstream	2.0:1	
Embankment Volume	80,000,000 cu. yd.	•
Reservoir Capacity	3,538,000 acre-ft	•
Reservoir Area	15,800 acres	

OROVILLE DAM SPILLWAY

Flood Control Outlet

.

Top-Seal Radial Gates	
Number and Size	8 - 17.6 ft. x 33.5 ft.
Sill Elevation	813.6 ft.
Maximum Project Release	150,000 c.f.s.
Maximum Release (Reservoir at Spillway Design Pool)	277,000 c.f.s.
Chute Length	3,055 ft.
Chute Width	178.7 ft.
Chute Wall Height	20 to 27 ft.
Emergency Spillway	
Crest Length	1,730 ft.
Crest Elevation	901.0 ft.
Maximum Release	359,000 c.f.s.
Total Excavation	3,271,000 cu.yd.
Total Volume of Concrete	157,000 cu. yd.

OROVILLE INTAKE STRUCTURE

Туре	2 - Sloping Rectangular Channels
Location	Upstream of Left Abutment
Height	Elev. $61^{l_{\downarrow}}$ to 900 ft.
Length	650 ft.
Water Channel:	
Width	40 ft.
Height	29 ft.

1. River Outlet Valve Chamber 2. River Outlet Access Tunnel

. 1

- 3. Emergency Exit Tunnel
- 4. Air Exhaust Tunnel

- Operating Deck
 Unit No. I Turbine & Generator
 Diversion Tunnel No. I
- 8. Unit No. 2 Pump-Turbine & Motor/Generator 9. Penstock Branch Tunnel No. 3

- Penstock Tunnel No. 2, Branch Tunnels Nos. 4, 5, & 6
 Scroll Case & Il4-inch Spherical Valve, Unit No. 4 Pump-Turbine
- 12. Draft Tube Tunnels
- 13. Powerhouse Access Tunnel 14. High Voltage Cable Tunnel
- 15. Diversion Tunnel No. 2
- 16. Draft Tube Surge Connections

*The Diversion Tunnels become Tailrace Tunnels after they are plugged above Draft Tubes.

State of California

DEPARTMENT OF WATER RESOURCES

,

OROVILLE POWERPLANT

•

Rock	Chamber	
	Length	550 ft.
	Width	69 ft.
	Depth	137 ft.
	Rock bolting:	
	Ceiling - 1-inch diam., 20 ft. long @ 4 f	t. on centers
	Side Walls - 1-inch diam., 20 ft. long @	6 ft. on centers
	Drainage:	
	Rock - NX holes @ approximately 25 ft. or 25 to 48 ft. long	centers,
	Peripheral - consists of a system of pipe below Elevation 217	es to the sump
Powe	rhouse Structure	
	6 Structural Bays, length	78 ft.
	1 Service Bay, length	66 ft.
	Roof - metal panels suspended on steel frame	es bolted to the rock
Main	Equipment	
	3 Turbine-generator Units	
	3 Pump Turbine-motor Generator Units	
	Total Generating Capacity	544,250 kw
	6 - 114-inch Spherical Valves	
	6 - 230 kv Transformers	

2 - 200-ton Capacity Bridge Cranes

EDWARD HYATT POWERPLANT (CONTD)

Pow	ver Waterways		
	Q Generating	14,550	c.f.s.
	Q Pumping	5,600	c.f.s.
	Static Head	675	ft.
	2 Sloping Intakes on the Left Abutment		
	2 - 22-foot diam. reinf. conc. power tunn	els	
	6 - 12-foot diam. tunnel branchlines		
	6 - Steel Spiral Cases		
	6 - reinf. concrete draft-tubes and exten	sions	
	2 - 35-foot diam. concrete-lined tailrace	tunnels	

Main Access Tunnel

Туре	Concrete Lined Horseshoe
Width	25 ft.
Height	25 ft.
Length	1,500 ft.
Excavation	46,000 cu. yd.

High Voltage Cable Tunnel

Туре	Concrete Lined
Width	9.5 ft.
Height	9.0 ft.
Length	500 ft.
Excavation	3,800 cu.yd.

EDWARD HYATT POWERPLANT (CONTD)

Penstock Tunnels and Branches

Type	Circular Concrete Lined - Last 100 ft. of Branches Are Steel Lined
Diameter - Main Penstocks	2@22ft.
Branches	6 @ 12 ft.
Excavation	39,000 cu. yd.
Capacity of Branches - Turbines	3 @ 3,400 c.f.s.
Pump Turbines	3@2,600 c.f.s.
Velocity - Main Penstocks	25 f.p.s.
Branches - Turbines	30 f.p.s.
Pump Turl	bines 23 f.p.s.
Draft Tube Tunnels	
Туре	Concrete Lined Rectangular to Circular
Diameter Circular - Units 1, 3	& 5 21 ft.
Units 2, 4	& 6 18 ft.
Length - Units 1 & 2	2 70 ft.
Units 3, 4,	,5&6 150 ft.
Excavation	9,000 cu. yd.
Emergency Exit Tunnel	
Туре	Circular Concrete Lined
Diameter	8 ft.
Length	570 ft.
Excavation	2,000 cu. yd.

EDWARD HYATT POWERPLANT (CONTD)

Core Bl	ock Acc	ess T	unnel
---------	---------	-------	-------

Type

Diameter

Excavation

Length

Circular Concrete Lined

7.5 ft.

780 ft.

4,300 ft.

ft.

4,600

2 - 72" Steel Pipes through

Maintain flow in river

2 - 54-Inch fixed dispersion

concrete valves for control guarded by 72-inch guard

during construction and during powerplant shutdown

plug in Tunnel #2

periods.

valves.

Accomplished Under Exploration for Powerhouse

Diversion and Tailrace Tunnels

Type	2 - Circular Concrete Lined with Concrete Plug at Approximate Mid Point
Diameter	2-35 ft.

Diameter

Length - Tunnel "1

Tunnel #2

River Outlet

Purpose

Control

Capacity

5,400 c.f.s. (combined)

PALERMO OUTLET TUNNEL

Location	In Left Abutment
Elevation	551.25 ft.
Valve	12-inch Ø Hollow Cone
Capacity	40 c.f.s.

Dam

Lining

Dam			
Туре	Concrete Gravity		
Crest Elevation	233 ft.		
Crest Length	1,300 ft.		
Crest Width	24 ft.		
Height of Dam above Streambed	143 ft.		
Spillway			
Туре	Concrete Gravity Ogee with Dentated Bucket		
Number of Radial Gates	14		
Crest Elevation	205 ft.		
Net Length	506 ft.		
Design Flood - Inflow	650,000 c.f.s.		
Outflow	650,000 c.f.s.		
Reservoir			
Normal Water Surface Elevation	225 ft.		
Minimum Operating Pool Elevation	n 225 ft.		
Maximum Water Surface Elevation	246 ft.		
Reservoir Area at N.W.S.	330 acres		
Storage Capacity at N.W.S.	13,500 acre-ft.		
THERMALITO POWER CANAL			
Normal Water Surface Elevation	225.0 ft.		
Invert Elevation (Constant)	196.7 ft.		
Bottom Width	48.0 ft.		
Side Slopes	1.5:1		
Depth to Top of Lining	31.3 ft.		
Length	2.5 mi.		
Capacity	17,000 c.f.s.		

17,000 c.f.s. Concrete THERMALITO FOREBAY DAM

Earthfill Type 231 ft. Crest Elevation 226 ft. Maximum Water Surface Elevation Reservoir Shore Line at Elevation 226 10 mi. 5 ft. Freeboard 71 ft. Maximum Height of Dam 30 ft. Crest Width 15,900 ft. Crest Length 1.75 to 3.0:1 Side Slopes - Upstream 2.5:1 Downstream 1,580,000 cu. yd. Fill Volume 11,400 acre-ft. Reservoir Capacity 600 acres Reservoir Area THERMALITO POWERPLANT Headworks Structure Concrete Gravity Type 350 ft. Length 75 ft. Foundation width

Powerhouse

Height

Length	350 ft.
Width	151 ft.
Height	137 ft.

82 ft.

Units

3	B Pump-generating units		
1	Generating unit		
T	otal Generating ର୍	16,500	c.f.s.
Т	Cotal Pumping Q	7,000	c.f.s.
H	lead	102	ft.
Bypass	s Capacity	10,000	C.î.S.
Rated	Generating Capacity	115,100	kw

THERMALITO AFTERBAY DAM

Туре	Earthfill		
Crest Elevation	142	ſt.	
Maximum Water Surface Elevation	136	.5 ît.	
Minimum Water Surface Elevation	123	ft.	
Freeboard	5	.5 ft.	
Maximum Height of Dam	37	ft.	
Crest Width	30	ft.	
Crest Length	41,600	ft.	
Side Slopes - Upstream	3.0:1		
Downstream	2.5:1		
Fill Volume	5,038,000	cu. yd.	
Reservoir Capacity at Elevation 136.5	56,000	acre-ft.	
Reservoir Area at Elevation 136.5	¹ ,300	acres	
Structures:	Maximum Op Relea	- 22	
*Western Canal Outlet	1,150	c.f.s.	
*Richvale Canal Outlet	500	c.f.s.	
*Sutter-Butte Canal Outlet	2,300	c.f.s.	
**River Outlet	17,000	c.f.s.	
*PG&E Lateral Outlet	50	c.f.s.	
Drainage Area	5	sq. mi.	

*Pressure flow conduit with upstream slide gate control **Open channel flow with top seal radial gate control

PARISH CAMP SADDLE DAM

Capacity

Hydrology

Dam		
Crest Length	260 ft.	
Maximum Height	27 ft.	
Volume of Embankment	ll,000 cu. yd.	
Crest Elevation	922 ft.	
Crest Width	30 ft.	
Side Slopes - Upstream	2.5:1	
Downstream	2.5:1	
Mine Adit Plug		
Volume of Embankment	850 cu. yd.	
Surface Slope	4:1	
BIDWELL BAR CANYON SADDLE DAM		
Crest Length	2,270 ft.	
Maximum Height	47 ft.	
Volume of Embankment	175,000 cu. yd.	
Crest Elevation	922 ft.	
Crest Width	30 ft.	
Side Slopes - Main Dam - Upstream	2.5:1	
Downstream	2.5:1 & 2.0:1	
West Dam - Upstream	2.5:1	
Downstream	2.0:1	
FISH BARRIER DAM		
Туре	Concrete Gravity	
Crest Elevation	est Elevation 181 ft.	
Maximum Height Above Streambed	61 ft.	
Crest Length	600 ft.	
Method of Stream Passage	Overflow Spill Section	

200,000 c.f.s.

Flow past the Dam is controlled by releases at Oroville Dam and Thermalito Diversion Dam

GEOLOGICAL ORIGINS

OF THE FEATHER RIVER CANYON

The Feather River Canyon is the result of volcanic activity and water erosion in a relatively recent geological period. Events which led up to this development, however, began in a much more remote period of time.

The evolution of the Sierra Nevada began perhaps 120 to 130 million years ago, in the late Jurassic Period, when the western half of a great sedimentfilled trough was crumpled into mountains. Available evidence indicates that this took place beneath the sea and that the mountains thus formed appeared as islands, to be "welded" into the continent at a later time. The height of these mountains is not known, but it is estimated to have been about 6,000 to 7,000 feet above sea level.

About a mile below the surface, meanwhile, the formations of igneous rock, solidified from molten masses, developed a huge body of granitic rock under a very large part of the range. This rock, under tremendous pressure, was forced upward through weak spots in the earth's crust to form the large masses of granite subsequently exposed by erosion.

By the beginning of the Cenozoic Era, about 60 million years later, the mountains had been so eroded that they were nearly inconspicuous and in places the ocean had approached the base of the range. The land was so low that western winds carried moisture over it and into the land to the east. This area, so arid at the present time, was then characterized by luxuriant vegetation.

During the Eocene Epoch, the second part of the Cenozoic Era, the land was bowed upward, creating a low mountain barrier into which streams cut deep gorges. About 10 million years later it was again uplifted to sufficient height to catch and hold the moisture from the western winds.

Much more vigorous disturbances in the Miocene, Pliocene, and Pleistocene epochs - comprising approximately 30 million years - elevated the range to its present height.

Volcanic activity and water erosion played the principal parts in the development of the Sierra Nevada in more recent epochs. Glacier action within the last one million years affected parts of the range greatly, as is evidenced by Mono Lake, Yosemite Valley and other places. Feather River Canyon, however, is non-glaciated; it is one of many valleys throughout the range which were formed by water erosion.

About 20 million years ago volcanic eruptions blocked the huge 500 square mile watershed which is now drained by the North Fork of the Feather River, forming a large lake. Gradually a notch began to develop, permitting the water to drain slowly out, which in turn enlarged the notch. The erosion developed in this way cut through lava rock and clay to create the beautiful Feather River Canyon, as we know it.

Sediment deposited on the former lake bottom had formed a broad flat area which was named Big Meadows early in the American period of California history. The construction of Big Meadows Dam in 1914 created modern Lake Almanor, which stores water for regulated release for hydroelectric generation downstream.

#