Natural Resource Stewardship and Science



## Groundwater Geology and Hydrology of Death Valley National Park, California and Nevada

Natural Resource Technical Report NPS/NRSS/WRD/NRTR—2012/652



# Groundwater Geology and Hydrology of Death Valley National Park, California and Nevada

Natural Resource Technical Report NPS/NRSS/WRD/NRTR—2012/652

M. S. Bedinger Hydrologist U.S. Geological Survey, Retired Carlsborg, WA

J. R. Harrill Hydrologist U.S. Geological Survey, Retired Carson City, NV

December 2012

U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public.

The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations.

All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received formal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data, and whose background and expertise put them on par technically and scientifically with the authors of the information.

Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government.

This report is available from Water Resources Division (www.nature.nps.gov/water) and the Natural Resource Publications Management Web site (www.nature.nps.gov/publications/nrpm/) on the Internet.

Please cite this publication as:

Bedinger, M. S., and J. R. Harrill. 2012. Groundwater geology and hydrology of Death Valley National Park, California and Nevada. Natural Resource Technical Report NPS/NRSS/WRD/NRTR—2012/652. National Park Service, Fort Collins, Colorado.

### Contents

| Figures                                             | vii |
|-----------------------------------------------------|-----|
| Plates                                              | vii |
| Tables                                              | ix  |
| Photographs                                         | ix  |
| Abbreviations                                       | xi  |
| Conversions                                         | xi  |
| Introduction                                        | 1   |
| Background and Acknowledgements                     | 3   |
| Objectives                                          | 3   |
| Hydrologic Environment of Death Valley              | 5   |
| Geologic and Structural Setting of Death Valley     | 9   |
| Depositional and Tectonic History                   | 9   |
| Structural Features and Hydrogeologic Significance  | 10  |
| Thrust Faults                                       | 10  |
| Regional Transverse Fault Zones                     | 10  |
| Normal Faults                                       | 11  |
| Detachment Faults                                   | 11  |
| Chaos Faulting                                      | 12  |
| Geologic Units and their Hydrologic Characteristics | 14  |
| Metamorphic and Igneous Basement Rocks (Xmi)        | 14  |
| Clastic and Carbonate Rocks (ZPcc)                  | 18  |
| Carbonate Rocks (PMc)                               | 20  |
| Intrusive Igneous Rocks (MTi)                       | 21  |
| Volcanic and Older Basin Fill (Cvb)                 | 21  |
| Volcanic Rocks                                      | 21  |
| Older Basin Fill                                    | 21  |
| Younger Basin Fill and Alluvium (Qb)                | 22  |
| Climatic Setting of the Death Valley Region         | 23  |
| Vegetation                                          | 27  |
| Soils                                               | 29  |
| Hydrogeologic Setting                               | 31  |
| Death Valley Groundwater Flow System                | 31  |
| Regional Flow                                       | 31  |
| Local Flow                                          | 32  |
| Surface Water Flow of the Death Valley Region       | 33  |

### **Contents (continued)**

| Pleistocene Streams, Lakes, and Marshes         Inferred Groundwater Conditions under Pluvial Conditions         Groundwater Inflow, Recharge, and Discharge         Groundwater Inflow from California         Groundwater Inflow from Nevada         Valley Floor Discharge of Groundwater         Saratoga–Amargosa River Valley Springs         Amargosa River Valley         Badwater Basin         Middle Basin         Cottonball Basin         Mesquite Flat         Regional Spring Discharge above the Valley Floor         Recharge to Death Valley         Springs of Death Valley National Park and their Hydrogeologic Settings         Regional Spring.         Keane Wonder Spring.         Saline Valley Hot Springs. | 34<br>35<br>37<br>37<br>37<br>38<br>41<br>41 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Inferred Groundwater Conditions under Pluvial Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35<br>37<br>37<br>37<br>38<br>41<br>41       |
| Groundwater Inflow, Recharge, and Discharge<br>Groundwater Inflow from California<br>Groundwater Inflow from Nevada<br>Valley Floor Discharge of Groundwater<br>Saratoga–Amargosa River Valley Springs<br>Amargosa River Valley<br>Badwater Basin<br>Middle Basin<br>Cottonball Basin<br>Mesquite Flat<br>Regional Spring Discharge above the Valley Floor<br>Recharge to Death Valley<br>Groundwater Budget Components for Death Valley<br>Springs of Death Valley National Park and their Hydrogeologic Settings<br>Regional Spring Shove the Valley Floor<br>Keane Wonder Spring<br>Saline Valley Hot Springs                                                                                                                       | 37<br>37<br>37<br>38<br>41<br>41             |
| Groundwater Inflow from California<br>Groundwater Inflow from Nevada<br>Valley Floor Discharge of Groundwater<br>Saratoga–Amargosa River Valley Springs<br>Amargosa River Valley<br>Badwater Basin<br>Middle Basin<br>Cottonball Basin<br>Mesquite Flat<br>Regional Spring Discharge above the Valley Floor<br>Recharge to Death Valley<br>Groundwater Budget Components for Death Valley<br>Springs of Death Valley National Park and their Hydrogeologic Settings<br>Regional Spring Shove the Valley Floor<br>Keane Wonder Spring<br>Saline Valley Hot Springs.                                                                                                                                                                     | 37<br>37<br>38<br>41<br>41                   |
| Groundwater Inflow from Nevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37<br>38<br>41<br>41                         |
| Valley Floor Discharge of Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38<br>41<br>41                               |
| Saratoga–Amargosa River Valley Springs<br>Amargosa River Valley<br>Badwater Basin<br>Middle Basin<br>Cottonball Basin<br>Cottonball Basin<br>Mesquite Flat<br>Regional Spring Discharge above the Valley Floor<br>Recharge to Death Valley.<br>Groundwater Budget Components for Death Valley<br>Springs of Death Valley National Park and their Hydrogeologic Settings<br>Regional Springs Above the Valley Floor<br>Keane Wonder Spring<br>Saline Valley Hot Springs                                                                                                                                                                                                                                                                 | 41<br>41                                     |
| Amargosa River Valley.         Badwater Basin         Middle Basin         Cottonball Basin         Mesquite Flat         Regional Spring Discharge above the Valley Floor.         Recharge to Death Valley         Groundwater Budget Components for Death Valley         Springs of Death Valley National Park and their Hydrogeologic Settings         Regional Spring Above the Valley Floor.         Keane Wonder Spring.         Saline Valley Hot Springs.                                                                                                                                                                                                                                                                     | 41                                           |
| Badwater Basin         Middle Basin         Cottonball Basin         Mesquite Flat         Regional Spring Discharge above the Valley Floor         Recharge to Death Valley         Groundwater Budget Components for Death Valley         Springs of Death Valley National Park and their Hydrogeologic Settings         Regional Spring Above the Valley Floor         Keane Wonder Spring.         Saline Valley Hot Springs                                                                                                                                                                                                                                                                                                       |                                              |
| Middle Basin<br>Cottonball Basin<br>Mesquite Flat<br>Regional Spring Discharge above the Valley Floor<br>Recharge to Death Valley<br>Groundwater Budget Components for Death Valley<br>Springs of Death Valley National Park and their Hydrogeologic Settings<br>Regional Springs Above the Valley Floor<br>Keane Wonder Spring                                                                                                                                                                                                                                                                                                                                                                                                        | 41                                           |
| Cottonball Basin<br>Mesquite Flat<br>Regional Spring Discharge above the Valley Floor<br>Recharge to Death Valley<br>Groundwater Budget Components for Death Valley<br>Springs of Death Valley National Park and their Hydrogeologic Settings<br>Regional Springs Above the Valley Floor<br>Keane Wonder Spring<br>Saline Valley Hot Springs                                                                                                                                                                                                                                                                                                                                                                                           | 42                                           |
| Mesquite Flat         Regional Spring Discharge above the Valley Floor         Recharge to Death Valley         Groundwater Budget Components for Death Valley         Springs of Death Valley National Park and their Hydrogeologic Settings         Regional Springs Above the Valley Floor         Keane Wonder Spring         Saline Valley Hot Springs                                                                                                                                                                                                                                                                                                                                                                            | 43                                           |
| Regional Spring Discharge above the Valley Floor<br>Recharge to Death Valley<br>Groundwater Budget Components for Death Valley<br>Springs of Death Valley National Park and their Hydrogeologic Settings<br>Regional Springs Above the Valley Floor<br><i>Keane Wonder Spring</i><br>Saline Valley Hot Springs                                                                                                                                                                                                                                                                                                                                                                                                                         | 43                                           |
| Recharge to Death Valley<br>Groundwater Budget Components for Death Valley<br>Springs of Death Valley National Park and their Hydrogeologic Settings<br>Regional Springs Above the Valley Floor<br><i>Keane Wonder Spring</i><br><i>Saline Valley Hot Spring</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                           |
| Groundwater Budget Components for Death Valley<br>Springs of Death Valley National Park and their Hydrogeologic Settings<br>Regional Springs Above the Valley Floor<br>Keane Wonder Spring<br>Saline Valley Hot Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                                           |
| Springs of Death Valley National Park and their Hydrogeologic Settings<br>Regional Springs Above the Valley Floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                           |
| Regional Springs Above the Valley Floor<br>Keane Wonder Spring<br>Saline Valley Hot Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51                                           |
| Keane Wonder Spring<br>Saline Valley Hot Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51                                           |
| Saline Valley Hot Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52                                           |
| Furnace Creek Spring Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52                                           |
| Grapevine, Staininger, Surprise Springs Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53                                           |
| Mesquite Spring Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                                           |
| Sand and Little Sand Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54                                           |
| Ibex Spring and Superior Mine Tank B Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54                                           |
| Devils Hole and Ash Meadows Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55                                           |
| Valley Floor Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58                                           |
| Cottonball Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58                                           |
| Salt Spring and Sulfur Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58                                           |
| East Salt Springs and Buckboard Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59                                           |
| Salt Creek Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59                                           |
| Saratoga Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                           |
| Amargosa River Valley Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                           |
| Springs and Wells at Foot of Panamint Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61                                           |
| Springs at Foot of Black Mountains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61                                           |
| Upland Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |

### **Contents (continued)**

| Panamint Range                                                                          | 65 |
|-----------------------------------------------------------------------------------------|----|
| Cottonwood Mountains and Last Chance Range                                              | 66 |
| Black Mountains and Greenwater Range                                                    | 67 |
| Funeral Mountains                                                                       | 68 |
| Grapevine Mountains                                                                     | 68 |
| Owlshead Mountains                                                                      | 68 |
| Saline Range and Inyo Mountains                                                         | 68 |
| Vulnerability of Death Valley Hydrologic Features to Natural and Human-Induced Stresses | 69 |
| Local Springs                                                                           | 69 |
| Stresses Outside the Park                                                               | 70 |
| Land Management Practices                                                               | 70 |
| Water Resource Developments                                                             | 70 |
| Potential Contaminant Sources                                                           | 71 |
| Flow Systems Adjoining Death Valley Flow System                                         | 75 |
| Historic Impacts on Groundwater in the Park                                             | 77 |
| Appendix: Springs of Death Valley National Park                                         | 81 |
| Bibliography1                                                                           | 09 |

### Figures

| Figure 1. Location of Death Valley National Park and Devils Hole, an outlying portion of the park, California and Nevada                                                                              | xii |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 2. Map of Death Valley showing some of the principal springs, wells on the valley floor, alluvial fans, mountain ranges, and other geographic features                                         | 2   |
| Figure 3. Map showing geographic and hydrologic features of Death Valley National Park region                                                                                                         | 6   |
| Figure 4. Section through Tucki Mountain showing the Tucki Mountain detachment fault and its branches on the east side of the mountain                                                                | 12  |
| Figure 5. Generalized geologic map of Death Valley National Park                                                                                                                                      | 15  |
| Figure 6. Graphs of precipitation and potential evapotranspiration versus altitude in the Death Valley region                                                                                         | 25  |
| Figure 7. Graphs of mean annual, mean July, and mean January temperature versus altitude in the Death Valley region                                                                                   | 25  |
| Figure 8. Map showing Pleistocene streams and lakes tributary to Death Valley                                                                                                                         | 34  |
| Figure 9. Map showing Death Valley floor groundwater discharge areas                                                                                                                                  | 39  |
| Figure 10. Composite schematic diagram of groundwater flow, groundwater and soil salinity gradients, and plant species distribution in the mountain front–gravel fan–salt pan complex of Death Valley | 41  |
| Figure 11. Map showing locations of regional springs above the valley floor of Death Valley                                                                                                           | 44  |
| Figure 12. Map of Death Valley region showing hydrologic basins                                                                                                                                       | 46  |
| Figure 13. Schematic cross section of Furnace Creek basin from Funeral Mountains to Death Valley salt pan showing hydrologeologic setting of Travertine and Texas springs                             | 53  |
| Figure 14. Map showing location of Devils Hole, Ash Meadows groundwater subbasin, and pumping centers of southwest Nevada                                                                             | 55  |
| Figure 15. Cross section showing hydrogeologic setting of Devils Hole and Ash Meadows springs                                                                                                         | 57  |
| Figure 16. Map showing location of springs on the floor of Death Valley                                                                                                                               | 58  |
| Figure 17. Map showing distribution of springs of Death Valley National Park                                                                                                                          | 62  |
| Figure 18. Map showing ranges of discharge in upland springs of Death Valley National Park                                                                                                            | 63  |
| Figure 19. Map showing geothermally heated local springs of Death Valley National Park                                                                                                                | 64  |
| Figure 20. Map showing general areas of underground testing and other potential sources of subsurface contamination at Nevada Test Site                                                               | 72  |
| Figure 21. Maps showing general direction of groundwater flow from the Nevada Test Site to areas in Death Valley National Park                                                                        | 73  |
| Figure 22. Map showing segments of the Death Valley regional flow-system boundary                                                                                                                     | 76  |

### Plates

| Plate 1. Regional potential for flow of groundwater in the Death Valley regional groundwater flow system, Nevada and California   | Insert 1 |
|-----------------------------------------------------------------------------------------------------------------------------------|----------|
| Plate 2. Structural setting of Death Valley showing thrust faults, detachment faults, strike-slip faults, and major normal faults | Insert 2 |

### Tables

| Table 1. Geographic features shown in figure 3                                    | 7  |
|-----------------------------------------------------------------------------------|----|
| Table 2. Geologic and hydrologic units of Death Valley                            | 16 |
| Table 3. Precipitation data for 10 stations in and near the study area            | 24 |
| Table 4. Summary of groundwater inflows to Death Valley from southeast California | 37 |
| Table 5. Discharge of regional springs above the valley floor                     | 45 |
| Table 6. Hydrologic basins of the Death Valley flow system                        | 47 |
| Table 7. Estimates of recharge to Death Valley                                    | 49 |
| Table 8. Areas of groundwater withdrawal in the Death Valley flow system          | 74 |

### Photographs

National Park Service ix

### Abbreviations

| mmmillim                                                                   | eter<br>eter |
|----------------------------------------------------------------------------|--------------|
| m                                                                          | eter         |
|                                                                            |              |
| kmkilom                                                                    | eter         |
| Ι                                                                          | liter        |
| l/min liters per mir                                                       | าute         |
| hahec                                                                      | tare         |
| hfu heat flow u                                                            | units        |
| msl mean sea level referenced to the National Geodetic Vertical Datum of 1 | 929          |
| yr                                                                         | year         |
| d                                                                          | day          |

### Conversions

1 meter (m) = 3.281 foot
1 kilometer (km) = 0.6214 mile
1 square kilometer (km<sup>2</sup>) = 0.3861 square mile
1 cubic meter (m<sup>3</sup>) = 35.31 cubic foot
1 million cubic meters (Mm<sup>3</sup>) = 35.31 million cubic feet
1 meter per day (m/d) = 3.281 foot per day
1 meter per year (m/yr) = 3.281 foot per year
1 meter squared per day (m<sup>2</sup>/d) = 10.76 square foot per day
1 cubic meter per day (m<sup>3</sup>/d) = 35.31 cubic foot per day
1 cubic meter per day (m<sup>3</sup>/d) = 264.2 gallon per day
1 cubic meter per year (m<sup>3</sup>/yr) = 35.31 cubic foot per year
Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

 $^{\circ}F = (1.8 \times ^{\circ}C) + 32$ 



### Introduction

Death Valley (fig. 1), in the southern part of the Great Basin of California and Nevada (Hunt 1967) has a fearsome reputation for heat and dryness-and rightfully so. What is lesser known is that Death Valley National Park possesses hundreds of spring-fed water resources and riparian and wetland habitats. Without these water resources, life in Death Valley would be virtually impossible. Most of these habitats are limited to areas of small springs discharging water from local sources. However, several habitats, such as Travertine Springs in the Furnace Creek area and Grapevine Springs and Staininger Spring in the Scotty's Castle area, are extensive as a result of large volumes of water discharging from the regional carbonate aquifer (Miller 1977 and Steinkamp and Werrell 2001). The Death Valley salt pan and some of the principal springs, wells, alluvial fans, and mountain ranges of Death Valley are shown in figure 2.

The hydrologic environment of Death Valley is one of contradistinction. A landscape that appears to be devoid of water, where in truth, its very shape, composition, and life are greatly dependent upon the presence and action of water above, on, and under the landscape. On close examination, it is revealed that the hydrologic environment has added the final flourish to a bedrockdominated landscape. Water has sculpted the faulted and contorted mountains of rock and cut the arroyos through which floods transport massive amounts of sand and gravel to form the alluvial fans at the base of the mountains. The mountain fronts have been sculpted by waves at the shores of ice age lakes. Beyond the alluvial fans, dry and dusty expanses of the fine particles of silt and clay that settled from ephemeral lakes blanket the playas. Evaporation of surface and groundwater has left behind the salt flats and intricate salt formations at the Devils Golf Course. Sheets of water-deposited travertine drape the slopes below the sites of present and former springs.

The park faces significant challenges with regard to properly inventorying, studying, and managing its water resources. These challenges include, but are not limited to, (1) properly monitoring and managing the effects of new production wells and riparian area recovery associated with a new water supply, water treatment, and delivery infrastructure for the Furnace Creek headquarters complex and concession operations; (2) protection of water rights in the face of steadily increasing population growth in the region, particularly southern Nevada; (3) potential diminution of the volume of water reaching the park because of upgradient water users; (4) protection of endemic, sensitive, and threatened and endangered species that depend on water resources; and (5) concern regarding contaminant sources in the flow system from underground nuclear testing and waste storage upgradient from the park.

**Figure 2.** Map of Death Valley showing some of the principal springs, wells on the valley floor, alluvial fans, mountain ranges, and other geographic features. Contours are in meters above sea level. After Hunt 1975.



### **Background and Acknowledgements**

In addition to personal observation and study, the authors have drawn extensively on the scientific studies made over many years by scientists of a multitude of diverse disciplines, as well as narratives and stories of early travelers, prospectors, miners, and Native Americans. Our thanks go first to all those who have contributed to the rich body of knowledge of Death Valley. Many, but by no means all of them, are listed in the extensive bibliography at the end of this report. We wish to thank many colleagues who have encouraged and assisted us in our work in Death Valley National Park during the past twenty years. Bill Werrell of the National Park Service, now retired, an enthusiastic supporter of this work, offered continued encouragement and support for many years during our work in the park. We also thank National Park Service personnel Mel Essington, now retired, Paul Christensen, and Douglas Threloff-all of whom provided professional assistance and knowledge of geologic, hydrologic, and biologic resources of the park. We are indebted to Donald Sweetkind, Geologic Division, and Randell Laczniak, Water

### **Objectives**

This report summarizes the hydrogeologic setting of Death Valley. Specific elements of this report include

(1) geologic setting of Death Valley: geologic units and structural aspects of the region that control the occurrence and flow of groundwater to and within Death Valley, the current knowledge of distribution of groundwater flow to the park, and the source and distribution of groundwater flow and occurrence within the park; Resources Division, of the U.S. Geological Survey, for valuable technical insight and critical review of the report. We extend our warm thanks and regards to Alan Riggs, U.S. Geological Survey, Water Resources Division, for his enthusiastic support for public release of the report and his thoughtful, tireless, and valuable detailed review of all phases of the report.

This report is an outgrowth of a report done under contract to the National Park Service as a phase of the park's Water Resources Stewardship Program. Our participation in this effort was done at the initiation of Terry Fisk, then-Hydrologist, of Death Valley National Park. Preparation of this report intended for public distribution was done in coordination with Jennifer Back, Hydrologist, and Dan McGlothlin, Technical Team Leader, both of the National Park Service Water Rights Branch in Fort Collins, Colorado. Final editing and formatted copy of the report was done by Gretel Enck of the National Park Service Water Resources Division in Fort Collins, Colorado.

(2) hydrogeology of the Death Valley region with particular attention to the relationship to and effects of water-related activities outside the park to the water resources of Death Valley National Park. This includes potential relationships between the Death Valley flow system and adjoining flow systems; and

(3) climate and its relationship to water resources in Death Valley.



**Photograph 1.** Stovepipe Well in Mesquite Flat.

### Hydrologic Environment of Death Valley

On a regional scale, topography controls the flow of groundwater to Death Valley. As the lowest point in the conterminous United States, Death Valley is the ultimate destination of groundwater within a large area in southeast California and southern Nevada. The contours of regional potential (plate 1) in the Death Valley groundwater flow system reveal the regional pattern of groundwater flow. Throughout the region, topographic elevation influences precipitation, evaporation, and moisture available for recharge to groundwater.

Underground, the flow of water is controlled by structure, physical properties, and lithology of the rock units. Geologic structure favors or inhibits flow of groundwater within and between rock units by controlling the attitude, position, continuity, and juxtaposition of rock units having similar or dissimilar hydrologic properties. The bedrock units that control groundwater flow have virtually no primary intergranular porosity or permeability because of a geologic history of metamorphism, deep burial and compaction, and mineral filling of voids by hydrothermal fluids. Permeability of the sedimentary bedrock units is a function of the fracturing and faulting of the brittle rocks during Cenozoic extensional tectonism and enlargement of openings in carbonate rocks by groundwater solution.



**Figure 3.** Map showing geographic and hydrologic features of Death Valley National Park region, California and Nevada.

#### Table 1. Geographic features shown in figure 3

| Map # | Geographical Feature                   | Map # | Geographical Feature          |
|-------|----------------------------------------|-------|-------------------------------|
| 1     | Death Valley                           | 49    | Silver Lake playa             |
| 2     | Travertine Springs                     | 50    | Ash Meadows                   |
| 3     | Furnace Creek Area                     | 51    | Owens Lake                    |
| 4     | Grapevine Spring and Staininger Spring |       | 52 Silver Lake basin          |
| 5     | Scottys Castle area                    | 53    | Wingate Pass                  |
| 6     | Devils Golf Course                     | 54    | Nopah Range                   |
| 7     | Black Mountain                         | 55    | Surprise Spring               |
| 8     | Panamint Range                         | 56    | Navel Spring                  |
| 9     | Badwater                               | 57    | Sand Spring                   |
| 10    | Owlshead Mountain                      | 58    | Little Sand Spring            |
| 11    | Cottonwood Mountains                   | 59    | Ibex Spring                   |
| 12    | Funeral Range                          | 60    | Superior Mine Tank B Spring   |
| 13    | Grapevine Mountains                    | 61    | Dry Mountain Range            |
| 14    | Last Chance Range                      | 62    | Saline Range                  |
| 15    | Pahrump Valley                         | 63    | Warm Spring                   |
| 16    | Resting Springs Range                  | 64    | Palm Spring                   |
| 17    | Greenwater Range                       | 65    | Lower Warm Spring             |
| 18    | Hunter Mountain                        | 66    | Upper Warm Spring             |
| 19    | Saline Valley                          | 67    | Travertine Point              |
| 20    | Sierra Nevada                          | 69    | Salt Creek                    |
| 21    | Saratoga Springs                       | 70    | Warm Springs (Panamint Range) |
| 22    | Tucki Mountain                         | 71    | Three Springs west            |
| 23    | Virgin Spring area                     | 72    | Tucki Spring                  |
| 24    | Galena Canyon (in Panamint Range)      | 73    | Gypsum Spring                 |
| 25    | lbex Hills                             | 74    | Mosaic Canyon                 |
| 26    | Saddle Peak Hills                      | 76    | Emigrant Canyon               |
| 29    | Inyo Range                             | 77    | White Top Mountain            |
| 30    | Amargosa Desert                        | 78    | Last Chance Springs           |
| 31    | Eureka Valley                          | 80    | Willow Spring                 |
| 32    | Salt Hills                             | 81    | Klare Spring                  |
| 33    | Salt Spring                            | 82    | Owl Hole Spring               |
| 34    | Badwater Basin                         | 83    | Indian Wells Valley           |
| 35    | Cottonball Marsh                       | 84    | Searles Lake Valley           |
| 36    | Keane Wonder Spring                    | 85    | San Rafael Mountains          |
| 37    | Texas Spring                           | 86    | Cajon Canyon                  |
| 38    | Nevares Spring                         | 87    | Long Valley Geothermal Field  |
| 39    | Cowcreek Spring                        | 88    | Coso                          |
| 40    | Amargosa River Springs                 | 89    | Owens River                   |
| 41    | Amargosa River                         | 90    | Skidoo Mine                   |
| 42    | Mesquite Spring                        | 91    | Keane Wonder Mine             |
| 43    | Racetrack Playa                        | 92    | Birch Springs                 |
| 44    | Mojave River                           | 93    | Telescope Peak                |
| 45    | San Bernardino Mountains               | 94    | Stovepipe well                |
| 46    | Barstow                                | 95    | Shortys well                  |
| 47    | Afton Canyon                           | 96    | Bennetts well                 |
| 48    | Soda Lake playa                        | 97    | Greenwater Valley             |

### Geologic and Structural Setting of Death Valley

#### **Depositional and Tectonic History**

The depositional history and tectonic evolution of the region provides insight into the shaping of the hydrogeologic framework that controls the groundwater flow. The sedimentary and igneous rock sequences and the tectonics of Death Valley have shaped the structural framework of the region and created the geometry of permeable pathways and flow barriers that control groundwater flow. The stratigraphic and tectonic history is taken from the work of many geologists whose studies provide insight into the subject, including notably Noble (1934, 1941), Hunt and Mabey (1966), Troxel and Wright (1976, 1989), Wernicke et al. (1989), Grose and Smith (1989), Stewart (1967, 1970), Sweetkind et al. (2004), Hamilton (1988), Workman et al. (2002a and 2002b), Potter et al. (2002), and Fridrich et al. (2003a and 2003b).

Sedimentary rocks of present-day Death Valley were deposited in three geosynclinal basins; each depositional stage is imbricated with younger ones centered progressively farther west (Hunt 1967). During Middle and Late Proterozoic at least 900 meters (2,953 ft) of geosynclinal deposits accumulated in the southern part of the area that is now the Great Basin. The extent of these deposits is not known because they are deeply buried throughout most of their occurrence, but they are exposed in the Black and Panamint ranges of Death Valley (fig. 3, table 1). In Late Proterozoic though Paleozoic time a second geosyncline occupied the Great Basin, and 9,000 meters (29,529 ft) of ocean sediments were deposited. In Death Valley the lower part of the sequence is conglomerate, sand, and clay with limestone and dolomite. Dolomite and limestone sediments increase upward in the section with the first massive dolomite deposited in the Middle and Upper Cambrian. Clastic rocks make up a greater proportion of sediments toward the west. Early Mesozoic sedimentary deposition in the third geosynclinal basin overlapped the Paleozoic deposits. This sequence also contains volcanic materials. During the Middle and Late Mesozoic (Jurassic and Cretaceous) regional uplift was accompanied by igneous intrusions, folding, and faulting. Compressive forces from the west produced a series of low-angle thrust faults. The mountains formed during this tectonic activity were eroded while the geosynclinal basin centered to the north in the Great Basin continued to receive ocean sediments. In the Middle Mesozoic the Sierra Nevada batholith was formed west of Death Valley; later the folded and faulted sedimentary rocks of Death Valley were intruded by igneous stocks and laccoliths.

Erosion in Mesozoic and early Tertiary greatly subdued the topography. Beginning possibly in Oligocene and certainly by Miocene time, sediments were formed in extended broad shallow basins that existed over most of the Death Valley region before the present-day topography was developed by regional extension. Deposition continued during Middle and Late Cenozoic accompanied by episodes of regional extension involving block faulting and low-angle normal detachment faulting. Rifts developed in the main valley of Death Valley where huge blocks subsided, forming grabens that were filled with sediment from the adjacent rising blocks. The depth of the pre-Cenozoic surface beneath Death Valley is quite variable. Near Badwater the maximum depth is estimated between 4.5 and 5 kilometers (2.8 and 3.1 mi; Blakely and Ponce 2001). Volcanism accompanied the extension with basaltic lava flows and felsite-eruptions-capped plateaus.

Through geologic time, the oldest strata were deeply buried by thousands of meters of younger deposits, heated under pressure, and recrystallized. Heating and pressure formed shale from clay deposits and quartzite from sandstone. Lithification and low-grade metamorphism virtually eliminated the original interstitial porosity and permeability of the Proterozoic, Paleozoic, and Mesozoic formations. Millions of years of tectonic forces have crushed rock and imprinted the rock mass with folds, joints, faults, and fractures that have produced large blocks of tightly recrystallized rock interspersed with crushed rock strata. Some fractures and faults were opened;

some fractures filled with minerals from circulating hydrothermal fluids. The latest episode of tectonic deformation in the Tertiary and Holocene was marked by extensional tectonics producing fractures and shear zones as the crust extended, moving large crustal blocks many kilometers. The brittle rocks fractured as pressure released and the strata were folded, twisted, and faulted. Permeability of the carbonate rocks has been increased by solution of the tectonically produced openings. The various modes, environments, and sequences of tectonic deformation produced great differences in physical properties of the rocks.

#### Structural Features and Hydrogeologic Significance

#### **Thrust Faults**

Thrust faulting accompanied regional uplift, folding, mountain building, and erosion of the region during the Mesozoic, after the geosynclinal deposition of thousands of meters of sediments during the Late Proterozoic and Paleozoic. Thrust faulting of igneous rocks and sedimentary rocks was caused by compressive forces from the west. The thrust faulting in sedimentary sequences causes younger strata to override older strata. Thrust faults were recognized and mapped in the mountains and originally given different names in each mountain block (plate 2). Wernicke et al. (1989) recognized that the thrust faults in different mountain blocks were segments of several once-continuous thrust faults that crossed the region before the segments were separated by later mountain and basin formation during the Cenozoic. The traces of the thrust faults are offset between mountain ranges by transverse strike-slip faults that bound the massive blocks of the region. A sense of the lateral translocations of rock masses can be seen by observing the offsets of the thrust faults between mountain ranges (Wernicke et al. 1989, fig. 0-4).

The influence of thrust faults on groundwater movement depends to a large extent on the orientation of the fault zones in relation to the gradient of the potentiometric surface. Thrust-fault planes would tend to be of low permeability because of the compressive forces that created the faults. Low

angle fault planes of low permeability could significantly impede vertical groundwater movement. Northeast of Death Valley near the eastern limit of the geosynclinal basin, thrust faults typically are low angle features of great lateral extent (Wernicke et al. 1989). However, the primary control on modern groundwater movement in the vicinity of thrust faults is likely to be post-thrusting tectonism and the presentday depth of burial. Mesozoic thrusting predates the regional extensional detachment movements of mountain blocks and faulting. Thrust-fault planes were subject to displacement, faulting, and folding, and the upper and lower thrust plates were subject to separation by Tertiary extensional tectonics. Andrew (1999), in studying the structure of the Panamint Range, noted that many Mesozoic structures were reactivated during Tertiary extension, producing a strong brittle fabric that would tend to be more permeable than the ductile fabric related to Mesozoic tectonic events. Extensional tectonics would tend to nullify the influence of an originally low permeability thrust-fault plane. For example, the discharge of Warm Springs (Warm Spring A, B, and C, numbered 106, 107, and 108 in the Appendix) originates as recharge at higher elevations of the Panamint Mountains, the Wheeler Pass thrust plate of Wernicke et al. (1989). Groundwater flows across the plane of the thrust fault to discharge from strata of the lower plate, the Keystone thrust plate of Wernicke et al. (1989). Permeable joint and fault networks are apparently continuous across the plane of the fault.

#### Regional Transverse Fault Zones

A regional dominating pattern of transverse fault zones crosses the Death Valley region from northwest to southeast (plate 2). These faults divide the region into large crustal blocks containing mountain blocks or mountain blocks and basins. The faults are typically displaced both vertically and strike-slip. From the northeast, the Death Valley region is bounded by the state-line fault that extends from Pahrump Valley to the latitude of the Grapevine Mountains. The segment northeast of the Funeral Mountain front lies beneath the Amargosa Desert. The Death Valley–Furnace Creek fault, a right-lateral strike-slip fault, borders the southwest front of the Funeral Mountains. The fault extends northwest to Fish Lake Valley in Nevada and to the western front of the Resting Springs Range where the fault zone turns and continues southward as a large normal fault. The Southeast Death Valley fault, an active right-lateral strike-slip fault with large vertical displacement, borders the western front of the Black Mountains. The Grand View fault, with right-lateral strike-slip movement, lies between the Black Mountains and the Greenwater Range. The Hunter Mountain-Panamint fault zone, composed of a linear sequence of faults with vertical and strikeslip segments, extends northwestward from the Garlock fault along the western front of the Owlshead Mountains and Panamint Range to the southern margin of Saline Valley thence northward along the eastern front of the Inyo Mountains. The Garlock fault, with a left lateral strike-slip movement, marks the southern boundary of Great Basin extension and extends from south of the Owlshead Mountains westward to the Sierra Nevada.

The hydrogeologic setting of individual regional springs, discussed later in this report, and the inflow to Death Valley do not support the conclusion that regional transverse fault zones impede the flow of groundwater to Death Valley. For example, groundwater flow across the Furnace Creek-Death Valley fault zone and into Death Valley is several tens of thousands of cubic meters per day. In areas where permeable rocks are juxtaposed across the fault zone, the absence of springs at the fault zone indicates that the fault zone is permeable. In other areas groundwater movement is inhibited by low permeability rocks downgradient from the fault. Low permeability sedimentary rocks of Tertiary age on the downgradient side of the Death Valley-Furnace Creek fault zone apparently control the emergence of Grapevine Springs, Keane Wonder Spring, and Nevares Spring. No location has been found where it can be demonstrated that the fault zone itself solely acts as a barrier to groundwater flow.

The southeast termination of the Death Valley–Furnace Creek fault zone is characterized by a southward curvature of the fault zone. This would have been an area of intense releasing pressure (Potter et al. 2002) during fault movement by virtue of the right-slip movement of the west block of the fault away from the fault plane. The fault zone here would be expected to increase permeability in the area of Pahrump Series rocks in a south trending zone parallel to the regional hydraulic gradient toward Saratoga Spring.

#### Normal Faults

Normal faults commonly associated with extending terrane tend to produce openings for movement of groundwater. In the Proterozoic and Paleozoic sedimentary rocks and the intrusive igneous rocks, in which primary interstitial and intercrystalline permeability is nil, normal faults are a primary cause of rock permeability.

Large vertical offsets along normal faults may juxtapose water transmitting units against low permeability units. The southwest block along the Death Valley-Furnace Creek fault is downthrown. As noted above, this normal fault movement juxtaposes the aquifer of lower Paleozoic carbonate rocks against low permeability Tertiary and Quaternary valley fill in the vicinity of Grapevine Springs and Nevares Spring (fig. 16). In contrast, the downthrown block places permeable gravel beds of the Funeral Formation in contact with the Paleozoic carbonate rocks upgradient from Travertine and Texas springs. At Ash Meadows, lower Paleozoic carbonate rocks abut low-permeability basin-fill materials across the gravity fault (fig. 18). Flow in the carbonate rocks moves in to the basin fill in local travertine and gravel aquifers and is discharged at the springs in Ash Meadows (Winograd and Thordarson 1975, Dudley and Larson 1976, Harrill and Bedinger 2005, Sweetkind et al. 2004, and Bedinger and Harrill 2006b).

#### **Detachment Faults**

Detachment faulting developed at middle crustal depths as shear zones during regional extension in the region from Oligocene to Holocene age. The detachment faults juxtapose unmetamorphosed upper plates of upper Proterozoic to Paleozoic strata astride medium- to high-grade Figure 4. Section through Tucki Mountain showing the Tucki Mountain detachment fault and its branches on the east side of the mountain, the Cenozoic deposits on the west side conceal, PMc, Paleozoic carbonates. PMK, Stirling Quartzite, Johnnie Formation and Pahrump Series, undivided; pEn, Noonday Dolomite; EpE Stirling Quartzite and Lower Cambrian; €m Middle Cambrian; €u Upper Cambrian; O, Ordovician; S, Silurian; D. Devonian: PMc. Paleozoic and Mesozoic carbonates; QTf, Funeral Formation; Qq, upper Pleistocene fan gravel. Vertical scale not exaggerated. From Hunt and Maybey 1966, modified after Sweetkind et al. 2001.

metamorphic lower plates of basement Proterozoic and lower Paleozoic rocks. Stratigraphic units are given in table 2. Detachment faults are major tectonic features of Panamint, Grapevine, Funeral, Black, and Cottonwood Mountains of Death Valley. The blocks have been rotated, raised, and denuded as they were progressively transported westward. The lower plates of metamorphic rocks underwent doming and faulting as the plates were raised and rotated to the northwest. The upper plates of unmetamorphosed brittle upper crust broken into shingled normal faults lie across a zone of mylonite that developed during movement on the fault (Hamilton 1988).

The Grapevine and Funeral mountains preserve the upper and lower plates of the Boundary Canyon detachment, a gently south-dipping fault that juxtaposes the metamorphosed Proterozoic to lower Cambrian rocks of the lower plate against the unmetamorphosed brittle fractured upper plate Proterozoic to Paleozoic rocks (Hamilton 1988, Wright and Troxel 1993, and Sweetkind et al. 2004). In the Black Mountains, lower-plate midcrustal metamorphic rocks of the detachment underlie Cenozoic sedimentary and volcanic rocks.

A major detachment zone in Tucki Mountain preserves an upper plate of middle Proterozoic through Paleozoic rocks on the east mountain flank overlying a basal plate of Proterozoic rocks (Stirling Quartzite, Johnnie Formation, and Pahrump Group) of the ZPcc unit (fig. 4). Although the metamorphic rocks of the lower plate are

of lower permeability, the rocks are cut by joints and faults that developed as the cooled, brittle plates were raised, domed, and rotated (Hamilton 1988). On the west flank of Tucki Mountain, the lower plate is overlain by Cenozoic sediments and volcanics concealing Paleozoic carbonates and clastic rocks, units ZPcc and PMc (Sweetkind et al. 2001 and Hunt and Mabey 1966). Low permeability mylonite of the detachment fault zone and the underlying lowerplate metamorphic rocks may account for the emergence of springs in the east frontal upper plate. However, springs are common through the Panamint Range, discharging from the metamorphic complex of the lower plate, intrusive rocks, and the volcanic and sedimentary rocks of Paleozoic and Cenozoic age of the upper plate.

#### **Chaos Faulting**

Noble (1941) observed a style of intricate and complex faulting in the Virgin Spring area in the southwestern part of the Black Mountains that he named Amargosa chaos. He interpreted the Amargosa chaos as part of the upper plate of a regional thrust fault he termed the Amargosa thrust. The Amargosa thrust is now recognized as a detachment fault and the chaos as an extreme product of Tertiary crustal extension that scrambled rocks during extensional tectonics of Death Valley and the Basin and Range province (Troxel and Wright 1987). Hunt and Mabey (1966) also found chaos structure in the Panamint Range associated with the Tucki Mountain detachment fault. The intricate and complex chaos faulting may provide permeable pathways for movement of groundwater.





Photograph 2. Badwater Basin. Badwater Basin, from center to left margin of photo, viewed from Dantes View in Black Mountains, Panamint Mountains in background. Photograph from C. B. Hunt, USGS files.

#### Geologic Units and their Hydrologic Characteristics

The hydrogeologic groupings of geologic formations of Death Valley National Park are outlined in table 2, following the descriptions in Hunt and Mabey (1966) and Sweetkind et al. (2004). The formations are grouped into units that have similar and distinctive hydrogeologic properties. The hydrologic groupings were established by Winograd and Thordarson (1975) and generally followed by D'Agnese et al. (1997) and Sweetkind et al. (2004). The surface distribution of geologic units in the park is shown in figure 5.

#### Metamorphic and Igneous Basement Rocks (Xmi)

Early Proterozoic crystalline metamorphic rocks (Xmi) (the Crystalline Rock Confining Unit [XCU] of Sweetkind et al. 2004) make up the rock basement and are the oldest rocks exposed in the park. The rocks consist of metasedimentary quartzofelspathic schist, augen gneiss, and granite intrusive rocks. Hunt and Mabey (1966) ascribed a thickness of at least 900 meters (2,953 ft) to these rocks. Proterozoic basement rocks (Xmi) are exposed in the Mesozoic Wheeler and equivalent thrust plates and as metamorphic core in basal plates of Cenozoic detachment faults in the Panamint Mountains, in the southern Black mountains, and limited exposures in the Funeral Mountains (fig. 5). Hunt et al. (1966, B13) note that the metamorphic and granitic rocks are dense; they have no significant inter-crystalline permeability, but they are broken by numerous widely spaced fissures that provide channels for seepage of groundwater. At depth these fissures are believed to be closed, and the crystalline basement rocks are thought to form the lower limit of significant regional flow in the Death Valley groundwater system (Winograd and Thordarson 1975). However, local springs (fig. 20) are widely distributed in outcrops of metamorphic and igneous basement rocks, especially at higher altitudes where the greater precipitation provides recharge to the fractured rock.



**Figure 5.** Generalized geologic map of Death Valley National Park. After Workman et al. 2002a.

#### Table 2. Geologic and hydrologic units of Death Valley

| Hydrogeologic unit and<br>and map symbol (fig. 5) | Age                                      | Formation                                                                | Lithology and thickness                                                                                    | Hydrologic Properties<br>(meters/day)                                                                    |
|---------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Younger Basin Fill<br>and Alluvium (Qb)           | Cenozoic<br>(Quaternary)                 |                                                                          | Coarse- and fine-grained basin<br>fill, evaporites, freshwater<br>limestone, travertine spring<br>deposits | Variable with hydraulic<br>conductivities from 1x10 <sup>-5</sup> to<br>2x10 <sup>2</sup> m/d            |
| Volcanic Rocks and<br>Older Basin Fill (Cvb)      | Cenozoic<br>(Tertiary and<br>Quaternary) | Artist Drive Formation,<br>Furnace Creek Formation,<br>Funeral Formation | Basalt, silicic to intermediate<br>flows; alluvium, fan, lacustrine,<br>and evaporite deposits, 900 meters | Variable with hydraulic<br>conductivities from 1x10 <sup>-5</sup> to<br>2x10 <sup>2</sup> m/d            |
| Intrusive Igneous<br>Rocks (MTi)                  | Mesozoic and<br>early Tertiary           |                                                                          | Granite, gabbro, diorite,<br>quartzmonzonite                                                               | Hydraulic conductivities from 1x10 <sup>-8</sup> to 1x10 <sup>0</sup> m/d                                |
| Carbonate Rocks<br>(PMc)                          | Middle<br>Cambrian                       | Formations at east foot<br>of Tucki Mountain                             | Conglomerate, limestone, and shale, 900 meters                                                             | Hydraulic conductivities:<br>Fractured carbonite rocks                                                   |
|                                                   | through<br>Permian                       | Resting Springs Shale                                                    | Conglomerate, limestone, and shale, 900 meters                                                             | Unfractured carbonate<br>rocks from 1x10 <sup>-4</sup> to 1x10 <sup>0</sup>                              |
|                                                   |                                          | Tin Mountain Limestone and younger limestone                             | Limestone, 300 meters                                                                                      | m/d; Quartzite 1x10 ° to<br>1x10 <sup>°</sup> m/d; Shale 1x10 <sup>-8</sup> to<br>1x10 <sup>-1</sup> m/d |
|                                                   |                                          | Lost Burro Formation                                                     | Limestone with some quartzite and sandstone, 600 meters                                                    |                                                                                                          |
|                                                   |                                          | Hidden Valley Dolomite                                                   | Dolomite, 100–300 meters                                                                                   |                                                                                                          |
|                                                   |                                          | Ely Springs Dolomite                                                     | Massive dolomite,<br>100–150 meters                                                                        |                                                                                                          |
|                                                   |                                          | Eureka Quartzite                                                         | Quartzite, 100 meters                                                                                      |                                                                                                          |
|                                                   |                                          | Pogonip Group                                                            | Dolomite, minor shale and limestone, 450 meters                                                            |                                                                                                          |
|                                                   |                                          | Nopah Formation                                                          | Basal shale, 30 meters; dolomite,<br>400 meters                                                            |                                                                                                          |
|                                                   |                                          | Bonanza King Formation                                                   | Thick-bedded, massive dolomite<br>with minor limestone and shale<br>units, 500 meters, 900 meters          |                                                                                                          |

| Table 2 continued                                  |                              |                                               |                                                                                                                      |                                                                                                                                                                   |
|----------------------------------------------------|------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrogeologic unit and<br>and map symbol (fig. 5)  | Age                          | Formation                                     | Lithology and thickness                                                                                              | Hydrologic Properties<br>(meters/day)                                                                                                                             |
| Lower Clastic and<br>Carbonate Rocks (ZPcc)        | Middle and<br>Upper          | Carrara Formation                             | Shale, silt, limestone, 300 meters                                                                                   | Hydraulic conductivities:<br>Fractured carbonite rocks                                                                                                            |
|                                                    | Proterozoic<br>and Lower and | Zabriskie Formation                           | Quartzite, about 50 meters                                                                                           | from 1x10 <sup>-2</sup> to 1x10 <sup>3</sup> m/d;<br>Unfractured carbonate                                                                                        |
|                                                    | Middle Cambrian              | Wood Canyon<br>Formation                      | Lower basal quartzite, 500<br>meters; middle shaley unit,<br>150 meters; upper dolomite<br>and quartzite, 120 meters | rocks from $1 \times 10^{-4}$ to $1 \times 10^{0}$ m/d; Quartzite $1 \times 10^{-5}$ to $1 \times 10^{0}$ m/d; Shale $1 \times 10^{-8}$ to $1 \times 10^{-1}$ m/d |
|                                                    |                              | Stirling Quartzite                            | Quartzite, 600 meters                                                                                                |                                                                                                                                                                   |
|                                                    |                              | Johnnie Formation                             | Mostly shale, interbedded with dolomite, quartzite, conglomerate, 120 meters                                         |                                                                                                                                                                   |
|                                                    |                              | Noonday Dolomite                              | Dolomite and limestone, 300 meters                                                                                   |                                                                                                                                                                   |
|                                                    |                              | Pahrump Series<br>—Kingston Peak<br>Formation | Conglomerate, quartzite, shale, with limestone and dolomite, 900 meters                                              |                                                                                                                                                                   |
|                                                    |                              | —Beck Spring<br>Dolomite                      | Cherty dolomite, 150 meters                                                                                          |                                                                                                                                                                   |
|                                                    |                              | —Crystal Spring<br>Formation                  | Quartzite, shale, dolomite, diabase, and chert, 600 meters                                                           |                                                                                                                                                                   |
| Metamorphic and<br>Igneous Basement<br>Rocks (Xmi) | Early<br>Proterozoic         |                                               | Metasedimentary rocks with igneous intrusions                                                                        | Hydraulic conductivities<br>from 1x10 <sup>-8</sup> to 1x10 <sup>-1</sup> m/d                                                                                     |

Source: Hydraulic conductivities after Waddell 1982, Bedinger et al. 1989a and 1989b, D'Agnese et al. 1997, and Belcher et al. 2001.



**Photograph 3.** Cambrian strata of the Last Chance Range. View of Last Chance Range from the floor of Eureka Basin shows an uninterrupted 1,000-meter (3,281-ft) sequence of Lower to Upper Cambrian strata, units ZPcc and PMc. Quartzite strata appear as light colored bands. The lower broad band is the Stirling Quartzite, the middle light colored band is the Zabriskie Quartzite, and the upper light colored band is the Eureka Quartzite. Photograph by M. S. Bedinger.

Clastic and Carbonate Rocks (ZPcc) The Lower Clastic and Carbonate rock unit (ZPcc), equivalent to the Lower Clastic-Confining Unit (LCCU) of Sweetkind et al. (2004), consists of quartzites, shales, limestones, and dolomites. In Death Valley the Lower Clastic and Carbonate rock unit is reported by Hunt and Mabey (1966) to be 4,700 meters (15,421 ft) thick. The rocks are slightly to moderately metamorphosed where they form the upper plate of detachment faults and where intruded by igneous rocks. The lower parts of this sequence make up the lower plate of detachment faults in the middle Funeral Mountains (Hamilton 1988) and at Galena Canyon in the southern part of the Panamint Range (Hunt and Mabey 1966, A13).

The Lower Clastic and Carbonate rock unit (ZPcc) can be considered to be made up of two parts. The lower part of the stratigraphic section includes the Proterozoic rocks of the Pahrump Series composed of the Crystal Spring Formation, the Beck Spring Dolomite, and the Kingston Peak Formation. The Crystal Spring Formation is composed of basal conglomerate and quartzite grading upward to shale and thinly bedded limestone. The upper part of the Crystal Spring is thick-bedded dolomite and locally massive chert. At Galena Canyon the formation is about 900 meters (2,953 ft) in thickness and is intruded by diabase (Hunt and Mabey 1966). The Beck Spring Dolomite is a cherty dolomite with estimated thickness of 150 meters (492 ft). The Kingston Peak Formation is conglomerate, quartzite, shale, and some limestone and dolomite, at least 900 meters (2,953 ft) in thickness (Hunt and Mabey 1966).

The upper part of the Lower Clastic and Carbonate rock unit (ZPcc) includes formations of Upper Proterozoic through Cambrian. This sequence is made up of Noonday Dolomite (dolomite and limestone, 300 meters [984 ft]), Johnnie Formation (mostly shale interbedded with dolomite, quartzite, and conglomerate, 1,220 meters [4,000 ft]) and Stirling Quartzite (quartzite, 600 meters [1,969 ft]), the Lower Cambrian Wood Canyon Formation (quartzite and dolomite, 500 meters [1,641 ft]) and Zabriskie Quartzite (quartzite, more than 50 meters [164 ft]) and the Lower and Middle Cambrian Carrara Formation (limestone and shale, 300 meters [984 ft]) (Hunt and Mabey 1966). Exposures of the Stirling Quartzite in the Panamint Mountains show open bedding joints between 8- to 30-centimeter- (3.1to 11.8-in) thick beds and cross bedded fracture openings spaced at closer intervals. Belcher et al. (2001) reports the maximum measured hydraulic conductivity of the quartzite to be 5 meters per day (16.4 ft/d).

Exposures of the Lower Clastic and Carbonate rock unit (ZPcc) are widespread in the principal mountain ranges—Panamint Range, Funeral Mountains, Grapevine Mountains, Cottonwood Mountains, and Last Chance Range. The Lower Clastic and Carbonate rocks are the principal unit in the Ibex Hills and Saddle Peak Hills, southeast of the Black Mountains. Rocks in the exposures are porous and permeable by virtues of cracks, faults, and fractures—features that in carbonate rocks are enlarged by solution.

Over much of Death Valley flow system, this unit is deeply buried where the fractures may be closed by compression or



filled with precipitated minerals. The formations comprising this unit at the Nevada Test Site (renamed the Nevada National Security Site in 2010) were considered to have negligible permeability and were called the Lower Clastic aquitard by Winograd and Thordarson (1975). However, in the Death Valley region, the Lower Clastic and Carbonate rock unit (ZPcc) is of regional importance as an aquifer. Saratoga Spring, discharging regional flow at the southeastern edge of the Death Valley playa, emerges from the Pahrump Series of this unit. Keane Wonder Spring, a regional spring, issues from the Pahrump Series in the northern Funeral Mountains. Other locations where the Lower Clastic and Carbonate rocks may contain aquifers of regional significance include the upper detachment plate between the Panamint and Cottonwood Range. A line of springs arises along the east flank of the Panamint Range bordering the central Death Valley playa. These springs are probably of local origin in the Panamint Range, but regional discharge to the Death Valley playa through the Lower Clastic and Carbonate rocks cannot be ruled out.

Hunt et al. (1966, B13) note from study of exposures of the rock sequence that carbonate rocks, shale, and quartzite are dense and not intrinsically permeable, but they are broken by closely spaced fissures. The quartzites tend to be generally shattered by faulting (McAllister 1970). In places quartzites are intensely fractured to a granular texture (Hunt et al. 1966). Some fissures in the carbonate rocks are closed by secondary carbonate and others opened by solution (Hunt et al. 1966). Where the rocks in this unit are at or near the surface, they make up the principal aquifer of many upland springs. The abundant fractures in the rocks readily admit recharge in the higher elevations where precipitation is greater. Many of the upland springs are perennial with significant reservoir storage; circulation of groundwater is to depths of several tens of meters in the flow path of some springs as indicated by warmer spring temperatures.

**Photograph 4.** Stirling Quartzite. Photograph of Stirling Quartzite showing fold and fault openings, bedded plane joints, and cross-bed joints and fractures. Beds are 8 to 30 centimeters (3.1 to 11.8 in) in thickness. Photograph from C. B. Hunt, USGS files.



**Photograph 5.** Bonanza King Formation. Bonanza King Formation showing solution channels. The Bonanza King is one of the principal groundwater-bearing formations of the Paleozoic and Mesozoic carbonate rock unit (PMc). Photograph from C. B. Hunt, USGS files.

#### Carbonate Rocks (PMc)

In Death Valley the succession of rocks of Middle Cambrian through Permian age is dominated by carbonate rocks with interbeds of quartzite and shale. The carbonate rock units make up the principal regional aquifer of central and east-central Nevada (Dettinger et al. 1995). North and northeast of Death Valley in Nevada, the carbonate rock succession is often separated by a great thickness of clastic rocks of Upper Devonian and Mississippian age. At the Nevada Test Site, the clastic dividing unit is the Eleana Formation having a thickness of 2,400 meters (7,874 ft; Winograd and Thordarson 1975). Where the sequence is separated by a clastic unit, the lower sequence of carbonates form the Lower Carbonate-Rock Aquifer (LCA), clastic rocks make up the Upper Clastic Confining Unit (UCCU), and the Pennsylvanian and Mississippian Limestone and dolomite make up the Upper Carbonate–Rock Aquifer (UCAQ) of D'Agnese et al. (1997) and Sweetkind et al. (2004).

In Death Valley the Middle Cambrian through Permian carbonate unit (PMc) is the primary regional aquifer conveying groundwater to Death Valley from the east through the Funeral and Grapevine Mountains and from the west through the Cottonwood and Last Chance Ranges. Stratigraphic equivalents of this unit containing a significant thickness of carbonate rocks occur in the Inyo Mountains bordering Saline Valley and Eureka Valley in the northwest part Death Valley National Park. The PMc unit is missing in the Greenwater Range and Black Mountains and the Ibex and Saddle Peak Hills. The presence of these rocks in the east facing slopes of the Panamint Range is limited to the upper plate of detachment faults where the rocks are aquifers supplying upland springs. However, in the northwestern Panamint Range (northwest slope of Tucki Mountain), the Lower Carbonate Rock Unit in the upper plate of the detachment fault may be important in transfer of regional groundwater from Panamint Valley to Death Valley playa.

In the higher mountain ranges where carbonate rocks are the predominant country rock, as in the Cottonwood Mountains and Last Chance Range, upland springs are rare except near igneous intrusions that obstruct the downward migration of infiltrating water. Upland springs are lacking in the southern Funeral Mountains in the outcrop area of the PMc unit.

#### Intrusive Igneous Rocks (Mti)

Mesozoic and early Tertiary igneous intrusions (MTi unit) were emplaced following thrust faulting, folding and uplift of the Proterozoic and Paleozoic sedimentary sequence of the Death Valley region and following the emplacement of the Sierra Nevada batholith. Intrusions in the Death Valley region include the large Hunter Mountain Batholith in the southern Cottonwood Mountains, batholiths in the Panamint Mountains, Black Mountains, Greenwater Range and Owlshead Mountains. The intrusive igneous rocks are called the Intrusive Rock Confining Unit (ICU) by Sweetkind et al. (2004). Many fractures and weathered zones in the igneous intrusives are open at shallow depths, and many springs discharge from igneous plutons at higher elevations in the ranges where recharge occurs, such as the Hunter Mountain batholith where saturated fractures and fault zones are intersected by deep ravines. The extent and depth of the open fractures is not well known. Indirect evidence from the temperature of springs in the Hunter Mountain Batholith indicates moderate depth of circulation of groundwater that discharges at mountain springs.

#### Volcanic Rocks and Older Basin Fill (Cvb)

Tertiary and Quaternary volcanics and older basin fill of Tertiary age are commonly interbedded and are mapped as a single unit in the geologic map (fig. 5).

#### Volcanic Rocks

Exposed volcanic rocks of Death Valley region of Oligocene to Pleistocene age are basalt flows and silicic to intermediate composition flows and tuffs (Workman et al. 2002a). Volcanic activity was contemporaneous with extensional tectonics, and volcanic materials are interbedded with sediments in basin fill.

Basalt flows are exposed at Towne Pass and in the Saline Range. Felsic and intermediate flows are exposed in the Darwin Plateau, Southern Panamint Range, Owlshead Mountains, Saline Range, Black Mountains, and Greenwater Range. Volcanics are interbedded with sediments in the Furnace Creek basin. Many of the exposed volcanic units are not of sufficient thickness to extend downward to the water table.

#### Older Basin Fill

Sedimentary deposits of Oligocene, Miocene, and Pliocene age include playa- and basin-filling clastic and evaporite deposits (the sedimentary part of the volcanicsedimentary-rock unit [VSU] of Sweetkind et al. 2004). The oldest of these deposits accumulated in broad shallow basins extending over most of Death Valley National Park and adjacent areas before the presentday topography developed. In southeastern Death Valley, the deposits overlie basement rocks of the Pahrump Group (lower part of ZPcc) and crystalline igneous and metamorphic rocks (Xmi). The oldest deposits in this unit are also exposed on the east side of the Funeral and Grapevine Mountains (Reynolds 1974, Wright and Troxel 1993, and Sweetkind et al. 2004). In the park, the deposits probably reach their maximum thickness in the Furnace Creek and Death Valley basins (Fridrich et al. 2003a and 2003b). Equivalent deposits underlie younger basin fill and alluvium in the Amargosa basin and Pahrump basins. The deposition of these deposits began possibly in Oligocene and continued during Miocene extension, but before basin-range mountain building. The oldest formation in this unit is the Artist Drive Formation. Deposition continued during and after basin-range extension and mountain building. Following deposition of the Artist Drive Formation, the Furnace Creek Formation was deposited. These formations are primarily fine-grained playa sediments with interbedded, but discontinuous, lenses of sand and gravel in a fine-grained matrix: evaporites and interbedded volcanic flows and tephras. Fridrich et al. (2003a and 2003b) describe these formations as "impermeable." During basin-range mountain building



Photograph 6 (right). View from Zabriskie Point. Badlands carved from fine-grained playa sediments of the Furnace Creek Formation viewed from Zabriskie Point. Silt and clay exposed here were deposited in one of Death Valley's Tertiary lakes, then were buried by still more sediment, compressed and weakly cemented, then folded and uplifted during the basin-range phase of extension tectonics to be exposed by erosion and weathered to form badlands of the soft rock called mudstone. Photograph by Tom Bean.

**Photograph 7 (below).** Salt Polygons. Salt polygons in the Badwater saltpan, snow-covered peaks of Panamint Mountains in the background. Photograph by Ray Nordeen, NPS.



the Black Mountains and Funeral Mountains were uplifted, leaving these deposits in a synclinal basin between the two mountain ranges. Excellent sequences of the Artist Drive and Furnace Creek Formation are exposed in the strata on the south limb of the syncline upturned against the Black Mountains. The formations in the synclinal basin north of Furnace Creek are covered, to a large extent, by the Pliocene and Pleistocene age Funeral Formation, a coarsegrained, post basin-range, extension-fan deposit from the Funeral Range.

The older basin-fill deposits extend northward along the western flanks of the Funeral and Grapevine Mountains. The Furnace Creek Formation underlies Cottonball Basin and Mesquite Flat and crops out at uplift in the Salt Hills between these two segments of Death Valley. Older basin-fill deposits are exposed in the valley of Death Valley Wash, Saline Valley, and Eureka Valley. Deposits making up the Miocene and Pliocene basin filling sequences in Death Valley are described by Cemen et al. (1985), Wright et al. (1999), Sweetkind et al. (2004), Greene (1997), and Fridrich et al. (2003a and 2003b).

Many deposits of older basin fill is of low permeability and act as barriers to flow beneath the aquifer of the overlying Funeral Formation. Coarse-grained sand and gravel deposits in the Funeral Formation are permeable and supply Navel Springs, Texas Spring, Travertine Spring, and the springs on Salt Creek.

# Younger Basin Fill and Alluvium (Qb)

The younger basin fill and alluvium are the unconsolidated Cenozoic alluvium and basin-fill sediments and local young volcanic rocks (YAA and OAA) of Sweetkind et al. (2010). These deposits include coarse-grained alluvial stream and fan deposits, fine-grained basin playa sediments and evaporite deposits, eolian deposits, and local lacustrine limestone and spring discharge deposits.

Regional groundwater flows in the younger basin fill deposits of the Amargosa River to Death Valley basin where it may provide part of the flow of Amargosa River Valley Springs. Alluvium of Furnace Creek conveys water to the alluvial fan at the mouth of the creek. Furnace Creek alluvium is recharged by surface runoff and, near the mouth of the creek, by subsurface flow from Travertine and Texas springs through colluvial deposits. Coarse alluvial fan deposits on the east flank of the Panamint Mountains convey groundwater to the floor of Death Valley. The groundwater emerges from the fan deposits and the underlying bedrock as springs and seeps and is transpired by phreatophytes at the margin of the valley floor. The valley floor is underlain by fine-grained sediments and evaporites. The alluvial fill of Death Valley Wash, the northwest arm of Death Valley above Mesquite Flat, is not well-known, but the Holocene and Tertiary fill in the valley is shallow as determined from geophysics.
### **Climatic Setting of Death Valley Region**

The climate of the Death Valley is one of the most diverse in the country. Climate is largely controlled by elevation which has an extreme range from –86 meters (–282 ft) at the lowest point in Death Valley to 3,368 meters (11,049 ft) at Telescope Peak in the Panamint Mountains. While basically a complex of rain shadow deserts, the region exhibits climatic characteristics associated with continentality—severe conditions of winter cold and summer heat—while also exhibiting subtropical properties such as mild warm winters (at low elevations) and summer convectional rainfall (Rowlands 1993).

The dominant source of winter precipitation is from the west or northwest from the eastern Pacific and Gulf of Alaska. Less commonly northeasterly flow of air brings dry and unusually cold temperatures to the region (James 1993). In summer the dominant air flow is from the south and southeast and less frequently from the west. This southeast flow, the so-called "Arizona Monsoon," sometimes brings convective thunderstorms that occasionally release damaging rains. Some summers a westerly flow of drier air dominates and thunderstorms are virtually non-existent (James 1993).

The relative amount of summer (June–September) precipitation ranges from 5 to 40% of the annual total and is less than 33% at

all stations reported by Rowlands (1993) except Beatty, Nevada.

"Furnace Creek" was aptly named for a geographic feature in one of the hottest places on earth. Temperatures have exceeded 120°F (49°C) each month from May through September during the period of record (James 1993). Daily maximum averages in summer are in the 110°-115°F (43°-46°C) range from June through August, with nights normally cooling only into the low to mid 80s (27°-29°C). Maximum summer temperatures routinely approach 130°F (54°C). Winter temperatures at the desert floor are relatively cool with winter days typically having high temperatures reaching the mid-60s (15.5°C). Freezing temperatures at night are common during the colder winter months of December and January (James 1993). Rowlands (1993) has drawn regression equations for the three major climatic factors affecting the hydrologic environment-potential evapotranspiration, temperature, and precipitationrelating each to elevation. Relations given below from Rowlands (1993) are drawn from weather stations in and surrounding Death Valley National Park. The stations include Trona, Bishop, Deep Springs, and White Mountains (two stations) in California, outside the park, and Beatty, Goldfield, and Sarcobatus Flat in Nevada. Stations in the park include Wildrose Ranger Station, Badwater, Cow Creek, and Furnace Creek.

Potential Evapotranspiration (mm) = e(-0.00042 Alt (m) + 7.185), r2 = 0.994

Precipitation (mm) = 0.111 Alt (m) + 10.736, r2 = 0.894

Mean annual temperature (Celsius) = -0.007 Alt (m) + 23.114, r2 = 0.988

Mean July Temperature (Celsius) = -0.008 Alt (m) + 45.701, r2 = 0.988

Mean January Temperature (Celsius) = -0.008 Alt (m) + 4.448, r2 = 0.901

More current data on precipitation stations in and adjacent to Death Valley are presented in Hevesi et al. (2003). An independent evaluation of the relation between precipitation and elevation was made using 10 stations in or near the park. These data are listed in table 3. The relation between annual precipitation and altitude is shown in figure 6. The results are in general agreement with Rowland's findings.

The climatic environment of a site is influenced by topography, aspect, slope, soil characteristics, and longitude, within the overall predominating influence of precipitation, evapotranspiration, and temperature, which are controlled by elevation. These factors in varying measures affect the vegetation cover, species distribution, and recharge to groundwater. Rowlands (1993) shows that potential evapotranspiration, estimated by the Thornthwaite

method (Thornthwaite 1948) is greater than 1.3 meters per year (4.3 ft/yr) at sea level. The huge moisture deficit at the playas decreases with increasing altitude as the potential evapotranspiration decreases and precipitation increases. The moisture gradient increases with increasing altitude as the potential evapotranspiration decreases and precipitation increases. Based on average annual precipitation and evapotranspiration, the elevation at which precipitation equals potential evapotranspiration occurs at 3,100 meters (10,171 ft; fig. 6). This boundary is lower during the winter months (October-May), and the opportunity for recharge of precipitation to groundwater is enhanced, especially at higher elevations, when there is greater excess of precipitation over potential evapotranspiration. The relation of temperature to elevation is shown in figure 7.

|                         |                      |                       | ,        |                             |
|-------------------------|----------------------|-----------------------|----------|-----------------------------|
|                         | UTM                  | UTM                   | Altitude | Average Annual              |
| Station Name            | Easting <sup>1</sup> | Northing <sup>1</sup> | (meters) | Precipitation (millimeters) |
| Barstow                 | 496,955              | 3,860,401             | 659      | 113                         |
| Barstow                 | 496,955              | 3,860,401             | 659      | 113                         |
| Goldstone Echo No. 2    | 519,603              | 3,904,072             | 899      | 150                         |
| Mountain Pass           | 632,115              | 3,926,003             | 1,442    | 221                         |
| Shoshone                | 565,819              | 3,980,883             | 479      | 132                         |
| Trona                   | 464,669              | 3,957,601             | 517      | 100                         |
| Wildrose Ranger Station | 483,357              | 4,013,218             | 1,250    | 180                         |
| White Mountains 1       | 401,946              | 4,128,839             | 3,094    | 358                         |
| White Mountains 2       | 398,760              | 4,133,760             | 3,081    | 496                         |
| Deep Springs College    | 412,926              | 4,135,799             | 1,593    | 158                         |
|                         |                      |                       |          |                             |

#### Table 3. Precipitation data for 10 stations in and near the study area

<sup>1</sup>Universal Transverse Mercator projection, Zone 11, NAD27; in meters.

Source: Hevesi et al. 2003 and Rowland 1993.

**Figure 6 (right).** Graphs of precipitation and potential evapotranspiration versus altitude in the Death Valley region.

**Figure 7 (below).** Graphs of mean annual, mean July, and mean January temperature versus altitude in the Death Valley region.





**Photograph 8.** Alkali Spring. High in the Panamint Mountains, Alkali Spring supports a healthy growth of vegetation at an elevation of 2,015 meters (6,611 ft).

### Vegetation

Natural vegetation cover is sparse throughout most of the region, especially at lower elevations, except for favorable areas where water is available for growth of riparian vegetation from spring discharge and shallow groundwater levels. The creosotebursage association occupies the largest area compared to other plant associations. Woodland and forest plant assemblages are limited to the higher elevations where precipitation is greater and air temperature and potential evapotranspiration are lower (Hevesi et al. 2003). Pinion-juniper woodlands occur at elevations of about 2,000 meters (6,562 ft) and higher elevations. Limber pine and bristlecone pine associations are found on a few isolated peaks and ridges in the Panamint Range (Rowlands 1993).

Salinity of shallow groundwater, depth to groundwater, and calcium–magnesium

content of soils are important ecological factors that determine the distribution of plant assemblages (Hunt and Durrell 1966). Phreatophytes, plants that consume groundwater, are principally found around the edges of the Death Valley salt pan, in Mesquite Flat, in the floodplain of the Amargosa River, and near regional and upland springs. Hunt and Durrell (1966) studied the distribution of plant species in the salt flat-fan transition zone. He identified nine phreatophytic species and related their occurrence to salinity and depth to groundwater at the edge of the salt pan. The transition from least salt-tolerant phreatophytes to most salt-tolerant is screwbean mesquite (Prosopis pubescens) and desert baccharis (Baccharis sergiloides), honey mesquite (Prosopis julifera), arrowweed (Pluchea sericea) and four-wing saltbush (Atriplex canescens), alkali sacaton grass

(Sporobolus airoides), tamarisk (Tamarix gallica and T. aphylla), inkweed (Suaeda sp.), saltgrass (Distichlis spicata, var. stricta), rush (Juncus cooperi), and finally, pickleweed (Allenrolfea occidentalis). Dissolved solids in groundwater grades from a minimum of 5,000 milligrams per liter (.042 lb/ gal) or less where there is honey mesquite to a maximum of 60,000 milligrams per liter (.50 lb/gal) where there is pickleweed. Less tolerant phreatophytes, screwbean mesquite (Prosopis pubescens) and desert baccharis (Baccharis sergiloides), grow at higher elevations bordering the salt pan and at springs on the gravel fans. Principal xerophytes in the zone above the phreatophytes are desert holly (Atriplex hymenelytra) which is replaced in the zone at the south end of the valley by cattle spinach (Atriplex *polycarpa*). Above the pure stands of desert holly and cattle spinach is creosote bush (Larrea tridentata). Higher on the fans in the north is burroweed (Ambrosia dumosa) replaced in the southern part of the valley by inceinso (Encelia farinosa) (Hunt and Durrell 1966). A schematic representation of the effect of depth to water and salinity of soil and groundwater in the gravel fan-salt pan groundwater discharge area on the distribution of plant species is shown in figure 10.

Rowlands (1993) summarizes studies of how plant cover, plant communities, and plant species distribution in the park vary as a function of precipitation, evapotranspiration, and moisture. Density of plant cover increases in proportion to precipitation. Montane plant abundances as spindle graphs (Rowlands 1993, fig. 6) show the overlapping elevational distribution of 17 xerophytic species in order from desert holly at the lowest elevation to pinion pine at the highest elevation. Rowlands (1993, fig. 7) shows that the stratification of characteristic plant species is a function of potential evapotranspiration relating to the moisture-evapotranspiration lapse rate. A composite vertical sequence of plant spe-

cies, from lower to higher elevations, from Rowlands (1993), excluding phreatophytes, halophytes, and spring assemblages, is listed here, with high altitude additions from Hunt (1975) and Arno (1984): desert holly (Atriplex hymenelytra); creosote bush (Larrea tridentata); bursage (Ambrosia dumosa); burrobush or cheesebush (Hymenoclea salsola); shadscale (Atriplex confertifolia); desert buckwheat (Eriogonum fasciculatum); desert-thorn (Lycium andersonii); spiny menodora (Menodora spinescens); Nevada ephedra (Ephedra nevadensis); spiny hopsage (Gravia spinosa); Cooper goldenbush (Haploppapus [Ericamera] cooperi); blackbrush (Coleogyne ramosissima); big sagebrush (Artemisia tridentata); sticky-leaved rabbit bush (Chrysothamnus viscidiflorus); antelope brush (Purshia gladulosa); green ephedra (Ephedra viridis); Macdougal buckwheat (Eriogonum microthecum); Utah juniper (Juniperus osteosperma); pinion pine (Pinus monophyla); limber pine (Pinus flexilis); Great Basin bristlecone pine (Pinus longaeva).

Because of the close relationship between plant species and the moisture gradient, zones of plant associations have been made principal criteria by some investigators for assigning estimated recharge rates. Rice (1984) placed the lower limit of recharge to coincide with the elevation of the pinion pine-juniper plant zone where precipitation is greater than 254 millimeters (10 in) and elevation is greater than 1,675 meters (5,500 ft). The lowest zone of recharge of D'Agnese et al. (1997) is coincident with the mixed-shrub transitional zone which begins at an elevation of about 1,500 meters (4,900 ft). The two vegetation zones above the mixed-shrub transitional zone, the pinon-juniper zone (1,520 to 2,440 meters [5,000 to 8,000 ft], 305 to 510 millimeters [12 to 20 in]) and the coniferous forest zones (>2,440 meters [8,000 ft], >510 millimeters [20 in]) reflecting successively greater moisture availability were given accordingly greater recharge weight.

### Soils

Soils in the Death Valley region were grouped into four types by Hevesi (2002 and 2003) for use in infiltration models: (1) upland soils on the mountains and areas characterized by rugged topography, (2) valley-fill soils on alluvial fans and terraces, (3) playa soils on the valley floors and plava basins, and (4) channel soils in active stream channels. These classifications are based on the STATSGO data base of the U.S. Department of Agriculture. Hevesi (2002 and 2003) describes upland soils as usually less than one-meter (3.3-ft) thick, of coarse texture with little moisture-holding capacity, and having great permeability. Playa soils are fine-grained and characterized by a high percentage of clays or evaporites including silicified hardpans (Beatley 1976), and have much lower permeability than valley-fill and upland soils. Valley fill and soils in active channels tend to be coarse textured and more permeable than the soils of the surrounding terraces and interchannel areas of alluvial fans.

Soils of Death Valley are included in the STATSGO data base covering the United States (U.S. Department of Agriculture 1988). The STATSGO data base is a digital general soil association map developed by the National Cooperative Soil Survey. STATSGO depicts information about soil features on or near the surface of the Earth. STASGO is designed primarily for regional, multi-county, river basin, state, and multistate regional planning, management, and monitoring. It consists of a broad-based inventory of soils and non-soil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. The soil maps for STATSGO are compiled by generalizing more detailed soil survey maps. Where more detailed soil survey maps are not available, data on geology, topography, vegetation, and climate are assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas are studied, and the probable classification and extent of the soils are determined.



### Hydrogeologic Setting

During the gold rush days, the vast desert region between the Rocky Mountains and the Sierra Nevada was considered a trackless wasteland-a formidable obstacle almost devoid of water that had to be carefully crossed from water hole to water hole to survive the trek to the gold fields of California. That the Native Americans who lived in the region were aware of the water holes that were essential for their survival is indicated by the names they gave the valleys reflected the presence or absence of water. Many basins having Native American names beginning in "pa" or "pah" contain water - such as Pahranagat and Panamint. These basins have groundwater near the surface or springs and marshes in the playas. Other basins having names ending in "pah" – Ivanpah and Nopah have no springs or marshes.

This great region is characterized by long high mountains of hard rock with intervening sand, gravel, and silt-filled basins with no external drainage to the sea. This very basic but significant hydrologic insight into the Great Basin was recorded prior to the 20th century by John C. Fremont who explored the northern part of the region from the Rockies to California and named the Great Basin in early 1840s. Fremont defined the Great Basin as that collection of basins with closed drainage having no outlet to the ocean. He designated the Great Basin as bounded by the Columbia River drainage on the north, the Sierra Nevada on the west and the Colorado River drainage to the south.

Using data from wet and dry valleys, discharge areas, thermal springs, and topography Bedinger and Harrill (2010) have formulated a set of guidelines for mapping the potential for regional movement of groundwater. The regional potential map, shown in plate 1, shows the direction and gradient of regional potential for groundwater movement in a part of the Great Basin and Mojave Desert. The map of the regional potential enables definition of the area contributing groundwater to Death Valley. This is the area outlined by the red line in plate 1. It is this area that Death Valley depends upon to supply water for the large springs that emerge in Death Valley and the groundwater that discharges by evapotranspiration from the valley floor.

# Death Valley Groundwater Flow System

### **Regional Flow**

The quantitative basis for establishing the concept of regional groundwater flow is grounded in the basin studies made by the U.S. Geological Survey and the State of Nevada cooperative groundwater program. Maxey and Eakin (1949), in attempting to quantify the available groundwater resources of basins, developed field methods for estimating basin recharge and discharge. They discovered, in evaluating groundwater budgets of topographically closed basins, that many basins were not closed to groundwater transfer to or from adjacent basins. Hunt and Robinson (1960) advanced the hypothesis of interbasin transfers of groundwater to Death Valley based on geochemical studies of water. Early studies such as Eakin and Winograd (1965), Eakin (1966), Eakin and Moore (1964), Mifflin (1968), Winograd and Thordarson (1975), and Mifflin and Hess (1979) recognized the importance of interbasin groundwater flow. In time, practically all basins in Nevada were studied, and estimates of recharge and discharge were made. Mifflin (1968), recognizing that thermal springs were surface manifestations of deep regional potential, mapped the first set of regional potential contours from the surface altitudes of springs in Nevada issuing at temperatures of 27°C (80°F) or greater. Harrill et al. (1988) made use of water-budget imbalances in their work in the Great Basin to interpret interbasin flow. They constructed generalized contours of the regional groundwater potential in the Great Basin. Prudic et al. (1995) simulated flow in the carbonate rock province of Nevada from the higher basins in central Nevada to the terminal discharge areas of the Death Valley and the Colorado River regional groundwater flow systems.

**Photograph 9.** Mud crack in floor of Eureka Basin. Groundwater discharge does not occur from the floor of Eureka Basin because the depth to groundwater is too deep for evaporation from the water table and well below the reach of phreatophytes. Recharge to the surrounding hills flows to the adjoining Saline Basin to discharge at thermal springs and to Mesquite Flat on the main Death Valley floor. Photograph by M. S. Bedinger.



**Photograph 10.** Amargosa River in flood. The Amargosa River in the southeast part of Death Valley National Park during a flash flood in February 2005. Photograph by A. Van Luik.

The most recent and comprehensive model of the Death Valley regional groundwater flow system was made by the U.S. Geological Survey, in cooperation with the Department of Energy (Belcher and Sweetkind 2010). The model incorporates geologic and hydrologic data in a state-of-thescience mathematical multilayered model. The model was supported by advanced geological and geophysical investigations, comprehensive studies of groundwater discharge by withdrawal and evapotranspiration, models of groundwater recharge, and hydrologic properties of rock units. Both steady and transient states of regional groundwater flow were analyzed.

#### Local Flow

Recharge of groundwater occurs in the mountain ranges of the Death Valley region. This local recharge supports the

higher elevation springs that occur on the slopes of the mountains. In ranges where the adjacent basin does not discharge groundwater from the playa, some of the recharge becomes a part of the regional flow system. The circulation of groundwater in the ranges is superposed on the regional flow system. Higher mountain ranges that receive greater precipitation, such as Panamint Range and Cottonwood Range, contain mountainside springs and springs on the upper parts of the alluvial fans. The circulation of the groundwater above the regional flow system can be visualized as circulation cells above regional flow paths that discharge at large intermediate discharge areas and the ultimate discharge areas at Death Valley.

# Surface Water Flow of the Death Valley Region

### Present-Day Surface Water

Perennial surface water flow occurs only in a few stream reaches originating from spring discharge. Perennial flow and pools of water in the Amargosa River in the park originate from the Amargosa River Valley Springs that is supplied from groundwater in the alluvium beneath the river. Upstream from Death Valley, east of the park, the Amargosa River is perennial in a few reaches near Tecopa, the Franklin Well area, and Shoshone that are fed by discharge from the regional flow system. Laczniak et al. (2001) estimated groundwater evapotranspiration in these areas. Flow was observed by the authors and was reported by Miller (1977) on occasions at the Highway 127 crossing near the southern boundary of the park. These perennial and near-perennial segments of the Amargosa River and shallow groundwater supplying phreatophytes are principally discharge of regional groundwater. Along the perennial reaches, where

depth to groundwater is shallow, phreatophytes consume groundwater. The perennial flow of Salt Creek above Cottonball Basin originates as spring flow. Perennial lakes at Badwater, Cottonball Basin, and Saline Valley are maintained by discharge of groundwater. Riparian wetlands are fed by spring discharge at Grapevine, Travertine, Nevares, and Mesquite springs. Some upland springs feed short stream reaches of perennial flow. Discharge of upland springs supports riparian vegetation, with many springs having pools, but no stream. Smaller springs may have no visible water, groundwater discharge being evidenced only by the presence of riparian vegetation.

Infrequent storms can cause flash floods in normally dry stream channels. Geologically, such floods are a principal geomorphic factor in building bajadas of coalescing alluvial fans along the mountain fronts. Occasionally storms can cause ephemeral lakes in the playas. Flooding along the Amargosa River and tributaries formed the ephemeral lakes in the Death Valley playa during 1969, 1993, and 2005.



**Photograph 11.** Shoreline Butte. Wave-cut beaches in Shoreline Butte record pluvial lake levels in Death Valley basin. Photograph by Marli Miller.

Figure 8. Map showing Pleistocene streams and lakes tributary to Death Valley. After Bedinger and Harrill 2006a.

### Pleistocene Streams, Lakes, and Marshes

Pleistocene lakes of the Basin and Range Province are shown in figure 8 from studies of Williams and Bedinger (1984) and Bedinger and Harrill (2006a). Death Valley, the ultimate discharge area of both surface and groundwater, was beneficiary of a large regional contributing area. The most striking divergence from today's hydrology was the chain of lakes along the east flank of the Sierra Nevada, beginning at its maximum extent with its headwaters at Lake Russel (that occupied the presentday position of Mono Lake just north of the study area), then Adobe Lake, Owens Lake, China Lake, Searles Lake (China and Searles lakes merged at high stages to form one lake), Panamint Lake, and finally Lake Manly that occupied Death Valley.

Deep Springs Lake occupied a closed basin between the Owens River Valley and Death Valley. Three closed basins—Saline Valley, Eureka Valley, and the smaller Racetrack Playa—did not hold lakes. Racetrack Playa and Eureka Valley were occupied by dry playas that were probably well above the water table, as they are today. Though no shoreline terraces are present at Saline Valley as evidence of a Pleistocene lake higher than the present-day lake, it is inferred that during the pluvial the marsh was probably more extensive than today. A chain of Pleistocene lakes punctuated the pluvial Mojave River, whose watershed heads in the San Bernardino Mountains, and drained into Death Valley. Lake Manix occupied the lowland of the Mojave River valley between present-day Barstow and Afton Canyon.



Lake Mojave occupied the present-day Soda Lake and Silver Lake playas. The Soda Lake and Silver Lake playas are usually dry under modern conditions; however, in years of high precipitation in the San Bernardino Mountains, floods in the Mojave River sometimes fill the Soda Lake playa to depths of a few meters. Pleistocene lakes Harper, Cuddeback, Koehn, and Thompson, without apparent connection to the Mojave River, occupied shallow basins west and northwest of the Mojave River.

During the Pleistocene, the Amargosa River was, as it is today, tributary to Death Valley. In the Pliocene, Lake Tecopa, named for its location near the town of that name, occupied the present-day route of the Amargosa River until a natural dam was breached by the river. The basins of Pahrump Valley, Mesquite Valley, and Ash Meadows did not hold lakes but are inferred to have been occupied by marshes of somewhat larger extent than the early settlers found when they entered the region (Williams and Bedinger 1984).

Following the Pleistocene lake maxima, the Holocene climate has shifted toward decreasing precipitation and increasing aridity. Although there was not integrated drainage from Mono to Death Valley during the late Holocene, there were at least shallow lakes in Mono, Searles, Panamint, and Death Valley. Soda Lake Valley received flow from the Mojave River as it does under present conditions.

# Inferred Groundwater Conditions under Pluvial Conditions

The location and elevations of lakes and groundwater marshes during the late Pleistocene allow us to make some inferences as to groundwater flow conditions and inter-basin hydraulic conductivities. These inferences have application to the presentday groundwater regime.

Two adjacent closed basins in California—Eureka and Saline valleys—have the greatest infiltration rates of all California basins adjoining Death Valley (J. A. Hevesi, written communication). Gale (1914) found no evidence that these basins contained lakes during the Pleistocene Epoch.

During the Pleistocene, under climatic conditions of greater precipitation and less evapotranspiration than today, these basins contributed groundwater flow to Death Valley. Today groundwater discharge in Saline Valley, as is inferred during the Pleistocene, is by springs, including several thermal springs, evaporation from a saline playa lake, and transpiration by a band of phreatophytes bordering the playa. The fact that the playa of Saline Valley did not support a lake during the Pleistocene of significantly higher elevation than at present indicates that, even under conditions of greater than modern recharge, the underlying rock permeability was great enough to convey the groundwater beyond the basin. Groundwater flows from Eureka basin and Saline basin to Death Valley as shown by the regional potential map (plate 1).

Based on present-day elevations, Panamint Valley was the site of a 305-meter- (1000-ft) deep, 77,700-hectare (192,000-ac) lake having a maximum depth of about 305 meters (1000 ft), about 610 meters (2,000 ft) in elevation. At the southern end of Panamint Valley, the lake was the natural spillway—at Wingate Pass—between Panamint Valley and Death Valley. At its maximum stage the lake in Panamint Valley was 366 meters (1,200 ft) above Lake Manly in adjacent Death Valley. We can infer that the rock permeability between Panamint Valley and Death Valley is not great enough to have conveyed all the inflow from the Pleistocene lake in Panamint Valley to Death Valley. We can infer from the modern water balance of Panamint Valley, a closed basin, (recharge to the basin minus groundwater evapotranspiration) that groundwater is conveyed to Death Valley under the regional hydraulic gradient and prevailing hydraulic conductivity of the rocks.

There is a question as to what route groundwater from Panamint Valley and Saline Valley takes to Death Valley. The fact that Saline Valley did not contain a Pleistocene lake of higher level than at present reveals that the permeability of the basin rocks was too great to allow water to rise significantly in the basin. The Pleistocene water table in the playa of Saline Valley was at a maximum near its present elevation of 320 meters (1,050 ft). The Pleistocene lake elevation in Panamint Valley was more than 579 meters (1,900 ft). The outflow from Saline Valley during the Pleistocene thus could not have been by way of Panamint Valley. It is inferred that the present outflow from Saline Valley is east toward the Mesquite Flat area of Death Valley as it was during the Pleistocene.

Hunt and Robinson (1966, B40) inferred that the absence of wave-cut terraces in Pahrump Valley revealed the absence of a lake in the closed basin during the pluvial climate of the Pleistocene and reasoned that the absence of a lake indicated subsurface drainage through the Paleozoic rocks of the bounding ranges. Hunt and Robinson (1960, B28) ascribed the source of the springs at Ash Meadows and possibly springs in the Tecopa area to groundwater flow from Pahrump Valley. The hypothesis of flow from Pahrump Valley was corroborated by Malmberg's (1967, 28–33; fig. 5, plate 2) potentiometric mapping in Pahrump Valley, but the potentiometric map shows that groundwater flows southwestward toward Tecopa, directly into northeast-dipping Paleozoic carbonate strata comprising the bordering Nopah Range, rather than to Ash Meadows.

Williams and Bedinger (1984), in their map of Pleistocene lakes and marshes of the Death Valley region, inferred that closed basins that today have shallow groundwater level but that did not hold Pleistocene lakes were the sites of marshes during pluvial climate of the Pleistocene. It is further inferred that groundwater from these basins in the Death Valley flow system drained in the direction of the regional potentiometric gradient (plate 1).

### Groundwater Inflow, Recharge, and Discharge

### Groundwater Inflow From California

Estimates of inflow to Death Valley from desert basins in southeast California were made by a combination of water budgets for closed basins bordering Death Valley and calculations of inflow based on regional hydraulic gradient and hydraulic conductivity of the geologic materials (Bedinger and Harrill 2006a).

Water budgets (table 4) were made for several basins bordering the southern part of Death Valley basin (243). The basin numbers referred to in this report are shown on the map in figure 12. The water budgets in combination with the regional potential map indicate that most of the recharge to the basins and the inflow from the Lower Mojave Basin (269) is discharged by evapotranspiration at Soda Lake (262) playa. Probably most of the recharge to Valjean Valley (244) flows to Death Valley. Other valleys-Riggs Valley (261), Red Pass Valley (260), and Leach Valley (259)—contribute small flows based on gradient and aquifer hydraulic conductivity.

The Panamint area basins—East Pilot Knob and Brown Mountain Valley (257), Panamint Valley (255), and Darwin Plateau (254)—contribute an estimated 14,000 cubic meters per day ( $m^3/d$ ; 494,340 ft<sup>3</sup>/d) to Death Valley. In addition, inflow to the Panamint area from Lost Lake–Owl Valley basin (258) and the basins to the west of the Panamint area contribute about 2,000 m<sup>3</sup>/d (70,620 ft<sup>3</sup>/d) for a total estimated flow of 16,000 m<sup>3</sup>/d (564,960 ft<sup>3</sup>/d) to Death Valley.

An approximately equal contribution to Death Valley originates from the basins to the northwest where the high altitudes provide large amounts of precipitation. Water budgets were made for the major contributing basins: Deep Springs (250), Eureka (251), Saline (252), and Racetrack (253) valleys. Combined with a small inflow from Owens Valley (249), total flow to Death Valley from these valleys is about 15,500 m<sup>3</sup>/d (547,305 ft<sup>3</sup>/d).

| Camornia        |                    |               |                                      |
|-----------------|--------------------|---------------|--------------------------------------|
| Bordering Area  | Bordering Basins   | Inflow (m³/d) | Method of Estimating Inflow          |
| Southern        | 244, 261, 260, 259 | 2,500         | Water budgets and Darcy calculations |
| Panamint Area   | 254, 255, 257, 258 | 16,000        | Water budgets and Darcy calculations |
| Northern Basins | 251, 252, 263      | 15,500        | Water budgets and Darcy calculations |
| Total           |                    | 34,000        |                                      |

# Table 4. Summary of groundwater inflows to Death Valley basin (243) from southeastCalifornia

### **Groundwater Inflow From Nevada**

Regional potential for inflow to Death Valley from Nevada is indicated by the configuration of the regional groundwater potential (plate 1). The gradient is nearly perpendicular to the trend of the northeast boundary of the park. Flow across this boundary is controlled by the structural features and the distribution of geologic units. Inside the park along this boundary are the Funeral Mountains and the Grapevine Mountains. Segments of these ranges, discussed later in this report, are composed of carbonate, volcanic, clastic, and metamorphic rocks. The rocks are characteristically cut by normal faults, thrust faults, and detachment faults. The western margin of these ranges is marked by the Furnace Creek–Death Valley fault zone, a right-lateral strike-slip fault, with a downthrown southwest block, that extends from the northwest extent of the park to the Resting Spring Range southeast of the park boundary. The eastern boundary of these ranges is marked by the Stewart Valley–Pahrump fault zones, with strike-slip faults and normal fault movement, extending from Pahrump Valley northwestward to the Grapevine Mountains. The structure and lithology of segments of these ranges affect not only the distribution and nature of inflow and regional springs from the Nevada portion of the flow system, but also the distribution of springs of local origin, discussed later in this report, that occur within the ranges.

Several regional springs and spring complexes occur along the Furnace Creek-Death Valley fault zone, including Navel Spring, Sand Spring, Little Sand Spring, the Furnace Creek spring complex (Texas, Travertine, Nevares, Cow Creek, and Salt springs), the Keane Wonder Spring complex, and the Grapevine, Staininger, and Surprise spring complex. Several of these springs emerge upgradient from the fault zone and apparently emerge because of impedance to groundwater flow at or near the fault zone. In general, however, the fault zone does not appear throughout its length to impede the flow of groundwater. The flow to Nevares Spring appears to be impeded in crossing the fault zone by juxtaposition of the Funeral and Furnace Creek Formations on the downthrown southwest block of the fault zone (Bredehoeft et al. 2005). Flow to the spring appears to flow in the Paleozoic carbonate rocks on the northeast block of the fault near the discharge area. According to Fridrich et al. (2003a and 2003b), the groundwater discharging from Furnace Creek spring complex crosses the southern Funeral Mountains several kilometers southeast of the spring orifices. In transit to the discharge area, the Furnace Creek–Death Valley fault zone may provide permeable media for transmission of groundwater to the springs. The springs of the Grapevine, Staininger, and Surprise complex emerge in or near carbonate rock terrane. Sand and Little Sand springs emerge from alluvium overlying igneous intrusive rock. Sand and Little Sand springs are springs of small flow, and their source may be local recharge to alluvial deposits.

Keane Wonder Spring emerges from the upper Proterozoic and Lower Cambrian rocks of the lower plate of the detachment fault at the contact with upper plate of Tertiary sedimentary rocks. Keane Wonder Spring provides an example in which interconnected fault and fracture zones in the lower plate of a detachment fault provide conduits for groundwater flow. Other cases where igneous, metamorphic, and clastic rocks provide permeable media for groundwater movement are given elsewhere in this report and in the report on the source of groundwater to Death Valley from southeastern California (Bedinger and Harrill 2006a).

The estimated inflow to Death Valley from Nevada, about 60,000 m<sup>3</sup>/d (2,118,600 ft<sup>3</sup>/d), is obtained by subtracting the inflow from California (31,500 m<sup>3</sup>/d [1,112,265 ft<sup>3</sup>/d]) from the total regional inflow to Death Valley (90,382 m<sup>3</sup>/d [3,191,388 ft<sup>3</sup>/d]). The derivation of this estimate is given later in the section "Groundwater Budget for Death Valley."

### Valley Floor Discharge of Groundwater

Evapotranspiration from the valley floor of Death Valley was determined by DeMeo et al. (2003) using direct field measurements and observations collected from 1997 through 2001 at selected sites. Multispectral satellite-imagery data were used to delineate areas of groundwater discharge by evapotranspiration on the valley floor. The areas of evapotranspiration were divided into five types of areas based on soil type, soil moisture, vegetation type, and vegetation density. The evapotranspiration areas, called ET units by DeMeo et al. (2003), were (1) salt-encrusted playa, (2) bare-soil playa, (3) low-density vegetation, (4) moderate-density vegetation, and (5) high-density vegetation. Annual evapotranspiration was computed from micrometeorological data which were measured continuously at six sites. The total evapotranspiration from the valley floor includes discharge of groundwater, local precipitation, and surface-water inflow. The groundwater discharge to Death Valley, determined by deducting local precipitation and surface water inflow to the valley floor from total evapotranspiration, is about 42.9 million cubic meters per year or 117,523  $m^{3}/d$  (1,515 million ft<sup>3</sup>/yr or 4,149,737 ft<sup>3</sup>/d; DeMeo et al. 2003).

The estimate of valley floor discharge includes local and regional springs that discharge at the valley floor. The discharge of the regional springs that issue above the valley floor is not included in the valley floor evapotranspiration. The greatest portion of valley floor evapotranspiration, 47,720 m<sup>3</sup>/d (1,684,993 ft<sup>3</sup>/d) or about 40% of the total floor discharge, is from the bare soil and salt-encrusted playa of the Badwater,

Cottonball, and Middle basins (fig. 9). Some areas where groundwater enters the valley are characterized by springs and growth of phreatophytes. In figure 9, the segments of the valley floor are shown, from south to north, (1) Saratoga–Amargosa River Valley Springs, (2) Amargosa River Valley, (3) Badwater Basin, (4) Middle Basin, (5) Cottonball Basin, and (6) Mesquite Flat.



Figure 9. Map showing Death Valley floor groundwater discharge areas. Modified from DeMeo et al. 2003 (fig. 4). Numbers refer to discharge areas and subareas discussed in text.



### Saratoga–Amargosa River Valley Springs

Saratoga Spring makes up a significant portion of the discharge in the Saratoga– Amargosa River Valley Springs area (fig. 9). The evapotranspiration of this area is 8,311 m<sup>3</sup>/d (293,461 ft<sup>3</sup>/d; DeMeo et al. 2003). The principal source of inflow for Saratoga Spring is regional flow in the Pahrump Series (of the Lower Clastic and Carbonate [ZPcc] rock unit). The two sources of groundwater for evapotranspiration from the valley floor and Amargosa River Valley Springs are regional groundwater flow that supplies Saratoga Spring and groundwater flow in the alluvium beneath the Amargosa River.

### Amargosa River Valley

The Amargosa River Valley discharges groundwater by evapotranspiration principally along the incised channel upstream from the Badwater Basin (fig. 9). The groundwater discharge in this section, estimated to be 3,236 m<sup>3</sup>/d (114,263 ft<sup>3</sup>/d) by DeMeo et al. (2003), is thought to be derived from groundwater inflow from the Amargosa Valley Springs section of the valley floor and groundwater inflow from the Owlshead Mountains to the west and southern Black Mountains to the east. The bordering terrane in the southern Black Mountains is in the complexly faulted Amargosa chaos described by Noble (1941) and Troxel and Wright (1987). The Owlshead Mountains are underlain by igneous

and volcanic rocks of relatively low elevation and are believed to provide small flow to the Amargosa River Valley.

### Badwater Basin

Evapotranspiration from the Badwater Basin is about 51,687 m<sup>3</sup>/d (1,825,068 ft<sup>3</sup>/d; DeMeo et al. 2003). The most concentrated area of evapotranspiration is along the west margin of the valley floor at the base of the Panamint Range.

Inflow to the Badwater basin from the west is concentrated along the strip of phreatophytic growth and a line of springs on the west side of the basin at the toe of the Panamint Range fans (fig. 9, area 3A) where an estimated 18,000 m<sup>3</sup>/d ( $635,580 \text{ ft}^3/d$ ) is discharged (DeMeo et al. 2003). Certainly a large part of the groundwater inflow is from recharge in the Panamint Range and infiltration of storm runoff to the alluvial fans at the front of the range. That a part of the inflow may be regional groundwater from the west is suggested by the water budget reconnaissance of the Panamint basin that reveals recharge to Panamint basin in excess of basin discharge (Bedinger and Harrill 2006a). Regional flow may also be indicated by the groundwater temperature of two wells reported by Miller (1977). One well, 16 meters (52.5 ft) in depth, at Eagle Borax Spring was measured to be 28.5°C (83.3°F); the other well near Bennetts Well, 10 meters (32.8 ft) in depth, the groundwater was measured to be 29.5°C (85.1°F).



**Photograph 12.** Saline Marsh and phreatophytes at Eagle Borax Spring. Groundwater discharge at Eagle Borax Spring, at the west foot of the Panamint Mountains, forms a marsh; shallow groundwater is used by phreatophytes on the edge of the salt pan on the floor of Death Valley.

Figure 10. Composite schematic diagram of groundwater flow, groundwater and soil salinity gradients, and plant species distribution in the mountain front-gravel fan-salt pan complex of Death Valley. Groundwater inflow from recharge in the mountain range and runoff infiltration on the fan mix and diffuse with inferred densityinduced circulation cells in the saline groundwater beneath the salt pan. The progression of zones of plant species reflect the soil salinity, groundwater salinity, and depth to water gradients with distance from the salt pan. Phreatophytes, in descending order of salt tolerance. include pickleweed, p; saltgrass, s; arrowweed, a; and honey mesquite, m. Xerophytes include desert holly, h, and creosote bush, c, and occupy the zones of greater depth to water on the fan above the phreatophytes. Drawing not to scale. After Miller 1977, Harrill 1995b, and Hunt 1966.

The indicated depth of flow and temperature of groundwater in these wells are near the common ranges considered to be indicative of regional flow (Bedinger and Harrill 2006a). A schematic transect from the salt pan through the gravel fan to the bedrock of the mountain range is depicted in figure 10 showing the relationships between phreatophytes, groundwater and salinity of soils, and groundwater in the discharge area.

Significant discharge occurs by phreatophytes at the foot of the Black Mountains (fig. 9, area 3B). Small springs, including Badwater Spring, are located at the toes of small fans at the base of the mountains. The inflow of groundwater is probably small and derived from recharge in the metamorphic and igneous rocks in the Black Mountains.

#### Middle Basin

Evapotranspiration from the Middle Basin is estimated by DeMeo et al. (2003) to be about 18,147  $\text{m}^3$ /d (640,771 ft<sup>3</sup>/d). Evapotranspiration from the toe of the northern Panamint Range fan (fig. 9, area 4A) is about 2,000  $\text{m}^3$ /d (70,620 ft<sup>3</sup>/d); there are no springs in this area. Groundwater inflow to the area is from local recharge in the carbonate and clastic rocks (ZPcc and PMc) of the Panamint Range and infiltration to the alluvial fan.

The Furnace Creek fan (fig. 9, area 4B), formed by deposition of coarse material carried down Furnace Creek by storm runoff, deserves special notice with respect to the source and the nature of the groundwater discharge at its surface. Evapotranspiration,  $11,522 \text{ m}^3/\text{d}$  (406,842 ft<sup>3</sup>/d), is largely by phreatophytic mesquite trees along distributary channels radiating from the mouth of Furnace Creek. Ephemeral runoff contributes some recharge to the alluvial deposits of the lower reaches of Furnace Creek and the fan. The primary source is probably through surficial gravels and the alluvium of Furnace Creek that are fed by groundwater flow derived from the Funeral Formation, the source of Travertine and Texas springs.

The groundwater conditions of the Furnace Creek fan are quite different compared to the fans on the west side of the Badwater Basin. Phreatophytic growth in the distributary channels of Furnace Creek fan indicates a relatively shallow water table beneath the fan. Evapotranspiration on the west side of the basin is from the toe of the fan rather than the area up on the fan.



**Photograph 13.** Coyote Wells Spring. Coyote Wells Spring is a small spring at the foot of the Black Mountains looking over the Death Valley salt pan with Panamint Mountains in the distance.



### Cottonball Basin

Cottonball basin is an ovoidal playa of fine silt, clay, and salt with springs and saline water pools. DeMeo et al. (2003) estimate evapotranspiration from Cottonball basin to be 10,224 m<sup>3</sup>/d (361,009 ft<sup>3</sup>/d). Springs issue on the west side in Cottonball Marsh at the foot of Tucki Mountain. Seventy or more small springs issue from the margin of the playa on the east side. The high salinity of the pools is not attributed to the discharging groundwater but to the solution of evaporite deposits in the playa sediments.

Evapotranspiration on the west side of Cottonball Marsh (fig. 9, area 5A) is from Salt Spring (115) and Sulfur Spring (116). Numerous small springs, East Salt Springs (240-270) and Buckboard Springs (271-312), issue from a spring area that extends along the eastern margin of Cottonball Basin (fig. 12, area 5B). Evapotranspiration occurs from the fine-grained sediments and salt crust of the playa.

#### Mesquite Flat

Mesquite Flat is a broad area of low-lying basin fill through which Death Valley Wash drains. The area is characterized by relatively shallow groundwater and widespread growth of phreatophytes. There are few springs in the upper, broad part of the basin. Groundwater discharge is primarily



Photograph 14 (above). Furnace Creek Fan. Radiating channels in the Furnace Creek alluvial fan are marked by growths of mesquite trees, phreatophytes that tap the shallow water table beneath the fan. Salt Creek in left foreground. Photograph by Marli Miller.

**Photograph 15 (right).** Salt Creek. Flow of Salt Creek is spring discharge of groundwater from Mesquite Flat. Springs are caused by uplift of Tertiary playa silts and clays of the Furnace Creek Formation at Salt Hills. The Furnace Creek Formation is exposed on the left side of stream. **Figure 11.** Map showing locations of regional springs above the valley floor of Death Valley.

by evapotranspiration, estimated by DeMeo et al. (2003) to be about 29,002  $m^3/d$  (1,024,061  $ft^3/d$ ).

Groundwater supporting phreatophyte growth on the west side of Mesquite Flat (fig.9, area 6A) is regional flow and local recharge to the adjoining Grapevine Mountains.

Groundwater on the west side of Mesquite Flat (fig. 9, area 6B) is derived in part from local recharge in the Cottonwood Mountains. This area may be the principal discharge area for groundwater outflow from Saline Valley (Bedinger and Harrill 2006a).

In the lower part of Mesquite Flat, permeable alluvial deposits are restricted by a structural uplift of the underlying low permeability Furnace Creek Formation. A channel is incised in the Funeral Formation where it drains to Cottonball Basin. In the channel section (fig. 9, area 6C), phreatophyte growth is abundant and perennial springs discharge giving rise to Salt Creek. The discharge of Salt Creek is discussed in a later section on valley floor springs.



<sup>44</sup> Groundwater Geology and Hydrology of Death Valley National Park, California and Nevada

# Regional Spring Discharge above the Valley Floor

The regional springs that issue above the valley floor are shown in figure 11. Estimates of discharge, given in table 5, are based on flow measurements reported by Rush (1968), Miller (1977), La Camera and Westenberg (1994), Hale and Westenberg (1995), Westenberg and La Camera (1996), La Camera et al. (1996), La Camera and Locke (1997), and San Juan et al. (2004). Estimates of groundwater loss from evapotranspiration by local riparian vegetation in spring areas has been reported by Miller

(1977). Laczniak et al. (2006) made evapotranspiration estimates in spring areas based on field instrumentation and aerial imagery. The total estimated groundwater discharge from the Grapevine, Staininger, Surprise, Texas, and Travertine springs was derived by R. J. Laczniak (written communication, 2006) from his observations at the spring areas including high-resolution multi-spectral imagery, micrometeorological data, discharge measurements, and evapotranspiration estimates (Laczniak et al. 2006) at the spring areas.

|                    | Discharge spring-flow       | Evapotranspiration     | Total Groundwater   |
|--------------------|-----------------------------|------------------------|---------------------|
|                    | measurements and estimates. | (Laczniak et al. 2006) | Discharge           |
| Spring             | (m³/d)                      | (m³/d)                 | (m <sup>3</sup> /d) |
| Staininger         | 1,035 <sup>1</sup>          | 165                    | 1,200 <sup>6</sup>  |
| Grapevine          | 2,450 <sup>1</sup>          | 1,367                  | 1,367 <sup>6</sup>  |
| Surprise           | 228 <sup>3</sup>            | 30                     | 258 <sup>6</sup>    |
| Texas              | 1,220 <sup>1</sup>          | 81                     | 1,301 <sup>6</sup>  |
| Travertine         | 4,630 <sup>1</sup>          | 154                    | 4,784 <sup>6</sup>  |
| Nevares            | 1,885 <sup>1,2</sup>        |                        | 1,885               |
| Cow Creek, Salt    | 125 <sup>2</sup>            |                        | 125                 |
| Mesquite           | 7                           |                        | 7 <sup>3,4</sup>    |
| Keane Wonder       | 360                         |                        | 360 <sup>3</sup>    |
| Navel              | 11                          |                        | 11 <sup>3</sup>     |
| Sand               | 65                          |                        | 65                  |
| Little Sand        | 6                           |                        | 6 <sup>3</sup>      |
| Ibex               | 1.5                         |                        | 1.5 <sup>3</sup>    |
| Superior Mine Tank | : B 1.5                     |                        | 1.5 <sup>3</sup>    |
| Total              |                             |                        | 11,247              |

#### Table 5. Discharge of regional springs above the valley floor

<sup>1</sup>From compilation of published and unpublished spring flow by San Juan et al. (2004). Estimates of discharge of Staininger Spring are based on measurements by Miller (1977) and Rush (1968). The estimate of Grapevine Spring is based on estimates originally made by Miller (1977) on the basis of discharge measurements made at a few accessible springs and a cursory quantification of evapotranspiration. Estimate of Texas Spring discharge is from measurements reported in La Camera and Westenberg (1994), Hale and Westenberg (1995), Westenberg and La Camera (1996), La Camera et al. (1996), and La Camera and Locke (1997).

<sup>2</sup>San Juan et al. (2004) from Pistrang and Kunkel (1964). San Juan et al. (2004) report the discharge of Nevares Spring by Pistrang and Kunkel (1964) includes the flow of Cow Creek and Salt Springs.

<sup>3</sup>National Park Service spring survey 2005.

<sup>4</sup>Includes Mesquite Springs (605–608) and nearby related springs (578, 579, 580, 581, 609–613, 623, and 670). (Numbers in parentheses refer to the spring number in the Appendix).

<sup>5</sup>Discharge reported by San Juan et al. (2004) is based on flow estimates of a few springs and an estimate of evapotranspiration by Miller (1977). The evapotranspiration estimate reported by Laczniak et al. (2006) is considered to be accurate and supersedes the estimate of Miller (1977).

<sup>6</sup>R. J. Laczniak (written communication, 2006).

### **Recharge to Death Valley**

Precipitation, the source of recharge to groundwater in the Death Valley region, is closely related to elevation. The lapse rate of precipitation with altitude in the Death Valley region has been defined by Rowlands (1993) from weather station data. As the precipitation increases with altitude the potential evapotranspiration concomitantly decreases. A part of the precipitation that falls within the Death Valley hydrologic basin (basin 243 of figure 12) infiltrates and recharges the groundwater flow system. (The hydrologic basins shown on figure 12 are listed in table 6.) A part of the recharge discharges from upland springs, and a part discharges from the valley floor.





|  | Table 6. H | ydrologic | basins in t | the Death | Valley | / flow s | ystem |
|--|------------|-----------|-------------|-----------|--------|----------|-------|
|--|------------|-----------|-------------|-----------|--------|----------|-------|

| Number | Name                          | Number | Name                         |
|--------|-------------------------------|--------|------------------------------|
| 117    | Fish Lake Valley              | 250    | Deep Springs Valley          |
| 144    | Lida Valley                   | 251    | Eureka Valley                |
| 146    | Sarcobatus Flat               | 252    | Saline Valley                |
| 147    | Gold Flat                     | 253    | Racetrack Valley area        |
| 148    | Cactus Flat                   | 254    | Darwin Plateau B.            |
| 158A   | Emigrant Valley               | 255    | Panament Valley              |
| 159    | Yucca Flat                    | 256    | Searles Valley               |
| 160    | Frenchman Flat                | 257    | E. Pilot Knob & Brown Mt. V. |
| 161    | Indian Springs Valley         | 258    | Lost Lake–Owl Lake V.        |
| 162    | Pahrump Valley                | 259    | Leach Valley                 |
| 163    | Mesquite Valley               | 260    | Red Pass Valley              |
| 164B   | Southern Ivanpah Valley       | 261    | Riggs Valley                 |
| 170    | Penoyer Valley                | 262    | Soda Lake Valley             |
| 173A   | S. Railroad Valley            | 263    | Kelso Valley                 |
| 211    | Three Lakes Valley (southern) | 264    | Cronise Valley               |
| 225    | Mercury Valley                | 265    | Bicycle Valley               |
| 226    | Rock Valley                   | 266    | Goldstone Valley             |
| 227A   | Jackass Flat                  | 267    | Superior Valley              |
| 227B   | Buckboard Mesa                | 268    | Coyote Lake Valley           |
| 228    | Oasis Valley                  | 269    | Lower Mojave River Valley    |
| 229    | Crater Flat                   | 270    | Lucerne Valley               |
| 230    | Amargosa Desert               | 271    | Upper Mojave River Valley    |
| 240    | Chicago Valley                | 272    | Middle Mojave River Valley   |
| 241    | California Valley             | 273    | Harper Valley                |
| 242    | Lower Amargosa Desert         | 274    | Antelope Valley              |
| 243    | Death Valley                  | 275    | Fremont Valley               |
| 244    | Valjean Valley                | 276    | Cuddleback Valley            |
| 245    | Shadow Mountain Valley        | 277    | Indian Wells Valley          |
| 247    | Adobe Lake Valley             | 278    | Rose Valley                  |
| 248    | Long Valley                   |        |                              |
| 249    | Owens Valley                  |        |                              |



Photograph 16. Travertine mound at Nevares Spring. Nevares Spring, issuing on the travertine mound (white) built from deposition of carbonate from the spring waters. Travertine Spring issues along a fault from the Cambrian Bonanza King Formation, shown in the background, at the foot of the Funeral Mountains. Photograph from C. B. Hunt, USGS files. Maxey and Eakin (1949) developed an empirical relationship between elevation and recharge in the Great Basin of Nevada. Maxey and Eakin assigned recharge as a percentage of precipitation at elevation intervals beginning with three percent of precipitation at the elevation interval of 1,524 to 1,829 meters (5,000 to 6,000 ft). The Maxey-Eakin method has been justifiably criticized for its lack of precision and technical sophistication (Avon and Durbin 1994). However, during its development the Maxey-Eakin method was calibrated by balancing the recharge estimates with measurements of discharge for single closed basins and multiple basin systems with interbasin flow. During the 50 years since its development, water budgets for most of the closed basins in Nevada have been made using the Maxey-Eakin method. Recharge in many basins has also been estimated using a modified recharge-altitude relation to reflect local conditions (Miller 1977,

Walker and Eakin 1963, Malmberg 1967, and Harrill 1986). Notwithstanding the imperfections and limitations, the Maxey– Eakin method retains a useful practicality. The method has been employed in several landmark quantitative regional studies of groundwater in the Great Basin (Eakin et al. 1976, Harrill et al. 1988, Prudic et al. 1995, and Dettinger et al. 1995). Further endorsement of the method is the weight accorded the Maxey–Eakin water budget analyses of basins in groundwater adjudications by the Nevada State Engineer.

D'Agnese et al. (1997) adapted the altitude interval–recharge concept of the Maxey– Eakin method to incorporate empirical recharge ratings for soil–parent rock permeability, slope–aspect, and vegetation zones. While the basin recharge estimates using the modification of D'Agnese et al. appear to be based on rational and logical technical criteria, there is no discussion by the authors of what, if any, calibration procedures were made to verify the accuracy or calibrate the method. Recharge estimates for 25 basins by D'Agnese et al. (1997, table 11) are 30% greater than Maxey–Eakin estimates for the Death Valley flow system. However, estimates for individual basin differ by multiples of -3.4 to +11. Recharge estimates for the Death Valley hydrologic basin (243) by both the Maxey–Eakin method and by D'Agnese et al. (1997) are reported to be 32,400 m<sup>3</sup>/d (1,144,044 ft<sup>3</sup>/d).

Studies were made to develop a basin characterization model to determine spatial and temporal variability of recharge (Hevesi et al. 2002, Hevesi et al. 2003, and Flint et al. 2004). The basin characterization model uses a mathematical deterministic water-balance approach that includes the distributed parameters of precipitation, potential evapotranspiration, soil and bedrock storage, and permeability. The basin characterization model provides for characterizing basins on the basis of characteristics that determine the temporal and spatial variability of recharge and runoff, but the basin characterization model is not deemed accurate enough to be used for assessment of water availability (Flint et al. 2004).

Table 7 summarizes the estimates that have been made of recharge to the Death Valley hydrologic basin (243) shown in figure 12. These estimates are only for direct recharge to basin 243 and do not include groundwater inflow to basin 243 from adjacent basins.

### Table 7. Estimates of recharge to Death Valley

| Table 7. Estimates of fecharge to Death Valley           |                              |  |
|----------------------------------------------------------|------------------------------|--|
| Method/Investigator                                      | Recharge (m <sup>3</sup> /d) |  |
| Maxey–Eakin Method/                                      | 32,400                       |  |
| D'Agnese et al. (1997)                                   |                              |  |
| D'Agnese Method/                                         | 32,400                       |  |
| D'Agnese et al. (1997)                                   |                              |  |
| Maxey–Eakin Method/                                      | 27,036                       |  |
| Flint et al. (2004)                                      |                              |  |
| Maxey–Eakin Method modified by                           | 27,017                       |  |
| Constants of Rantz and Eakin/                            |                              |  |
| in Miller (1977) and Hevesi et al. (2003)                |                              |  |
| Basin Characterization Model, Range of various versions/ | 20,705 to 205,992            |  |

Hevesi et al. (2002) and Flint et al. (2004)

The results of the various versions of the basin characterization model reflect both model calculations based on mean and time series of climate factors as well as differences in computational design of the models. The basin characterization model results are presented to demonstrate a sense of the variability of recharge due to temporal climatic factors, problems inherent in conceptual modeling of mechanisms of recharge, and lack of precision and relevance of GIS factors in model application. Following the recommendation of Flint et al. (2004), basin–characterization–model results are not used directly in selecting a value for recharge to the Death Valley Basin. Accordingly, the estimates of recharge based on Maxey–Eakin method are considered the best available estimates of recharge.

# Groundwater Budget Components for Death Valley

In this section we account for the groundwater flow components for Death Valley basin (basin 243, fig. 12) This accounting will provide an assessment of the source and quantity of the groundwater flow in Death Valley. Because of the approximate values for the components, we round the components to one or, at most, two significant figures.

<u>Valley Floor Discharge</u>: Groundwater flow to Death Valley is ultimately discharged by evapotranspiration at the valley floor. The evapotranspiration at the valley floor was estimated by DeMeo et al. (2003) as  $120,000 \text{ m}^3/\text{d}$  (4,237,200 ft<sup>3</sup>/d).

Discharge of Regional Springs Above the Valley Floor<sup>1</sup>: Regional springs above the valley floor discharge is about 11,000 m<sup>3</sup>/d (388,410 ft<sup>3</sup>/d).

<u>Groundwater Discharge to Death Valley</u> <u>Basin:</u> As discussed in the previous section, recharge to the Death Valley basin is estimated to be about 30,000 m<sup>3</sup>/d (1,059,300 ft<sup>3</sup>/d). Part of this recharge is discharged from upland (non-regional) springs and does not reach the valley floor. From the small rate of flow of upland springs and the number of springs in the basin, less than 800, we estimate this total discharge to be about 1,000 m<sup>3</sup>/d (35,310 ft<sup>3</sup>/d). <u>The Total Groundwater Inflow to Death</u> <u>Valley Basin</u>: The total inflow to Death Valley is valley floor evapotranspiration, 120,000 m<sup>3</sup>/d (4,237,200 ft<sup>3</sup>/d), plus discharge from regional springs above the valley floor, 11,000 m<sup>3</sup>/d (388,410 ft<sup>3</sup>/d), for a total of 131,000 m<sup>3</sup>/d (4,625,610 ft<sup>3</sup>/d).

<u>The Regional Flow to Death Valley Basin<sup>2</sup></u>: This flow to Death Valley basin from beyond the boundaries of basin 243 is approximated as the Death Valley floor evapotranspiration, 120,000 m<sup>3</sup>/d (4,237,200 ft<sup>3</sup>/d), minus the recharge to Death Valley basin that is not discharged as upland springs, 29,000 m<sup>3</sup>/d (936,990 ft<sup>3</sup>/d), plus the discharge of regional springs that issue above the valley floor, 11,000 m<sup>3</sup>/d (388,410 ft<sup>3</sup>/d). This gives a total regional inflow of about 100,000 m<sup>3</sup>/d (3,531,000 ft<sup>3</sup>/d).

<u>Flow to Death Valley Basin from California and Nevada:</u> Regional inflow to Death Valley from California has been estimated by Bedinger and Harrill (2006a) to be about  $30,000 \text{ m}^3/\text{d}$  (1,059,300 ft<sup>3</sup>/d). Regional inflow from Nevada is estimated as total regional inflow, 100,000 m<sup>3</sup>/d (3,531,000 ft<sup>3</sup>/d), minus inflow from California, or about 70,000 m<sup>3</sup>/d (2,471,700 ft<sup>3</sup>/d).

<sup>1</sup>San Juan et al. (2010) estimated groundwater inflow to Death Valley as the sum evapotranspiration from the valley floor of Death Valley (San Juan et al. 2010, fig. C-2) plus the discharge of regional springs that issue at elevations above the valley floor. San Juan et al. (2010) recognized that the method might account twice for that part of the flow of valley-margin springs that infiltrates into surficial sediments downstream from the spring orifices and flows to the valley floor. They considered this component to be small, reasoning that most of the water discharged from valley-margin springs is lost by evaporation or transpiration before reaching the sediments beneath the valley floor.

<sup>2</sup>San Juan et al. (2010) consider all valley floor evapotranspiration as regional flow. However, the regional springs include a minor component of local recharge and groundwater beneath the valley floor includes a component of recharge that occurs within Death Valley basin. In the present report we account for evapotranspiration at the valley floor derived from recharge within the basin. In our calculations of groundwater inflow to Death Valley, we have estimated the magnitude of these two components and separated regional flow from flow that originates in Death Valley basin.

# Springs of Death Valley National Park and their Hydrogeologic Settings

Records of springs collected by National Park Service personnel date back to the 1930s. In the 1940s, Frank B. and Florence E. Welles began collecting and establishing a permanent file of spring records of Death Valley National Monument. In the late 1950s, they entered into a contract with the NPS to locate springs and compile records of all known springs in the Monument. Their report dated September 1959 was entitled Preliminary Study of Wildlife Water Resources in Death Valley National Monument. The record of each spring was entered on a standard form with provision for recording information on location; flow; vegetation; condition of springs; signs and observations of wildlife; length, depth and width of flow; and developments and maintenance. Particular emphasis was noted on use of springs by animals and activities at the springs by burros that often degraded the conditions and were considered detrimental to the needs of bighorn sheep. In the years following the Welles and Welles compilation, the unpublished records of individual springs were updated as opportunity arose, and additional springs were added to the inventory as they were discovered. In September 1988 the spring list was updated, which then contained records of 289 springs. A comprehensive survey of springs by the Great Basin Institute (Jacobs 2005) enumerates about 1000 springs in Death Valley National Park. This survey is not complete, but available data on the springs are given in the Appendix. The Great Basin Institute survey of springs is being refined. The final list of springs will probably be less than 800 because (1) the winter of 2004/2005 when the survey was made was extraordinarily wet and many ephemeral water discharge areas were improperly called springs and (2) in spring complexes, several nearby orifices will be combined as a single spring.

Various investigators have devised schemes for categorizing the origin and occurrence of springs. They may be based on topographic position, structural and geologic setting, or other criteria. Basically, springs are the surface emergence of concentrated groundwater flow, rather than the surface intersection of a widespread saturated horizon along which diffuse flow might occur, as to a lake or stream. Much of the discharge of groundwater to the Death Valley floor is not concentrated at springs but is widely dispersed as seepage from the adjacent mountain blocks and alluvial fans. Three conditions are required to produce a spring: (1) a barrier to continued subsurface flow of groundwater, (2) a conduit along which flow is concentrated, and (3) a hydraulic head to bring the groundwater to the surface.

In this report, springs of Death Valley are discussed in three categories: regional springs above the valley floor, upland springs, and valley floor springs. Regional springs originate from recharge distant from Death Valley and are conveyed by regional interbasin flow to Death Valley. Upland springs are those that occur above the Death Valley floor and have as their source infiltration of precipitation that falls in the immediate surrounding area at higher elevation. Upland springs issue from local flow systems above the regional flow system. Valley floor springs issue from the Death Valley playa or at low elevations bordering the playa. These springs may be derived from local recharge in the Death Valley hydrologic basin, regional flow, or a combination of regional and local flow.

### Regional Springs Above the Valley Floor

Regional springs discharge interbasin groundwater flow. The groundwater flow to these springs also typically travels at depth beneath shallow circulation cells of groundwater. As a result of the flow at depth, the temperatures of regional springs are geothermally elevated above the ambient air temperature. The chemical and isotope signatures of the regional spring waters reflect the chemistry of the groundwater in the distant source areas and the strata of the flow system. Geochemistry has been used to support the concept of an interbasin source of regional springs in the Great Basin by many investigators including Winograd and Thordarson (1975), Thomas et al. (1996), and Steinkampf and Werrell (2001).

There is believed to be a small component of local recharge in some regional springs; for example the springs at Furnace Creek and Travertine, Texas, and Nevares springs probably discharge some groundwater from recharge in the nearby Funeral Mountains.

Regional springs that issue above the valley floor are shown in figure 11. These springs discharge at elevations a few tens of meters to a few hundred meters above the valley floor.

### Keane Wonder Springs

Keane Wonder Spring, discharging about 150 L/min (39.6 gal/min), emerges from the Middle Member of the Crystal Spring Formation of the Pahrump Series (Troxel and Wright 1989), a part of the Lower Clastic and Carbonate rock unit (ZPcc). The Middle Member of the Crystal Spring Formation is described by Troxel and Wright (1989) as mostly calcite marble. Lower Clastic and Carbonate rocks (ZPcc) form the core of the northern Funeral Mountains. The spring is located near the trace of a detachment fault overlain by Tertiary rocks. The chemistry of the water (Steinkampf and Werrell 2001), topographic setting, and the spring elevation in relation to the regional hydraulic gradient indicate the source of the water is regional groundwater flow from the northeast. The low flow of the spring, absence of other regional springs in similar hydrogeologic settings of the Funeral Mountains, and the water chemistry lead Steinkampf and Werrell (2001) to surmise that the Proterozoic core of the Funeral Mountains transmits meager regional flow to Death Valley.

### Saline Valley Hot Springs

Several warm springs emerge from fill in the structural basin of Saline Valley between Dry Mountain Range on the east and Saline Range on the west. Recharge for the springs could be from either adjacent range where peaks attain elevations of 2,153 meters (7,064 ft) in the Saline Range and 2,544 meters (8,347 ft) in the Dry Mountain Range. The springs, 100 to 200 meters (328 to 656 ft) above the playa lake in Saline Valley, include Lower Warm Springs (springs 677–680, Appendix), Lower Warm Springs South Shelf (364–372), Palm Spring (676), Upper Warm Springs (668–669), and Upper Warm Mesquite Spring (670). The warmest spring measurements range from 34.6° to 47.1°C (94.3° to 116.8°F).

Mase et al. (1979) calculate geothermal heat flow from wells in Saline Valley ranges from 1.24 to 2.08 hfu (heat flow units) with a mean of 1.6 hfu. The geothermal gradient in five boreholes in Saline Valley ranges from 3.0°C/100 meters to 4.9°C/100 meters (5.4°F/328 ft to 8.8°F/328 ft; Mase et al. 1979). The authors conclude that the heat discharge at Saline Valley can be accounted for by heat transfer to groundwater circulating to a depth of 1,000 meters (3,281 ft). The most recent igneous activity at Saline Valley is dated as Pliocene; therefore, it is too old to be the heat sources for the modern springs (Mase et al. 1979).

### Furnace Creek Springs Complex

The hydrogeologic system providing the flow of springs at Furnace Creek has been recently described and analyzed by Bredehoeft, Fridrich, Jansen, and King (Inyo County Yucca Mountain Repository Assessment Office 2005) and Fridrich, Blakely, and Thompson (2003a and 2003b). These studies propose groundwater flow through the Paleozoic and Mesozoic carbonate rocks (PMc) of the southern Funeral Mountains supplying the spring flow at Texas (931), Travertine (880-885 and 936-940), Nevares (872-876, 934, and 935), and Salt and Cow Creek springs (414 and 416–423). Flow from the Amargosa Desert southwest through the southern Funeral Mountains is supported by detailed geologic mapping and regional groundwater potential (Fridrich et al. 2003a and 2003b). From the southern Funeral Mountains, groundwater flows northwest through the carbonate rocks parallel and northeast of the Death Valley-Furnace Creek fault toward the regional springs in the Furnace Creek area. At least part of the fault zone is inferred to be permeable and possibly

Figure 13. Schematic cross section of Furnace Creek basin from Funeral Mountains to Death Valley salt pan showing hydrogeologic setting of Travertine and Texas springs. Texas Spring is located about 1.2 miles (1.9 km) NW of this section. Texas and Travertine springs emerge on the trace of the Echo Canyon Thrust (ECT) where groundwater flow is impeded by thinning of gravel beds in alluvium and Funeral Formation and by low permeability beds of the Furnace Creek Formation. Flows to the springs is from interbasin flow through Paleozoic carbonate rocks in the southern Funeral Range, Part of the interbasin flow enters the Funeral Formation and overlying alluvium giving rise to Travertine and Texas springs and part continues to flow northwest to Nevares Spring (not shown, located about 4.5 miles [7.2 km] NW of this section) where the carbonate rocks are terminated by faulting. ECT, Echo Canyon Thrust; Qsl, saline lake beds of Death Valley; Qal, alluvium; Tfc, Furnace Creek Formation; QTf, Funeral Formation; PMc, Paleozoic carbonate rocks. After Hunt and Mabey 1966, McAllister 1970, Machette et al. 2000, Inyo County Yucca Mountain Repository Assessment Office 2005, and Fridrich et al. 2003b.

acting as a medium of conveyance allowing groundwater to flow across or from the fault zone to Travertine and Texas springs.

Interbasin flow of groundwater through carbonate rocks in the southern Funeral Mountains is supported by the chemical, radioisotope, and rare earth signatures of the water (Winograd and Thordarson 1975, Thomas et al. 1996, Johannesson et al. 1997, and Steikampf and Werrell 2001). Travertine and Texas springs, which emerge near Furnace Creek Ranch, are stratigraphically controlled by the contact of the water-bearing Tertiary gravel of the Funeral Formation with the underlying clay of the Furnace Creek Formation (fig. 13). The springs discharge at the eroded southwest limb end of a southeast plunging syncline in the basin fill deposits of Tertiary age. Nevares Spring discharges groundwater that traverses further westward in carbonate rocks of the northeast plate of the Death Valley–Furnace Creek fault. The spring emerges from the Bonanza King Formation, a unit of the carbonate rock sequence, unit PMc of figure 5, near the juxtaposition of the formation with Cenozoic rocks on the southwest block of the Death ValleyFurnace Creek fault. The Bonanza King Formation appears to be terminated to the west of the spring by Cenozoic rocks on the downthrown block of a normal fault (Troxel and Wright 1989).

### Grapevine, Staininger, Surprise Springs Complex

Grapevine Springs (131–133, 533–563, 614, and 615) emerge well above the floor of Death Valley on the up-hydraulic-gradient side of the Death Valley-Furnace Creek fault. The groundwater upgradient of the fault is possibly held at a high level by low permeability fault gouge and/or low permeability Cenozoic deposits downgradient of the fault. Staininger Spring (457) and Surprise Spring (458 and 520-527) issue from Paleozoic carbonate rocks (unit PMc, fig. 5). Surprise Spring issues above an outcrop of low permeability older basin fill (unit Cvb, fig. 5) and Staininger Spring rises from carbonate rocks underlying the channel of creek in Grapevine Canyon. Groundwater at Staininger Spring is collected for use at the Scotty's Castle Visitor Center. Groundwater at Surprise Spring is collected for use at the park's Grapevine housing area and ranger station.





**Photograph 17.** Ibex Spring. Ibex Spring is a small spring in the Ibex Hills north of Saratoga Spring. The elevation of the spring in relation to the regional potentiometric surface indicates its source is regional flow.

#### Mesquite Springs Complex

Mesquite Springs (605-508) rises in a marshy area of the Death Valley Wash about 60 kilometers (37 mi) upstream from Cottonball Basin (fig. 16). One of the springs is dug out and boxed to collect water for a nearby camping area. The springs are a few kilometers south of the latitude of Surprise Spring. The source of the spring may be regional inflow from Nevada with a component of recharge from within the Death Valley hydrologic basin. Miller (1977) reports the flow of the spring to be 34 liters per minute (9 gal/min).

### Sand and Little Sand Springs

Sand (508–515) and Little Sand springs (516 and 517) are located on the Furnace Creek–Death Valley Fault. The springs are above the floor of Death Valley Wash on the upgradient side of the fault indicating the fault is a barrier to groundwater flow in this location. The springs are of small flow, and the source of the springs may be in part local recharge to alluvial deposits from which the springs discharge.

### Ibex and Superior Mine Tank B Springs

The Superior Mine Tank B Spring (585) and Ibex Springs (586 and 587) are near and northeast of Saratoga Spring. Saratoga Spring, a regional spring, is discussed under the heading of valley floor springs. The springs are in the structural zone of Saratoga Spring in the Pahrump Series rocks. The location and elevation of the springs in relation to the regional groundwater head (plate 1) suggest the springs may be of regional flow origin. The potential local catchment area of the springs, being less than 1,500 m (4,922 ft) above sea level, indicates low precipitation and recharge in the nearby area. There are no temperature and chemical data to evaluate the source of the springs.

### Devils Hole and Ash Meadows Complex

Devils Hole is adjacent to Ash Meadows National Wildlife Refuge in southwestern Nevada (fig. 14). In 1952 a 40-acre (16.2ha) tract of land containing Devils Hole was incorporated into the Death Valley National Monument as a detached management area. The area is currently a part of Death Valley National Park. Ash Meadows National Wildlife Refuge, a reservation of the U. S. Fish and Wildlife Service, encompasses 2,300 acres (931 ha) of spring-fed wetlands providing habitat for about 25 endemic species. Devils Hole is an active extensional fault opening, enlarged by collapse near the surface, in the limestone hills above Ash Meadows. Devils Hole is a pool about 15 meters (49.2 ft) below the surface, connected at great depth to the underlying regional carbonate aquifer. The pool is home to the endangered endemic species



**Figure 14.** Map showing location of Devils Hole, Ash Meadows ground-water subbasin, and pumping centers of southwest Nevada.



Photograph 18 (above). Crystal Spring. Crystal Spring is one of several large springs that discharge from carbonate rocks of the Death Valley groundwater flow system in Ash Meadows. Ash Meadows is an intermediate discharge area of the Death Valley flow system. Photograph by A. Van Luik.

Photograph 19 (right). Devils Hole pupfish (Cyprinodon diabolis). Devils Hole, a collapse depression in limestone hills adjacent to Ash Meadow National Wildlife Refuge, contains a warm-water pool that is the home of a unique species of endangered pupfish, Cyprinodon diabolis. The population feeds and reproduces on a slightly submerged rock ledge. In 1952 a 40-acre (16.2-ha) tract of land containing Devils Hole was incorporated into the Death Valley National Monument as a detached management area. The area is currently a part of Death Valley National Park.

of desert pupfish *Cyprinodon diabolis*. The population feeds and reproduces on a slightly submerged rock ledge. Devils Hole is a window to the Death Valley groundwater flow system; the aquifer is the source of the nearby large springs of Ash Meadows.

The water level in Devils Hole, the natural environment of the endangered Devils Hole pupfish, and the spring flow and wetland habitat of Ash Meadows are subject to depletion by withdrawal of groundwater in the region (Bedinger and Harrill 2006). Ash Meadows is the major area of natural discharge of groundwater in the Ash Meadows groundwater subbasin (fig. 15). The water moves southward and westward through faults and solution channels in the Paleozoic carbonate rocks of the groundwater subbasin to Ash Meadows where it



**Figure 15.** Cross section showing hydrogeologic setting of Devils Hole and Ash Meadows springs. After Bedinger and Harrill 2006b, Dudley and Larson 1976, Winograd and Thordarson 1975, and Carr 1991. flows across bounding faults into the basinfill sediments. In Ash Meadows groundwater discharge is by springs and evapotranspiration of shallow groundwater from an area about 3.2 by 16 kilometers (2 by 10 mi) long, bordering the limestone upland. The westward extent of the spring discharge area has been called the "spring line" by Dudley and Larson (1976). The springs are inferred to be controlled by faulting. West of the spring line, the alluvial materials in the upper basin-fill deposits are fine grained, generally lack travertine and continental limestone deposits, and are generally not productive for high capacity wells (Dudley and Larson 1976). Here also, the water table is near the land surface and the fluctuations of the water table are largely controlled by evapotranspiration and local recharge. Probably a large portion of the Ash Meadows subbasin flow discharges at Ash Meadows. The groundwater in the basin fill at Ash Meadows is tributary to the alluvium of the Amargosa Desert.



#### **Geologic Unit**

Clastic rocks

Paleozoic Carbonate rocks

Basin fill – lacustrine, volcanic colluvial, alluvial and spring deposits

#### Hydrogeologic Unit

Clastic confining units - low permeability confining beds

Paleozoic Carbonate aquifers – fracture and solution channel permeability aquifers predominately confined. unconfined conditions exist in localized areas.

Basin-fill aquifers and confining beds – Northeast of spring line local aquifers (travertine and fresh water limestone) interbedded with layers of sand, gravel, silt, clay and volcanics. Southwest of spring line upper fine grained alluvium and underlying layers of gravel, sand, silty clay and volcanics.

### **Valley Floor Springs**

Valley floor springs are shown in figure 16.

### **Cottonball Basin**

Hunt and Robinson (1960) reveal that the chemistries of the east and west side spring waters are quite different and provide a basis for ascribing their sources. The spring water chemistry on the west side is of sodium sulfate type similar to the water at Mesquite Flat. The water chemistry of the east side springs is calcium bicarbonate type similar to the groundwater of Nevares, Texas, and Travertine springs.

#### Salt Spring and Sulfur Spring

The springs of Cottonball Marsh on the west side of Cottonball Basin are Salt Spring (915) and Sulfur Spring (916). Threloff (written communication, 6 November 1993) records the temperature of Salt Spring as 33.5°C (92.3°F). Hunt et al. (1966) describes the springs as aligned along faults oriented in the direction of Mescuite Flat



58 Groundwater Geology and Hydrology of Death Valley National Park, California and Nevada
to the north of the marsh. Hunt et al. (1966) estimate the flow of Cottonball Marsh to be 42.5 liters per second (11.2 gal/s).

Thermal properties of the Cottonball Marsh springs, the thermal wells at Stovepipe Wells, and the related geochemical properties of the waters suggest that the groundwater in the west portion of Cottonball Basin is regional flow from either Saline Valley or Panamint Valley, both of which contribute regional flow to Death Valley and are up-regional-gradient from Cottonball Marsh (Bedinger and Harrill 2006a). The perennial pools of the springs on the west side of Cottonball Basin contain a population of desert pupfish (*Cyprinodon salinus*), the same species that lives in Salt Creek, 16 kilometers (10 mi) to the north.

East Salt Spring and Buckboard Spring About 73 springs are aligned along the east margin of Cottonball Basin (East Salt Springs, 240–270, and Buckboard Springs, 271-312). These springs on the east margin of the basin appear to be regional inflow. A local source for the springs is considered to be limited because of the low potential for recharge in the Tertiary deposits in the area adjoining Funeral Mountains. Hunt et al. (1966, B29) describe the groundwater source of the springs as being confined by fine-grained sediments-silts and claysthat make up the confining bed. The surface expressions of these conduits are tube-like openings ranging in size from the diameter of a pencil to about five centimeters (2 in). Hunt et al. (1966) describe the confined response of these springs to barometric pressure and the flow, 3.8 to 7.6 liters per hour (1 to 2 gal/hr).

#### Salt Creek Springs

McLean Spring (238) and Salt Creek Spring (239) (fig. 16) issue from the channel of Salt Creek in the Salt Creek Hills, an uplift of the low permeability Furnace Creek Formation (Hunt et al. 1966, B19). The discharge of Salt Creek Springs is believed derived from groundwater from Mesquite Flat. The regional groundwater flow to Mesquite Flat, as indicated by the regional potential contours (plate 1), would be from adjacent basins—Saline and Eureka valleys to the west, and Lida Valley and Sarcobatus Flat to the east. Daily discharge measurements of Salt Creek are given in Lamb and Downing (1979) during water years 1974 to 1977. Flow of Salt Creek is continuously sustained by the discharge of Salt Creek Springs. Monthly mean flows vary seasonally with flows in winter months being as much as  $1,715 \text{ m}^3/\text{d}$  (60,557 ft<sup>3</sup>d), about four times greater than the low monthly mean flows of the summer. The flow is virtually all base flow, groundwater discharge, with an occasional runoff peak from a local storm. The reduced summer flow represents the loss of groundwater by the greater seasonal evapotranspiration from the alluvial groundwater basin upstream of the gauging station and riparian vegetation along the channel.

Photograph 20. Saratoga Spring. The Saratoga Springs pupfish lives only in Saratoga Spring ponds. Five rare invertebrate species also occur at Saratoga Spring and include the Amargosa tryonia snail, the Amargosa spring snail, the Saratoga Springs belostoma bug, the Amargosa naucorid bug, and the Death Valley June beetle. The first four species are strictly aquatic in nature and live only in Saratoga Spring. The June beetle lives on land, but its distribution is limited to saltgrass habitats where shallow groundwater is present. The June beetle and both snail species have distributions which are entirely confined to the Amargosa River drainage. Five notable bird species are known to occur at Saratoga Spring: the yellow warbler, the Cooper's hawk, the western snowy plover, the longbilled curlew, and the long-eared owl. All of these species have been placed on state or federal sensitive species lists because of habitat loss or population declines across their geographic ranges. Saratoga Spring is also unique in that it is one of the few locations in the park where redspotted toads and Pacific tree frogs occur in the same area (Threloff 1988). Photograph by NPS.

# Saratoga Spring

Steinkampf and Werrell (2001) considered Saratoga Spring (892) to be derived from regional flow on the basis of water chemistry. Steinkampf and Werrell (2001) ascribe the source of Saratoga Spring to the southern Spring Mountains on the basis of geochemistry of the water. The chemistry and setting of Saratoga Spring and Keane Wonder Spring, also a regional spring discussed earlier in this report, are similar in that they emerge from the Pahrump Series of Proterozoic age and the water chemistry indicates flow through hydrothermally altered terrane which contributes complex water chemistry (Steinkampf and Werrell 2001).

Groundwater is conveyed to Saratoga Spring from the recharge area in the Spring Mountains to Death Valley principally in the Paleozoic and Mesozoic carbonate rocks. The carbonate rock unit (PMcc) extends south of the Nopah Range where it is terminated by upbending of the strata. From the Nopah Range regional flow occurs through the stratigraphically underlying Proterozoic and Lower Paleozoic clastic and carbonate rocks (ZPcc) containing the Pahrump Series. Flow of the spring is reported to be 288  $m^{3}/d$  (10,169 ft<sup>3</sup>/d) by Jacobs (2005), 817 m3/d (28,848 ft<sup>3</sup>/d) by King (1999), and 700 m<sup>3</sup>/d (24,717 ft<sup>3</sup>/d) by D'Agnese et al. (1997).

#### Amargosa River Valley Springs

Amargosa River Valley Springs (616 and 617) issue from the channel of the Amargosa River about eight km northwest of Saratoga Springs. Hunt et al. (1966) ascribe the springs as a rising of groundwater from the alluvium of the Amargosa River over a structural barrier. The barrier is finegrained lacustrine deposits of Tertiary age, probably correlative with the barrier at Salt Springs on Salt Creek above the Cottonball Basin. The springs are assumed to be derived largely from regional groundwater flow and recharge along the Amargosa River upstream from the springs. Regional flow to the springs is believed to be from the lower clastic and carbonate rocks (ZPcc) that supply flow to Saratoga Spring. The springs are not situated (plate 1) at a propitious location to be supplied by regional flow from the southwest. The other avenue of regional inflow is the groundwater that has entered the Amargosa River alluvium upstream from the park boundary. Perennial flow is maintained in segments of the Amargosa River upstream from the park by groundwater base flow, primarily in the Amargosa Narrows. Flow has been observed by the authors in the Amargosa River at Highway 127 near the park boundary. Miller (1977) reports the flow March 21, 1967, at this crossing to be 17 liters per second (4.5 gal/s). Downstream from this crossing the streamflow infiltrates into the alluvium.





Photograph 21. Amargosa River Valley Springs. Valley Springs are located along the Amargosa River channel five miles (8 km) northwest of Saratoga Springs. The springs are responsible for the presence of permanent water along a two-mile (3.2-km) reach of the river. Valley Springs are not known to have a unique invertebrate fauna, but do possess habitat that is occupied by the Amargosa River pupfish. This pupfish subspecies only exists at two locations along the length of the Amargosa River. One site is inside the park at Valley Springs, and the other is outside the park in Tecopa Canyon. Valley Springs also have been documented as having Amargosa Canyon speckled dace, another species of fish, following flash flood events. The vegetation at Valley Springs consists primarily of common reed, bulrush, saltgrass, and salt cedar (Threloff 1988).

## Springs and Wells at Foot of Panamint Range

A line of springs at the base of alluvial fans discharge groundwater from recharge in the Panamint Range. The springs discharge from alluvial fan material overlying older clastic and carbonate rocks (ZPcc). The springs rise above the fresh-saltwater interface in alluvial deposits in a zone at the toe of the alluvial fan bordering discharge area of the Death Valley playa (fig. 16). Along this linear boundary area are also shallow relatively freshwater wells. The springs include Eagle Borax Spring (569) and Tule Spring; the wells include Bennetts well, Shortys well (567), Gravel Well (141), and Salt Well (921).

One spring in this area has a recorded temperature significantly above the average ambient air temperature. The groundwater temperatures of two wells reported by Miller (1977) are also above ambient air temperature. The groundwater temperature of one well, 50 feet (15.2 m) in depth, at Eagle Borax Spring was measured to be 28.5°C (83.3°F); in the other well near Bennetts well, 32 feet (9.8 m) in depth, the groundwater temperature was measured at 29.5°C (85.1°F). The temperature of these wells approaches the range considered indicative of regional flow (Bedinger and Harrill 2006a).

# *Springs and Wells at Foot of Black Mountains*

Small springs and wells, including Badwater Springs (232 and 332–345), Tinaja Baja Spring (220), Bicentennial Spring (577), and Coyote Well Spring (144), issue along the fault zone and from the toes of small fans at the base of the Black Mountains. The small flows would indicate that the groundwater is derived from recharge to the metamorphic and igneous rocks in the Black Mountains. Two wells, Ashford Well (582) and Confidence Mill Well (583), are located along the Black Mountain front. No springs issue at the margin of the Black Mountains from the Furnace Creek fan to Badwater, an area in which the rocks are largely the Artist Drive Formation of the older basin-fill (Cvb) unit.

**Figure 17.** Map showing distribution of springs of Death Valley National Park. Springs are listed in the Appendix. Upland springs occur in bedrock areas and are derived from recharge to local mountain areas. Valley floor springs issue from Quarternary basin fill and alluvium and are derived from recharge in nearby mountains and regional flow. Regional springs issue at the valley floor (fig. 16) and above the valley floor (fig. 11) and originate from interbasin flow from outside Death Valley National Park.

#### **Upland Springs**

Upland springs can be visualized as the discharge of groundwater from the circulation of groundwater cells above the regional flow. The flow of an upland spring is derived from infiltration of precipitation in an area above the spring. The occurrence of upland springs is neither uniform nor random. Upland springs tend to occur in clusters that are related to similarities of the structural setting, hydrologic characteristics of the rock terrane, and source area elevation. Likewise, areas devoid of springs can similarly be related to structural, lithologic, and climatic characteristics of the geologic and topographic setting. The occurrence of upland springs is discussed in the following paragraphs with respect to groupings based on the geologic settings (fig. 17).



**Figure 18.** Map showing ranges of discharge in upland springs of Death Valley National Park. Springs are listed in the Appendix.

Upland springs vary widely in discharge, though most upland springs are small and discharge a fraction to a few liters per minute (<one gal/min; fig. 18). The temperature of upland springs discharge is related to the temperature of the recharge water, the local geothermal gradient, and the depth of groundwater circulation to the spring. The temperature of local springs is commonly near the mean annual ambient air temperature at the spring orifice. But some springs have elevated temperatures indicating deeper circulation of the groundwater in transit to the springs. Springs having discharge temperatures 5°C (9°F) or greater above the mean annual temperature are shown in figure 19.



**Figure 19.** Map showing geothermally heated local springs of Death Valley National Park. Springs are listed in the Appendix.



#### Panamint Range

Carbonate Rock (PMc) Terrane: A huge slice of the carbonate rock unit (PMc) rests on clastic and carbonate rocks (ZPcc) in the lower plate of the Tucki Mountain detachment fault (fig. 4) on the eastern slope of the Panamint Range. This terrane lies at elevations at or below 1,000 meters (3,281 ft) and probably does not receive significant recharge. The principal source of the approximately 10 springs in this terrane is at higher elevation in terrane underlain by the older clastic and carbonate rock unit (ZPcc). The following quote from Hunt et al. (1966) refers to the structural setting of springs in the upper detachment block of the Panamint Range: "The structural geology is also important in controlling the occurrence of water in the mountain blocks. In the Panamint Range the formations dip east 25°-60°, and they are broken by a series of faults of the Amargosa thrust system (see Hunt et al. 1966), most of which dip west 10°–45°. The crushed rocks along the faults act as conduits, and practically every spring along the east slope of the Panamint Range is along one of these faults." The Amargosa thrust system referred to above is now recognized as a system of detachment faults formed during Tertiary extension of the region (Troxel and Wright 1987).

Warm Springs, a group of three springs, discharge water geothermally heated to 16°C (29°F) above the ambient average air temperature. Warm Springs was ascribed to be discharge of regional flow (Faunt, D'Agnese, and O'Brien 2010, fig. D-7), but because the setting of the spring, at 750 meters (2,461 ft) in elevation, is well above the regional potential (plate 1), the spring is now known to be discharge of nearby recharge in the Panamint Range. Warm Springs issue from the carbonate rock unit (PMc) in the lower plate of the Butte Valley thrust fault (Steinkampf and Werrell 2001 and Anderson 1999). The source of the springs is recharge to the ZPcc rock unit at higher altitude in the Panamint Mountains.

Clastic and Carbonate Rocks (ZPcc) Terrane: The detachment fault plane becomes lower stratigraphically with distance south of Tucki Mountain; upper plate rocks become predominantly clastic and carbonate (ZPcc). Springs on the crest and high slopes of the Panamint Range reflect the large precipitation and highly fractured and faulted nature of the clastic and carbonate rocks (ZPcc) of the upper detachment plate. The flow of the numerous springs ranges from less than 1 liter per minute (.26 gal/min) to greater than 500 liters per minute (132 gal/min; fig. 18). Many springs arise along saturated permeable fault zones exposed in deep linear ravines draining the range. Discharge temperatures (fig. 19) of many springs indicate moderate depths of circulation. Hunt et al. (1966, B22) state, "Most of the springs, and all the big ones, issue from the noncarbonate rocks. The spring waters are high in sulfates and comparatively low in chlorides and carbonate."

Metamorphic (Xmi), Granitic (Mti), and Volcanic Rock (Cvb) Terrane: Few springs issue from basement (Xmi) and granitic rocks (Mti). The locations of some springs appear to be controlled by flow barriers created by these intrusive rock masses.

<u>Tucki Mountain</u>: Three springs, West Twin Spring (472), Tucki Spring (473), and Gypsum Spring (477), emerge at elevations from 1,000 to 1,240 meters (3,281 to 4,068 ft) in Mosaic Canyon north of Tucki Peak, elevation 2,000 meters (6,732 ft), in the contorted Proterozoic metamorphic and clastic rocks of the Tucki Mountain Detachment zone.

<u>Emigrant Canyon Area:</u> A dozen or more springs emerge from Tertiary basaltic and sedimentary rocks (Cvb) along the west side of Emigrant Canyon in the northern Panamint Range south of Tucki Mountain.



Photograph 22. Upper Warm Spring. Warm Springs, one of the larger springs in the Panamint Mountains, discharges water geothermally heated to 16°C (29°F) above the average ambient temperature by deep circulation. The source of the spring is nearby recharge in the clastic and carbonate rock unit (ZPcc) at high altitudes of the Panamint Mountains and issues from the carbonate rock unit (ZPcc) in the lower plate below the Butte Valley thrust. The spring issues near the contact with igneous intrusive rocks

## Cottonwood Mountains and Last Chance Range

The Cottonwood Mountains separate Saline Valley from Death Valley; the Last Chance Range separates Eureka Valley from Death Valley. The elevation of the Cottonwood Range is high enough to receive precipitation for groundwater recharge. The higher parts of each of these ranges attain elevations of more than 2,500 meters (8,200 ft), and a large part of the ranges are above 2,000 meters (6,562 ft) elevation. The ridges in the Cottonwood Mountains are separated by three high playas at elevations from 1,200 to 1,500 meters (3,937 to 4,922 ft). These playas are dry, with no springs or phreatophytes, and the water level is at great depth beneath the playas.

<u>Granitic (MTi) terrane of Hunter Moun-</u> <u>tain:</u> The granitic rocks (MTi) of Hunter Mountain area in the southern part of the Cottonwood Range are the upper plate of a detachment. Springs emerge along fracture and fault zones created by regional extension. The area is conducive to recharge from the greater precipitation in the higher altitudes. Closure of the joints and fractures with depth limits deep circulation of groundwater. A few springs issue at temperatures of 5° to 10°C (9° to 18°F) above the ambient air temperature.

Carbonate (PMc) terrane of Cottonwood Mountains and Last Chance Range: The outcropping carbonate terrane of the Cottonwood and Last Chance Range is the upper plate of a detachment overlying lowerplate clastic and carbonate rocks (ZPcc) (Sweetkind et al. 2001). The carbonaterock-dominated terrane is punctuated by small outcrops of igneous intrusions. The carbonate terrane is virtually devoid of springs, even though elevations are great enough that the area receives ample precipitation for recharge. The lack of springs and the presence of dry playas are products of the permeable well-fractured and faulted carbonate rocks that allow groundwater to percolate to great depths and recharge to the zone of regional flow. Discharge of the regional flow is to Mesquite Flat.

Granitic intrusions (MTi) in carbonate terrane of northern Cottonwood Mountains and Last Chance Range: Fingers of a deep seated igneous intrusion reach the surface in the carbonate rock terrane in the vicinity of White Top Mountain in the Cottonwood Mountains and at Last Chance Springs in the Last Chance Range. Springs commonly arise in these settings, where deep percolation of groundwater is impeded by the igneous rocks. Willow Spring (849) issues from igneous granitic rock from the Death Valley–Furnace Creek Fault zone near the Death Valley National Park boundary.

#### Black Mountains and Greenwater Valley

The Black Mountains border the floor of Death Valley on the east from the Furnace Creek Ranch area to Saratoga Spring. The Greenwater Valley separates the Black Mountains from the Greenwater Range to the east (fig. 4). The Greenwater Range runs parallel to the Black Mountains and lies to the east of the Funeral Mountains. Proterozoic crystalline basement and sedimentary rocks underlie the Black Mountains and are locally overlain by Tertiary volcanic rock and Tertiary sedimentary basin filling rocks (fig. 7). Proterozoic and Cambrian clastic and carbonate rocks crop out in the southern part of the Black Mountains. The highest points in the Black Mountains are near 1,800 meters (5,900 ft). The Greenwater Range is lower, with the highest peaks about 1,500 meters (4,900 ft). The general low altitudes provide scant opportunity for much moisture in excess of potential evapotranspiration. Few small, widely scattered springs emerge in the ranges. The type area of Amargosa chaos (Noble 1941 and Troxel and Wright 1987), an area of intensely and complex faulted upper-plate detachment, occurs in the southeast part of the Black Mountains. A few small springs occur in the chaos area even though the precipitation is less than 170 millimeters per year (6.7 in/yr).



Photograph 23. Long-eared owl in tamarisk at Warm Spring. Warm Spring in the Panamint Mountains is one of hundreds of springs in the mountains of Death Valley National Park that provides water for plants and animals. Plant foliage in turn provides food and shelter for birds and other animals. At Warm Spring are found exotic plants, oleander and tamarisk, among the native plants.

#### Funeral Mountains

Carbonate rock (PMc) terrane of southern Funeral Mountains: Elevations of two peaks in the southern part of the Funeral Mountains reach near 2,000 meters (6,600 ft) elevation. The virtual absence of springs is the result of deep infiltration of recharge into the permeable carbonate rocks. Recharge on the west front of the Funeral Mountains may augment the flow of Navel Springs and the regional springs that discharge at Furnace Creek.

Lower Clastic and Carbonate rock (ZPcc) terrane of the middle and northern Funeral Mountains: Lower Clastic and Carbonate rocks (ZPcc) are the lower plate of a detachment underlies the middle segment of the Funeral Range. The elevation of mountain peaks in this part of the ranges from 1,000 to 1,800 meters (3,300 to 5,900 ft). The minor recharge in the middle portion of this segment, lower in elevation than the portions to the southeast and northwest, supports a dozen or so small springs discharging about one liter per minute (.26 gal/min). The springs in the very northern part of this segment have discharge temperatures several degrees above ambient air temperature. The springs are located in deeply incised canyons opening to Death Valley. On the western flank of the Funeral Mountains, Keane Wonder Spring, a regional spring discussed previously, issues from the Proterozoic Pahrump Series.

#### Grapevine Mountains

Carbonate (PMc) and volcanic rock (Cvb) terranes: A body of largely carbonate rock with clastic rocks, broken by transverse and sub parallel thrust faults and normal faults, underlies the western portion of the Grapevine Mountains and is bounded on the west by the Death Valley-Furnace Creek fault zone. The eastern portion of this segment of the Grapevine Mountains is underlain by lava flows, breccias, and tuffs. Many springs in the southeastern part of the area occur in deeply incised canyons in carbonate and clastic rocks. The temperature of several of these springs is elevated above the average ambient air temperature. Few springs occur in the carbonate rock terrane in the northwest part of the Grapevine Mountains. Several springs issue from

Miocene and Pliocene deposits overlying the lower slopes of the western part of the Grapevine Mountains. The higher volcanic terrane of the eastern part of the southeastern Grapevine Mountains supports about 30 springs (533–563, Appendix) of which six have spring outlet temperatures greater than average air temperature.

Klare Spring (356, Appendix) issues from the Titus Canyon thrust fault. The lower plate is rock of the Wood Canyon formation (Reynolds 1974). The upper plate is the Carrara Formation. Both formations are part of the Proterozoic and Cambrian Lower Clastic and Carbonate rock unit (ZPcc). The Carrara Formation is overlain by the Bonanza King Formation.

#### **Owlshead Mountains**

The curved ridges of granitic (Mti) and volcanic rocks (Cvb) of the Owlshead Mountains are underlain by granitic (Mti) and volcanic rocks (Cvb) appearing to form a large circular highland. Few of the higher ridges reach elevations greater than 1,200 meters (4,000 ft). The sparse precipitation and significant potential evapotranspiration provides scant excess moisture for recharge. The virtual lack of springs in the range and the two large dry playas (the eyes of the owl) signal that recharge is minimal and groundwater is well beneath the surface. One spring, Owl Hole Spring, south of the Owl Mountains, beyond the national park boundary, was a rest stop for the 20-Mule-Team borax wagons on their trek from Death Valley to the rail junction at Mojave, California.

#### Saline Range and Inyo Mountains

The Saline Range, between Saline Valley and Eureka Valley, is underlain by volcanic flows (Cvb). West of the Saline Range, the adjoining Inyo Mountains are underlain by carbonate, clastic, and large igneous batholiths (ZPcc, PMc, and Mti). There are no springs in the volcanic rocks. The carbonate rocks of the Inyo Mountains gives rise to a group of springs near but outside the park boundary discharging about 80 liters per minute (21 gal/min).



Photograph 24. Remains of an Arrastre mill at Telephone Spring. Arrastre mills were primitive stone structures used to break up ore, commonly gold or silver ore. Telephone Spring in the Panamint Range at an elevation of 833 meters (2,733 ft) was named from the 1906 telephone line from Rhyolite to Skidoo that passed through the canyon. The NPS spring records contain a note by A. E. Borell, dated 1935, stating, "A small flow of good water. Has been dug out and boarded over. Small birds and mammals can get water but not large birds or sheep. There is an arrastre mill and several tent houses nearby, area is strewn with debris." The spring was reported to be dry in 1959 and subsequent reports.

## Vulnerability of Death Valley Groundwater to Natural and Human-Induced Stresses

#### Local Springs

Local springs include upland springs and springs at the valley floor derived from nearby recharge. Recharge is primarily a function of climatic and geologic factors and is thus beyond the control of park management. Environmental conditions at and near the spring outlet can control the riparian vegetation, endemic wildlife, and utility of the spring for watering wildlife. Biological and physical conditions at the spring outlet are a function of natural factors, largely climate, geology, and extraenvironmental factors (i.e., human-induced detrimental changes or by invasion of exotic plants or animals that may degrade the natural environmental conditions). Extra-environmental factors that influence conditions at the spring outlet are subject to control by park management.

#### Stresses Outside the Park

The greater part of the water resources of the park, probably on the order of 60%, originates outside the park boundaries. Regional flow is the major component of groundwater that maintains the regional springs, the few perennial stream reaches, the areas of riparian vegetation at springs, phreatophytes at areas of shallow groundwater, perennial lakes, and marshes. The regional inflow is a function of both natural factors and human-induced stresses such as groundwater withdrawals.

Regional flow to Death Valley originates within the Death Valley flow system whose boundaries are shown in plate 1. Stresses on the flow system outside the park that affect the quantity or quality of groundwater may have an effect on the groundwater in the park. Consideration is given here of human-made stresses on the flow system that may affect groundwater at the park, with major reference to ongoing, planned, or proposed developments and the physical properties of the flow system that control the magnitude and time response of resultant groundwater-related changes in the park.

#### Land Management Practices

Management practices that affect natural plant cover and natural conditions of the soil and subsoil—as by excavation, agriculture, mining, forestry, plant removal, introduction of exotic plants and animals, range management practices, construction, urbanization, surface water diversions, groundwater withdrawal, or impoundment of reservoirs—have the potential for affecting the aquifer system.

#### Water Resource Developments

Groundwater withdrawal reduces the system flow and potentially reduces the water resources of Death Valley. Groundwater withdrawals outside the park are the most common and widespread causes of potential impact on groundwater resources of the park. The magnitude of the effect of groundwater withdrawal may vary from a direct proportion to a lesser percentage depending on the hydrogeologic setting of the point of withdrawal. Withdrawal of groundwater that would have been partially consumed by evapotranspiration in an intermediate discharge area would have a diminished effect on flow to Death Valley. The larger groundwater withdrawal areas near the park are listed in table 8.

The location of Devils Hole and pumping centers in southwest Nevada are shown in figure 14. Based on analysis of the hydrogeologic setting, the history of water-level fluctuations, and hydrologic properties of the groundwater system, groundwater withdrawals from three pumping centers have significant effect on the stage at Devils Hole and the flow of springs at Ash Meadows (Bedinger and Harrill 2006b). Large withdrawals of groundwater for irrigation were made from Ash Meadows from 1969 to 1977. Ash Meadows is adjacent to Devils Hole, and a cause–effect relationship between pumping and water level decline in Devils Hole has been established (Dudley and Larsen 1976 and Rojstaczer 1987). Pumping in the Amargosa Desert, west of Devils Hole, is currently the nearest largescale pumping to Devils Hole. The distance to the Amargosa Desert pumping from Devils Hole ranges from about 13 to 34 kilometers (8 to 21 mi). Army Well 1, about 29 kilometers (18 mi) upgradient from Devils Hole, is the closest pumping well completed in the carbonate rock aquifer that supplies groundwater to Devils Hole and Ash Meadows. Analytical calculations indicated that the magnitude of pumpage from this well may be capable of causing changes in the water level in Devils Hole (Bedinger and Harrill 2006b).

Pahrump Valley, southeast of Devils Hole, contains a large pumping center (fig. 14) but is believed to be separated from Devils Hole by clastic rocks that restrict water level declines from propagating from Pahrump Valley to Devils Hole (Winograd and Thordarson 1975). Eventually pumping effects could propagate to Devils Hole by expanding south of the confining unit barrier or the effects could be transmitted slowly through the confining units. Water level records in wells south of Ash Meadows show no indication of pumping effects. The main effect of pumping in Pahrump Valley will be a potential reduction in groundwater flow to southern Death Valley and the lower Amargosa River.

Withdrawal of groundwater from Army Well 1 reduces the flow to Ash Meadows and lowers the level of Devils Hole (Bedinger and Harrill 2006b). These pumping centers in Nevada draw water directly from the Death Valley flow system on permeable flow paths that lead to Death Valley. Regional water level declines in Amargosa Desert are documented by measurements from observation well networks (Harrill and Bedinger 2005). Water level declines in Death Valley National Park have been recorded at Travertine Point Well and at Travertine Well (Texas Spring Syncline-1) near Furnace Creek (Harrill and Bedinger 2005). These declines are possibly due to the large withdrawals from the Amargosa Desert.

In California large groundwater withdrawals are concentrated in a few alluvial basins: the Mojave River Valley, Indian Wells Valley, and Searles Lake Valley (Bedinger and Harrill 2006a). Withdrawals from the Mojave River Valley have reduced the flow of the river to Soda Lake Valley (Stamos, Martin et al. 2001). Surface inflow into Soda Lake Valley is usually lost there by evaporation, but on rare occasions an unusually heavy rainfall has caused runoff to Soda Lake Valley to overflow to Death Valley through Silver Lake. There are large surface water diversions from the Owens River. Historically flow of the Owens River was largely lost by evaporation from Owens Lake. Diversions of surface water may have lowered the groundwater levels in the Owens River Valley. The head decline would have minor effect on groundwater flow to Death Valley. Groundwater withdrawals at Indian Wells Valley and Searles Lake Valley probably salvage groundwater that under natural conditions would have been lost to evapotranspiration. These basins are in Precambrian igneous and metamorphic rocks which have low capacity to transmit regionally significant quantities of groundwater.

#### Potential Contaminant Sources

The Nevada Test Site has been the location of nuclear device testing above and below the water table, disposal of low-level radioactive and other wastes, and storage and disposal of other potential contaminants by well injection, drainage ponds, leach fields, sumps, tailings, and tanks (fig. 20). Disposal of high-level radioactive waste is proposed for an underground repository in the unsaturated zone at Yucca Mountain near the west boundary of the Nevada Test Site. A decommissioned low-level radioactive waste site exists near Beatty where waste is stored in the unsaturated zone above the water table (Bedinger 1989). Gold mining at Rhyolite, near Beatty, in the 1990s used a cyanide leaching process to recover gold from ore. Groundwater flow is the primary mechanism by which radioactive and other contaminants from these sites could be transported from the disposal sites to the accessible environment. Groundwater flow from these potential sites of contamination is tributary to Death Valley National Park. The following paragraphs do not discuss specific contaminants or their properties, do not predict mobilization of contaminants in groundwater, nor predict time of travel from potential contaminant sites to the accessible environment. The discussion is a broad overview of probable routes of groundwater flow in the upper part of the saturated zone and the underlying principal zone of flow, groundwater flow directions, discharge areas, and the most probable Death Valley entry points of groundwater from the potential contaminant sites. The ultimate discharge points of groundwater from areas of potential contamination are the Death Valley floor discharge areas and regional springs of Death Valley that issue above the valley floor. Intermediate natural groundwater discharge occurs at intermediate areas in the flow system before it reaches Death Valley. Intermediate discharge areas include areas along the Amargosa River, Franklin Playa, Ash Meadows, and Oasis Valley (Laczniak 1996; plate 1).



**Figure 20.** Map showing general areas of underground testing and other potential sources of subsurface contamination at Nevada Test Site. From Laczniak et al. 1996.

The general directions of flow from contaminant sites to Death Valley are shown in figure 21. Many of the potential sites of contamination are above the zone of saturation or are at relatively shallow depths beneath the water table. Initial transport of the contaminants from these sites would be in the upper part of the flow system. In some areas this zone may be the principal zone of lateral groundwater flow.

Although confining units are commonly present above the carbonate rocks, in the eastern part of the Nevada Test Site, basinfill deposits of Yucca and Frenchman Flats overlie carbonate rock without an intervening confining layer (Laczniak et al. 1996). Groundwater flow from this part of the Nevada Test Site is in both alluvium and carbonate rocks. This groundwater flow, a part of the Ash Meadows groundwater subbasin of Winograd and Thordarson (1975), flows southward to about the southern boundary of the Nevada Test Site, thence southwestward to Devils Hole and Ash Meadows, a large intermediate discharge area from the carbonate aquifer. It is conjectural whether all the groundwater of the Ash Meadows subbasin is discharged at Ash Meadows and the carbonate aquifer is terminated or the carbonate aquifer continues southward or southwestward from Ash Meadows. It is customary for hydrochemists to compare the solute and isotope chemistry of the groundwater at the Furnace Creek springs in Death Valley (this includes Travertine Springs, Texas Springs, Salt Springs, and Nevares Springs) to the groundwater of the springs discharging from carbonate rocks at Ash Meadows and ascribe the source as the Ash Meadows subbasin. However, the chemical signatures do not provide a unique match between the two waters. The Furnace Creek springs could be derived,



Figure 21. Maps showing general direction of groundwater flow from the Nevada Test Site to areas in Death Valley National Park. A. Direction of flow of groundwater in the upper part of the zone of saturation, potential contamination sites, and intermediate and final discharge areas are also shown. B. Schematic showing relative permeability of principal groundwater flow unit, direction of groundwater flow, and ultimate discharge area. From Laczniak et al. 1996: Winograd and Thordarson 1975; Sweetkind et al. 2004; Waddell et al. 1984; Faunt, D'Agnese, and O'Brien 2010; and Dettinger et al. 1995.

all or in part, from groundwater flow in carbonate rocks from west of the Ash Meadows subbasin, a concept proposed by Bredehoeft et al. (2005).

Groundwater flow from volcanic calderas in the northwest part of the Nevada Test Site is southward toward the Beatty area. Beyond the volcanic rocks of the calderas, groundwater flows in alluvium and flow in the underlying carbonate rocks. Intermediate discharge at Oasis Valley is derived in part from flow from the caldera area of Nevada Test Site. Shallow flow continues from Oasis Valley to the Amargosa Desert. Deep groundwater flows southward beneath the Amargosa Desert.

The Beatty low-level waste site, the cyanide pits near Rhyolite, and the proposed repository in Yucca Mountain are in the unsaturated zone and overlie groundwater in alluvial and basin-fill deposits. The groundwater in the basin fill beneath these sites flows southeastward to the central Amargosa Desert.

Bredehoeft et al. (2005) present the hypothesis that groundwater in the carbonate aquifer beneath Yucca Mountain flows southward beneath the basin fill of the Amargosa Desert to the southern Funeral Mountains where it flows through the exposed carbonate rocks and discharges at the Furnace Creek springs. This flow regime is discussed further under the section on regional springs. The hydrogeologic system should be examined to determine if basin-fill groundwater of the Amargosa Desert also flows into carbonate rocks of the southern Funeral Mountains and to the Furnace Creek springs. Furnace Creek springs area is one of the principal areas of discharge of groundwater originating in the potential contamination sites (fig. 21).

Another Death Valley entry area for groundwater from the contaminant areas is the southern Death Valley floor from groundwater flow along the course of the Amargosa River. Flow in bedrock aquifers would involve flow though segments of low- to mid-range permeability rocks (fig. 21b), rock unit ZPcc of this report. This flow would discharge in the southern Death Valley floor.

|        |                            | P          | umpage       |       |                          |
|--------|----------------------------|------------|--------------|-------|--------------------------|
| Number | Hydrologic Area Name       | m³/day     | m³/day x1000 | Year  | Source                   |
| 117    | Fish Lake Valley           | 4,145      | 4            | 1970  | Rush and Katzer (1973)   |
| 144    | Lida Valley                | 2          | <1           | 1998  | San Juan et al. (2004)   |
| 146    | Sarcobatus Flat            | 69         | <1           | 1998  | San Jaun et al. (2004)   |
| 147    | Gold Flat                  | 118        | <1           | 1998  | San Juan et al. (2004)   |
| 148    | Cactus Flat                | 155        | <1           | 1998  | San Juan et al. (2004)   |
| 158A   | Emigrant Valley            | 946        | 1            | 1998  | San Juan et al. (2004)   |
| 159    | Yucca Flat                 | 250        | <1           | 1998  | San Juan et al. (2004)   |
| 160    | Frenchman Flat             | 1,462      | 2            | 1998  | San Juan et al. (2004)   |
| 161    | Indian Springs Valley      | 2,162      | 2            | 1998  | San Juan et al. (2004)   |
| 162    | Pahrump Valley             | 120,069    | 120          | 1998  | San Juan et al. (2004)   |
| 163    | MesquiteValley             | 85         | <1           | 1998  | San Juan et al. (2004)   |
| 164B   | Southern Ivanpah Valley    |            | <1           | 1975  | Bedinger et al. (1963)   |
| 170    | Penoyer Valley             | 42,902     | 43           | 1998  | San Juan et al. (2004)   |
| 173A   | S Railroad Valley          | 13         | <1           | 1998  | San Juan et al. (2004)   |
| 211    | Three Lakes Valley (southe | ern) 1,125 | 1            | 1998  | San Juan et al. (2004)   |
| 225    | Mercury Valley             | 10         | <1           | 1998  | San Juan et al. (2004)   |
| 226    | Rock Valley                | 1          | <1           | 1998  | San Juan et al. (2004)   |
| 227A   | Jackass Flat               | 506        | <1           | 1998  | San Juan et al. (2004)   |
| 227B   | Buckboard Mesa             | 321        | <1           | 1998  | San Juan et al. (2004)   |
| 228    | Oasis Valley               | 848        | <1           | 1998  | San Juan et al. (2004)   |
| 229    | Crater Flat                | 469        | <1           | 1998  | San Juan et al. (2004)   |
| 230    | Amargosa Desert            | 84,133     | 84           | 1998  | San Juan et al. (2004)   |
| 240    | Chicago Valley             |            | <1           | 2004  | Field obs by authors     |
| 241    | California Valley          |            | <1           | 2004  | Field obs by authors     |
| 242    | Lower Amargosa Desert      | 91         | <1           | 1998  | San Juan et al. (2004)   |
| 243    | Death Valley               | 111        | <1           | 1998  | San Juan et al. (2004)   |
| 244    | Valjean Valley             | i          | nfo NA       |       | Calif. DWR (2004 update) |
| 245    | Shadow Mountain Valley     | i          | nfo NA       |       | Calif. DWR (2004 update) |
| 247    | Adobe Lake Valley          | i          | nfo NA       |       |                          |
| 248    | Long Valley                | 345        | <1           | 1997  | Calif. DWR (2004 update) |
| 249    | Owens Valley               | 174,523    | 175          | w1999 | Calif. DWR (2004 update) |
| 250    | Deep Springs Valley        |            | <1           | 2004  | Field obs by authors     |
| 251    | Eureka Valley              |            | <1           | 2004  | Field obs by authors     |
| 252    | Saline Valley              |            | <1           | 2004  | Field obs by authors     |
| 253    | Racetrack Valley Area      |            | <1           | 2004  | Field obs by authors     |
| 254    | Darwin Plateau B.          |            | <1           | 2004  | Field obs by authors     |
| 255    | Panamint Valley            |            | <1           | 2004  | Field obs by authors     |
| 256    | Searles Valley             | i          | nfo NA       |       | Calif. DWR (2004 update) |
| 257    | E. Pilot Knob & Brown Mt   | . V.       | <1           | 2004  | Field obs by authors     |
| 258    | Lost Lake-Owl Lake V.      |            | <1           | 2004  | Field obs by authors     |
| 259    | Leach Valley               | i          | nfo NA       |       |                          |
| 260    | Red Pass Valley            | i          | nfo NA       |       |                          |
| 261    | Riggs Valley               | i          | nfo NA       |       | Calif. DWR (2004 update) |
| 262    | Soda Lake Valley           |            | <1           | 2004  | Field obs by authors     |
| 263    | Kelso Valley               | i          | nfo NA       |       | Calif. DWR (2004 update) |
| 264    | Cronise Valley             | i          | nfo NA       |       | Calif. DWR (2004 update) |
| 265    | Bicycle Valley             |            | <1           | 2004  | Field obs by authors     |

Table 8. Areas of groundwater withdrawal in the Death Valley flow system

#### Table 8 continued

|        |                            | Pu      | umpage       |       |                               |
|--------|----------------------------|---------|--------------|-------|-------------------------------|
| Number | Hydrologic Area Name       | m³/day  | m³/day x1000 | Year  | Source                        |
| 266    | Goldstone Valley           | in      | ifo NA       |       |                               |
| 267    | Superior Valley            | in      | fo NA        |       |                               |
| 268    | Coyote Lake Valley         | 5,721   | 6            | 1995  | Calif. DWR (2004 update)      |
| 269    | Lower Mojave River Valley  | 130,662 | 131          | w1998 | Calif. DWR (2004 update)      |
| 270    | Lucerne Valley             | 33,850  | 34           | 1976  | Calif. DWR (2004 update)      |
| 271    | Upper Mojave River Valley  | 264,633 | 265          | w1998 | Calif. DWR (2004 update)      |
| 272    | Middle Mojave River Valley | 90,719  | 91           | w1998 | Calif. DWR (2004 update)      |
| 273    | Harper Valley              | 90,719  | 91           | w1998 | Calif. DWR (2004 update)      |
| 274    | Antelope Valley            | 53,298  | 53           | 1970  | Durbin (1970)                 |
| 275    | Fremont Valley             | 108,321 | 108          | 1960  | Calif. DWR (2004 update)      |
| 276    | Cuddleback Valley          | ir      | nfo NA       |       | Calif. DWR (2004 update)      |
| 277    | Indian Wells Valley        | 6,810   | 7            | 1985  | Bettenbrock and Martin (1989) |
| 278    | Rose Valley                | ir      | nfo NA       |       | Calif. DWR (2004 update)      |

\*1998 indicates water year ending in 1998

#### Flow Systems Adjoining Death Valley Flow System

The natural boundaries of the Death Valley regional flow system are hydraulic barriers, groundwater divides, or groundwater flow lines. The boundaries are subject to being shifted by natural or human-made stresses that disturb the balance of hydraulic head and groundwater flow and cause groundwater to flow across the original boundary location. The potential for hydraulic boundaries to be changed or moved depends upon the hydraulic properties of the flow system at the boundary. The hydraulic properties of the flow system control the rate of movement of groundwater and the probability that nearby groundwater withdrawal would affect the flow system boundary. Segments of the Death Valley regional flow system boundary are shown in figure 22. The potential for these segments to shift in response to natural and pumping stresses are discussed in the following paragraphs.

White River boundary segment: The White River boundary segment (A to B, fig. 22) is highly subject to change because of the relatively low height of the divide, the relatively high transmissivity of the flow system, and past and probable continuing efforts to develop groundwater supplies nearby to the east and north in the adjacent White River flow system. Spring Mountains to Clark Mountain segment: The segment (B to C, fig. 22) follows groundwater divide from the crest of the Spring Mountains to the Clark Mountain Range. The bedrock is largely Paleozoic siliceous and carbonate rocks. Recharge in the boundary area is a source of groundwater flow in the flow system to Death Valley. There is heavy pumping east of the boundary in Las Vegas Valley and west of the boundary in Pahrump Valley. Stresses from either or both of these areas could eventually cause a shift in location of the boundary.

Mojave segment: The Mojave segment (C to D, fig. 22) follows the relatively low groundwater divide separating the Death Valley flow system from the lower Colorado River flow system. Bedrock is largely metamorphic, igneous, and volcanic rocks of low permeability. Large groundwater flux is restricted to relatively small areas. Precipitation is low, potential evapotranspiration is large, and recharge is low. Very limited flow originates in this area for contribution to Death Valley. The bedrock along this segment generally acts as a relative barrier to groundwater flow, and significant shifts in location of the boundary are not anticipated.



system boundaries.

San Bernardino–San Gabriel Mountain segment: This segment (D to E, fig. 22) follows the crest of the San Bernardino and San Gabriel Mountains. The bedrock is largely igneous intrusives. The flow system boundary, a groundwater divide, generally follows the crest of the ranges. The divide is generally high and maintained by groundwater recharge to the bedrock of low to moderate permeability. The bedrock is a relative barrier to groundwater flow; consequently, significant shifts in the location of the boundary are not anticipated.

Sierra Nevada segment: The Sierra Nevada segment (E to F, fig. 22) follows the crest of the Sierra Nevada from San Gabriel Mountains to the Long Valley geothermal field. The Sierra Nevada is underlain by a huge batholith of igneous rock. Recharge in the range is limited by the moderate to low permeability of the igneous rocks. Locally, zones of large permeability are believed to exist in the high temperature geothermal systems at Coso and Long valley. Modest recharge that occurs in the Sierra Nevada is tributary to the basin valleys of the Death Valley flow system that border the range. Most of the recharge and surface runoff to the Owens River has been diverted to the U.S. west coast for water supply since the 1930s resulting in large reductions of evapotranspiration in Owens Valley (including the drying up of Owens Lake) and some reduction of natural groundwater flow toward Death Valley. A significant shift on location of the boundary in this segment is not anticipated.

<u>Northwest segment:</u> The Northwest segment (F to G, fig 22) is generally a low groundwater divide separating the Death Valley regional flow system from the Humboldt–Truckee groundwater flow system. The boundary extending from the Sierra Range to the Shoshone Mountains in central Nevada does not cross high ranges that would afford significant recharge. The boundary area is subject to shifting as a result of groundwater withdrawals in the adjacent flow system. This could result in diversion of water from the Death Valley flow system. Northern segment: The Northern segment (G to A, fig 22) extends from the Shoshone Range eastward across the Toiyabe Range and Big Smoky Valley to Monitor Valley, thence the boundary turns southward and extends in an arc concave to the northeast to the beginning point of the White River segment. This segment traverses the highest points on the boundary of the Death Valley flow system. The area traversed by this boundary receives significant recharge to the Death Valley flow system. Flow in the Death Valley flow system is subject to depletion in response to withdrawal from groundwater in the boundary area, particularly the basin fill areas in Reese River Valley, Big Smoky Valley, and Monitor Valley.

# *Historic Impacts on Groundwater in the Park*

Prospecting, mining claims, mine development, mining scams, mine company promotions, and mining were the principal endeavors in Death Valley until the early 1930s when Death Valley became a national monument as a part of the National Park System. Mining endeavors and promotions focused on a broad gamut of natural resources from precious metals, gold and silver, to talc, salts of borax and sulfate, lead, filter clay, and even mud, with fraudulent schemes involving oil and copper (Lingenfelter 1986). Gold, the perennial favorite of the prospectors' quest, was found at many places in Death Valley. In addition to many small gold mining operations, two large gold mines came into production, the Skidoo Mine in the Panamint Range and the Keane Wonder Mine in the Funeral Mountains. Each of these mines produced gold valued at one million dollars or more, but not enough to return a profit to the investors after the costs of mining, machinery, transportation of ore, and diverting water to the mines that was needed for the mining and milling. The most remunerative mining ventures were those involved in recovering borate, talc, and filter clay. Mining of borax and the famous 20-Mule-Team wagons are well known. Borate was found and mined in the playa of Death Valley and in the older Tertiary deposits in the Furnace Creek

# SKIDOO PIPELINE

THE SKIDOO PIPELINE CAN BE SEEN EITHER NORTH OR SOUTH OF THIS LOCATION THE PIPELINE WHICH RAN FROM BIRCH SPRING IN JAIL CANYON TO THE SKIDOO MILLSITE 23 MILES AWAY WAS COMPLETED IN 1907 AT A COST OF \$250000

Photograph 25. Skidoo Pipeline. The Skidoo pipeline brought water to the gold mine at Skidoo for generating steam power to operate the mill. Prospecting and mining was the principal endeavor in Death Valley until the early 1930s when Death Valley was made a national monument as a part of the National Park System. Water, required for the sustenance of the miners, their burros and other livestock in prospecting, and for mining and milling operations and mining towns, was the critical and often the limiting factor of a successful venture. Elaborate and extensive engineering projects were constructed to convey water from springs to the stamping mills and steam generators where ore was processed. Gold, the perennial favorite of the prospectors' quest, was found at many places in Death Valley. In addition to many small gold mining operations, two large gold mines came in to production, the Skidoo Mine in the Panamint Mountains and the Keane Wonder Mine in the Funeral Mountains.

basin, where mining rights still exist to this day and active mining continued until recently (NPS, M. Essington, oral communication).

Water, the most essential commodity, was probably the most valuable when all is said and done. Water, required for the sustenance of the miners, their burros and other livestock in prospecting, and for mining and milling operations and mining towns, was the critical and often the limiting factor of a successful venture. Elaborate and extensive engineering projects were constructed to convey water from springs to the stamping mills and steam generators where ore was processed. A 34-kilometer (21-mi) pipeline was constructed from Birch Spring near Telescope Peak to bring water to the mine at Skidoo for steam power and to run a fifty-stamp mill (Lingenfelter 1986, 289). Wells provided water

for some camps; Stovepipe Well, Shortys Well, Bennetts Well, and many others were dug but did not find water. Subsurface exploration of the copper prospect at Greenwater was continued to a depth of 427 meters (1,400 ft). Apparently groundwater was not encountered. Because water for the prospectors and miners was scarce-the local spring hardly provided enough water for a burro-water was hauled in from Furnace Creek, about 28 kilometers (17.4 mi) away (Lingenfelter 1986). Springs, being the primary source of water, were often the site of camps established by prospectors. The outlet of many springs were altered and modified by excavations, tunnels, pits, piping, and other means to aid in collecting and directing the flow of springs. The remnants of these activities are evident today at many springs. Many a prospector's or miner's burro, mule, or horse strayed or was left behind when no longer needed.



Photograph 26. Burros of Death Valley National Park. Abandoned by prospectors who brought them to Death Valley, these animals stayed and thrived so well that Death Valley has been faced with a population explosion. This is not very good grazing land, but the burros have thoroughly adapted to it. Burros have been accused of fouling water holes and driving bighorn sheep off some of the range. However, in the burros' defense, the evidence and observations show that the burros occupy land that has been little used by sheep during the past 2,000 years, and the two animals have never seriously competed for range in Death valley, according to Ralph and Florence Wells who made the first complete survey of wildlife water resources in the park in the 1950s and C. B. Hunt who mapped the geology, vegetation, and archeology of Death Valley in the 1960s. Photograph from C. B. Hunt, USGS files, circa 1960; caption information from C. B. Hunt 1975.

There is a population of burros to this day that survives in the park. Burros have been and are detrimental to the conditions of many springs and, as a result, to the native fauna, particularly mountain sheep, that depend on springs for their water supply. An NPS document from the 1970s includes notes on the conditions and rehabilitation needed at springs, some degraded by burros. The original inventory of springs (1976) and the recent inventory of springs (2006) provide information on the use of springs by burros and native species and the detrimental effect of burros on spring conditions. However, the contention that burros compete with bighorn sheep for forage is obviated by the evidence and observations that show that the burros occupy land that has been little used by

sheep during the past 2,000 years, and the two animals have never seriously competed for range in Death Valley. This conclusion is made by C. B. Hunt (1975) who mapped the geology, vegetation, and archaeology of Death Valley in the 1960s and who states that the conclusion is in accord with the findings of Ralph and Florence Wells who made the first complete survey of wildlife water resources in the park in the 1950s.

| 2      | China - prings               |                      |                       |          |       |         |           |                 |                  |               |                                               |
|--------|------------------------------|----------------------|-----------------------|----------|-------|---------|-----------|-----------------|------------------|---------------|-----------------------------------------------|
| Spring |                              | UTM                  | UTM                   |          |       | Quarter | Elevation | Discharge       | Spring           | Amb Air²      | Spring–Amb Air <sup>3</sup>                   |
| Number | r Spring Name                | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature ( | <sup>o</sup> C) Temperature ( <sup>o</sup> C) |
| -      | Hole in Rock Spring (New)    | 502941               | 4066452               | 14 S     | 44 E  | 15 NW   | 851       | 0.5             | 14.5             | 17.2          | -2.7                                          |
| 2      | Burro Spring B               | 459770               | 4071666               | 13 S     | 42 E  | 21 NW   | 2194      | 2               | 18.9             | 7.8           | 11.1                                          |
| m      | Burro Spring A               | 459705               | 4071705               | 13 S     | 42 E  | 21 NW   | 2209      | 1               | 9.5              | 7.7           | 1.8                                           |
| 4      | Burro Spring C               | 459835               | 4071657               | 13 S     | 42 E  | 21 NW   | 2186      | ~               |                  | 7.8           |                                               |
| ĿО     | Ranger Spring                | 468398               | 4093281               | 11 S     | 42 E  | 24 SW   | 645       | 7               | 17.4             | 18.6          | -1.2                                          |
| 9      | Quartz Spring                | 455956               | 4070547               | 13 S     | 41 E  | 26 SW   | 1543      | -               | 10.3             | 12.3          | -2.0                                          |
| 7      | Horsetail Spring             | 458483               | 4049739               | 15 S     | 41 E  | 36 NE   | 1653      |                 |                  | 11.5          |                                               |
| œ      | Thicket Spring               | 458785               | 4049288               | 15 S     | 41 E  | 36 SW   | 1764      |                 |                  | 10.8          |                                               |
| 6      | Goldbelt Grade Spring        | 458649               | 4049402               | 15 S     | 41 E  | 36 SW   | 1751      |                 |                  | 10.9          |                                               |
| 10     | Goldbelt Spring              | 459775               | 4050256               | 15 S     | 42 E  | 30 SE   | 1478      |                 |                  | 12.8          |                                               |
| 11     | Covered Spring               | 483175               | 4028208               | 17 S     | 44 E  | 35 SW   | 1544      | -<br>V          |                  | 12.3          |                                               |
| 12     | Wee Spring                   | 483176               | 4028376               | 17 S     | 44 E  | 35 SW   | 1577      |                 |                  | 12.1          |                                               |
| 13     | Ed Spring                    | 483195               | 4028661               | 17 S     | 44 E  | 35 NW   | 1540      |                 |                  | 12.3          |                                               |
| 14     | Burns Spring (Lower)         | 483209               | 4028058               | 18 S     | 44 E  | 2 NW    | 1545      | 2               | 14.5             | 12.3          | 2.2                                           |
| 15     | Burns Spring (Upper)         | 483135               | 4027966               | 18 S     | 44 E  | 2 NW    | 1564      | 1               | 14.4             | 12.2          | 2.2                                           |
| 16     | Emigrant Willow Spring       | 482729               | 4027930               | 18 S     | 44 E  | 3 NE    | 1582      |                 |                  | 12.0          |                                               |
| 17     | Chukar Spring                | 482794               | 4028254               | 17 S     | 44 E  | 34 SE   | 1507      | m               | 16.9             | 12.6          | 4.3                                           |
| 18     | Centennial Spring            | 482793               | 4028258               | 17 S     | 44 E  | 34 SE   | 1506      | 10              | 15.1             | 12.6          | 2.5                                           |
| 19     | Canyon Spring A              | 482830               | 4028915               | 17 S     | 44 E  | 34 NE   | 1416      | ~               | 11.2             | 13.2          | -2.0                                          |
| 20     | Canyon Spring B (Main)       | 482837               | 4028935               | 17 S     | 44 E  | 34 NE   | 1414      | 20              | 17               | 13.2          | 3.8                                           |
| 21     | Emigrant Burro Spring        | 482950               | 4028963               | 18 S     | 44 E  | 35 NW   | 1421      | 1               |                  | 13.2          |                                               |
| 22     | Tree Spring                  | 482673               | 4031108               | 17 S     | 44 E  | 27 SE   | 1213      |                 |                  | 14.6          |                                               |
| 23     | Emigrant Spring (Upper)      | 482650               | 4031170               | 17 S     | 44 E  | 27 SE   | 1200      | Ø               | 14.1             | 14.7          | -0.6                                          |
| 24     | Emigrant Spring (Lower)      | 482512               | 4032153               | 17 S     | 44 E  | 27 NE   | 1132      | 15              | 7.6              | 15.2          | -7.6                                          |
| 25     | Jayhawker Spring             | 480103               | 4032309               | 17 S     | 44 E  | 21 SW   | 1243      | -<br>V          | 9.2              | 14.4          | -5.2                                          |
| 26     | Bullfrog Spring              | 503283               | 4073565               | 13 S     | 45 E  | unclear | 1413      |                 |                  | 13.2          |                                               |
| 27     | Daylight Willow Spring       | 502927               | 4074076               | 13 S     | 45 E  | 15 NW   | 1423      | 4               | 12.1             | 13.2          | -1.1                                          |
| 28     | Hole in the Rock Spring (Olc | I)502315             | 4066455               | 14 S     | 46 E  | 16 NE   | 861       |                 |                  | 17.1          |                                               |
| 29     | Fire Spring                  | 500529               | 4068158               | 14 S     | 46 E  | 8 SE    | 1110      | 2               | 13.6             | 15.3          | -1.7                                          |
| 30     | Corkscrew Spring             | 500010               | 4068201               | 14 S     | 46 E  | 8 SE    | 1245      | 2               | 23.2             | 14.4          | 8.8                                           |
| 31     | Baccharis Bunch              | 505093               | 4072032               | 13 S     | 45 E  | 23 SW   | 1335      |                 |                  | 13.8          |                                               |
|        | (Daylight Pass)              |                      |                       |          |       |         |           |                 |                  |               |                                               |
| 32     | Bindle Spring                | 502553               | 4073523               | 13 S     | 45 SE | 16 SW   | 1481      |                 |                  | 12.7          |                                               |
| 33     | Buck Spring #1               | 503101               | 4090073               | 11 S     | 45 E  | 29 NE   | 1622      | m               | 10.4             | 11.8          | -1.4                                          |
| 34     | Cordwood                     | 491581               | 4087885               | 11 S     | 44 E  | 31 NW   | 2156      |                 |                  | 8.0           | -8.0                                          |
| 35     | Brier Spring A               | 493028               | 4087889               | 11 S     | 44 E  | 31 NE   | 1940      | 75              | 11.2             | 9.5           | 1.7                                           |
| 36     | Brier Spring B               | 493118               | 4088139               | 11 5     | 44 E  | 31 NE   | 1918      |                 |                  | 9.7           | -9./                                          |

Appendix: Springs of Death Vallev

| Appenc | dix continued                   |                      |                       |          |        |         |           |                 |                  |                      |                             |
|--------|---------------------------------|----------------------|-----------------------|----------|--------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                                 | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Number | <ul> <li>Spring Name</li> </ul> | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 37     | Brier Spring C                  | 493252               | 4088127               | 11 S     | 44 E   | 32 NW   | 1933      | 40              | 12.5             | 9.6                  | 2.9                         |
| 38     | Brier Spring D                  | 493318               | 4088228               | 11 S     | 44 E   | 32 NW   | 1932      | 5               | 7.6              | 9.6                  | -2.0                        |
| 39     | Cave Rock #1                    | 499091               | 4080405               | 12 S     | 44 E   | 25 NE   | 1539      | 0               | 9.7              | 12.3                 | -2.6                        |
| 40     | Cave Rock #2                    | 500282               | 4079999               | 12 S     | 44 E   | 25 NE   | 1479      |                 |                  | 12.8                 |                             |
| 41     | McDonald #1                     | 496628               | 4084252               | 12 S     | 44 E   | 10 NE   | 1896      |                 |                  | 9.8                  |                             |
| 42     | McDonald #2                     | 498439               | 4084279               | 12 S     | 44 E   | 11 SW   | 1666      | 0.5             | 10.7             | 11.5                 | -0.8                        |
| 43     | Wood Camp Potholes              | 500726               | 4091297               | 11 S     | 44 E   | 24 SE   | 1462      | ~               | 8.2              | 12.9                 | -4.7                        |
| 44     | Buck Spring #2                  | 502846               | 4089815               | 11 S     | 45 E   | 28 NE   | 1607      | -               | 6.8              | 11.9                 | -5.1                        |
| 45     | Woodcamp Spring                 | 500486               | 4091459               | 11 S     | 44 E   | 24 SE   | 1459      | -               | 8.2              | 12.9                 | -4.7                        |
| 46     | Currie Wells                    | 506602               | 4091506               | 11 S     | 45 E   | 22 NE   | 1365      | 7               | 15.2             | 13.6                 | 1.6                         |
| 47     | Goldbar Well                    | 507049               | 4088584               | 11 S     | 45 E   | 34 NE   | 1410      |                 |                  | 13.2                 |                             |
| 48     | Bebbia Potholes                 | 499264               | 4062317               | 14 S     | 46 E   | 30 SE   | 537       | 0               | 20.6             | 19.4                 | 1.2                         |
| 49     | Prospect Well                   | 509058               | 4058140               | 29 N     | 1<br>E | 32 SW   | 507       |                 |                  | 19.6                 |                             |
| 50     | Keane Wonder Spring Main        | 507094               | 4058698               | 15 S     | 46 E   | 1 SE    | 402       | 200             | 33.2             | 20.3                 | 12.9                        |
| 51     | Keane Wonder Spring A           | 506555               | 4058949               | 15 S     | 46 E   | 1 SW    | 380       | Ŀ               | 7.5              | 20.5                 | -13.0                       |
| 52     | Keane Wonder Spring b           | 506661               | 4058785               | 15 S     | 46 E   | 1 SW    | 338       | -<br>V          |                  | 20.7                 | -20.7                       |
| 53     | Keane Wonder Spring c           | 506664               | 4058777               | 15 S     | 46 E   | 1 SE    | 334       | -               | 17.9             | 20.8                 | -2.9                        |
| 54     | Keane Wonder Spring d           | 506658               | 4058766               | 15 S     | 46 E   | 1 SE    | 332       | Ð               | 17               | 20.8                 | 8. Ċ-                       |
| 55     | Keane Wonder Spring E           | 506672               | 4058776               | 15 S     | 46 E   | 1 SE    | 336       |                 |                  | 20.8                 |                             |
| 56     | Keane Wonder Spring F           | 506678               | 4058770               | 15 S     | 46 E   | 1 SE    | 337       |                 |                  | 20.8                 |                             |
| 57     | Keane Wonder Spring G           | 506661               | 4058647               | 15 S     | 46 E   | 1 SE    | 315       | ~               | 18.4             | 20.9                 | -2.5                        |
| 58     | Keane Wonder Spring H           | 506979               | 4058606               | 15 S     | 46 E   | 1 SE    | 347       | 9               | 25.9             | 20.7                 | 5.2                         |
| 59     | Keane Wonder Spring I           | 507008               | 4058612               | 15 S     | 46 E   | 1 SE    | 353       | m               | 20.1             | 20.6                 | -0.5                        |
| 60     | Keane Wonder Spring J           | 507192               | 4058393               | 15 S     | 46 E   | 1 SE    | 332       | 2               | 21.8             | 20.8                 | 1.0                         |
| 61     | Keane Wonder Spring K           | 506960               | 4058184               | 15 S     | 46 E   | 1 SE    | 299       | m               | 19.4             | 21.0                 | -1.6                        |
| 62     | Keane Wonder Spring L           | 506951               | 4058177               | 15 S     | 46 E   | 1 SE    | 298       | 2               | 21.5             | 21.0                 | 0.5                         |
| 63     | Keane Wonder Spring M           | 506947               | 4058217               | 15 S     | 46 E   | 1 SE    | 299       | -               | 21.2             | 21.0                 | 0.2                         |
| 64     | Keane Wonder Spring N           | 506878               | 4058223               | 15 S     | 46 E   | 1 SE    | 289       | -               | 18.8             | 21.1                 | -2.3                        |
| 65     | Keane Wonder Spring O           | 506874               | 4058237               | 15 S     | 46 E   | 1 SE    | 292       | -               | 19.7             | 21.1                 | -1.4                        |
| 99     | Keane Wonder Seep A             | 506568               | 4058890               | 15 S     | 46 E   | 1 SW    | 372       | -<br>V          | 22.3             | 20.5                 | 1.8                         |
| 67     | Keane Wonder Seep B             | 506654               | 4058817               | 15 S     | 46 E   | 1 SE    | 339       | -<br>V          |                  | 20.7                 |                             |
| 68     | Keane Wonder Seep C             | 506693               | 4058809               | 15 S     | 46 E   | 1 SE    | 344       | -<br>V          |                  | 20.7                 |                             |
| 69     | Keane Wonder Seep D             | 506707               | 4058790               | 15 S     | 46 E   | 1 SE    | 344       | Ţ,              |                  | 20.7                 |                             |
| 70     | Keane Wonder Seep E             | 506745               | 4058762               | 15 S     | 46 E   | 1 SE    | 350       | Ţ,              |                  | 20.7                 |                             |
| 71     | Keane Wonder Seep F             | 506693               | 4058737               | 15 S     | 46 E   | 1 SE    | 336       | -<br>V          |                  | 20.8                 |                             |
| 72     | Keane Wonder Seep G             | 506764               | 4058562               | 15 S     | 46 E   | 1 SE    | 312       | -               |                  | 20.9                 |                             |
| 73     | Keane Wonder Seep H             | 507206               | 4058461               | 15 S     | 46 E   | 1 SE    | 344       | 1               |                  | 20.7                 |                             |
|        |                                 |                      |                       |          |        |         |           |                 |                  |                      |                             |

| Appen  | dix continued                |                      |                       |          |        |         |           |                 |                  |                      |                             |
|--------|------------------------------|----------------------|-----------------------|----------|--------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                              | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbei | Spring Name                  | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 74     | Keane Wonder Seep I          | 506794               | 4058343               | 15 S     | 46 E   | 1 SE    | 289       | ۲<br>۲          |                  | 21.1                 |                             |
| 75     | Keane Wonder Seep J          | 506694               | 4058419               | 15 S     | 46 E   | 1 SE    | 314       | ~               |                  | 20.9                 |                             |
| 76     | Keane Wonder Seep K          | 506643               | 4058454               | 15 S     | 46 E   | 1 SE    | 320       | <del>, -</del>  |                  | 20.9                 |                             |
| 77     | Keane Wonder Seep L          | 506593               | 4058445               | 15 S     | 46 E   | 1 SE    | 309       | <del>, -</del>  | 23.3             | 21.0                 | 2.3                         |
| 78     | Keane Wonder Seep M          | 506558               | 4058417               | 15 S     | 46 E   | 1 SE    | 303       | <del>, -</del>  |                  | 21.0                 |                             |
| 79     | Keane Wonder Seep N          | 506524               | 4058440               | 15 S     | 46 E   | 1 SE    |           | <del>, -</del>  | 20.1             | 23.1                 | -3.0                        |
| 80     | Keane Wonder Seep O          | 506493               | 4058459               | 15 S     | 46 E   | 1 SE    | 304       | -<br>V          |                  | 21.0                 |                             |
| 81     | Keane Wonder Seep P          | 506472               | 4058464               | 15 S     | 46 E   | 1 SE    | 300       | ~               |                  | 21.0                 |                             |
| 82     | Keane Wonder Seep Q          | 506273               | 4058556               | 15 S     | 46 E   | 1 SE    | 285       | ~               |                  | 21.1                 |                             |
| 83     | Keane Wonder Seep R          | 506166               | 4058420               | 15 S     | 46 E   | 1 SE    | 274       | ~               |                  | 21.2                 |                             |
| 84     | Keane Wonder Well A          | 506563               | 4058887               | 15 S     | 46 E   | 1 SW    | 369       | 0.5             | 18.3             | 20.5                 | -2.2                        |
| 85     | Keane Wonder Well B          | 506616               | 4058828               | 15 S     | 46 E   | 1 SW    | 366       |                 | 25.2             | 20.6                 | 4.6                         |
| 86     | Keane Wonder Well C          | 506719               | 4058724               | 15 S     | 46 E   | 1 SE    | 338       | ~               | 19.5             | 20.7                 | -1.2                        |
| 87     | Keane Wonder Well D          | 506956               | 4058579               | 15 S     | 46 E   | 1 SE    | 343       |                 | 18.1             | 20.7                 | -2.6                        |
| 80     | Keane Wonder Well E          | 506968               | 4058603               | 15 S     | 46 E   | 1 SE    | 345       |                 | 20.1             | 20.7                 | -0.6                        |
| 89     | Keane Wonder Well F          | 507005               | 4058599               | 15 S     | 46 E   | 1 SE    | 349       |                 | 24.6             | 20.7                 | 3.9                         |
| 06     | Keane Wonder Well G          | 507212               | 4058443               | 15 S     | 46 E   | 1 SE    | 342       |                 | 24.6             | 20.7                 | 3.9                         |
| 91     | Keane Seep                   | 508882               | 4058028               | 29 N     | 1<br>E | 32 SW   | 465       | v               |                  | 19.9                 |                             |
| 92     | Keane Spring                 | 508730               | 4066605               | 30 N     | 1<br>E | 8 NW    | 1172      | 2               | 15.9             | 14.9                 | 1.0                         |
| 93     | Hopeful Spring #1            | 508522               | 4066084               | 30 N     | 1<br>1 | 8 SW    | 1139      | -<br>V          | 7.9              | 15.1                 | -7.2                        |
| 94     | Hopeful Spring #2            | 508575               | 4066036               | 30 N     | 1<br>T | 8 SW    | 1148      |                 |                  | 15.1                 |                             |
| 95     | Pump House Well              | 508299               | 4065921               | 30 N     | 1<br>E | 7 SE    | 1116      | v               | 18.3             | 15.3                 | 3.0                         |
| 96     | Jingle Seep                  | 507806               | 4065080               | 30 N     | 1<br>E | 18 NE   | 1086      |                 |                  | 15.5                 |                             |
| 97     | Rice's Pothole Spring        | 514781               | 4061150               | 30 N     | 1<br>E | 26 SE   | 1361      | v               | 6.7              | 13.6                 | -6.9                        |
| 98     | Rice's Well                  | 514704               | 4061132               | 30 N     | 1<br>T | 26 SE   | 1378      |                 |                  | 13.5                 |                             |
| 66     | East of Chloride City Well B | 511582               | 4061072               | 30 N     | 1<br>T | 28 SE   | 1394      |                 |                  | 13.4                 |                             |
| 100    | Sedge Seep A                 | 520965               | 4028563               | 26 N     | 2 E    | 9 NE    | 371       |                 |                  | 20.5                 |                             |
| 101    | Sedge Seep B                 | 520956               | 4028541               | 26 N     | 2 E    | 9 NE    | 369       |                 |                  | 20.5                 |                             |
| 102    | Sedge Seep C                 | 520912               | 4028428               | 26 N     | 2 E    | 9 NE    | 368       |                 |                  | 20.5                 |                             |
| 103    | Sedge Seep D                 | 520834               | 4028368               | 26 N     | 2 E    | 9 NE    | 363       |                 |                  | 20.6                 |                             |
| 104    | Sedge Seep E                 | 520865               | 4028220               | 26 N     | 2 E    | 9 NE    | 364       | Ţ,              |                  | 20.6                 |                             |
| 105    | Navel Spring Again           | 525505               | 4026230               | 26 N     | 2 E    | 12 SW   | 595       | m               | 9.6              | 18.9                 | -9.3                        |
| 106    | Warm Spring C                | 506111               | 3980246               | 22 S     | 47 E   | 5 NW    | 747       | 25              | 34.4             | 17.9                 | 16.5                        |
| 107    | Warm Spring B                | 506110               | 3980234               | 22 S     | 47 E   | 5 NW    | 750       | 30              | 33.7             | 17.9                 | 15.8                        |
| 108    | Warm Spring A                | 506303               | 3980186               | 22 S     | 47 E   | 5 NW    | 719       | 9               | 20.6             | 18.1                 | 2.5                         |
| 109    | Anvil Spring                 | 492350               | 3975425               | 21 S     | 45 E   | 23 NE   | 1258      | Ŋ               | 17.7             | 14.3                 | 3.4                         |
| 110    | Quail Spring                 | 491220               | 3975050               | 21 S     | 45 E   | 12 SW   | 1501      | >2              | 7.5              | 12.6                 | -5.1                        |
|        |                              |                      |                       |          |        |         |           |                 |                  |                      |                             |

| Appen  | dix continued             |                      |                       |          |        |         |           |                 |                  |                      |                             |
|--------|---------------------------|----------------------|-----------------------|----------|--------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                           | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name             | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 111    | Hatchet Spring            | 491476               | 3975694               | 21 S     | 45 E   | 14 SW   | 1386      |                 |                  | 13.4                 |                             |
| 112    | Greater View D            | 492131               | 3974612               | 21 S     | 45 E   | 23 SE   | 1307      |                 | 9.8              | 14.0                 | -4.2                        |
| 113    | Greater View C            | 492094               | 3974573               | 21 S     | 45 E   | 23 SE   | 1316      |                 |                  | 13.9                 |                             |
| 114    | Greater View B            | 492091               | 3974561               | 21 S     | 45 E   | 23 SW   | 1314      |                 |                  | 13.9                 |                             |
| 115    | Greater View A            | 492087               | 3974532               | 21 S     | 45 E   | 23 SW   | 1312      |                 |                  | 13.9                 |                             |
| 116    | Russel Camp B             | 491986               | 3974370               | 21 S     | 45 E   | 23 SW   | 1325      | 4               | 14.9             | 13.8                 | 1.1                         |
| 117    | Russel Camp A             | 491946               | 3974334               | 21 S     | 45 E   | 23 SW   | 1322      | v               | 9.4              | 13.9                 | -4.5                        |
| 118    | Greater View E            | 492214               | 3974654               | 21 S     | 45 E   | 23 SW   | 1292      | -               | 13.8             | 14.1                 | -0.3                        |
| 119    | Jubilee                   | 492835               | 3973913               | 21 S     | 45 E   | 26 NE   | 1218      |                 |                  | 14.6                 |                             |
| 120    | Mill Spring A             | 492020               | 3974727               | 21 S     | 45 E   | 23 SW   | 1333      |                 |                  | 13.8                 |                             |
| 121    | Mill Spring B             | 492111               | 3974676               | 21 S     | 45 E   | 23 SW   | 1313      |                 |                  | 13.9                 |                             |
| 122    | Grubstake                 | 501322               | 3981363               | 22 S     | 46 E   | 35 SW   | 1043      |                 |                  | 15.8                 |                             |
| 123    | Anvil Willow              | 494646               | 3974020               | 21 S     | 46 E   | 30 NW   | 1061      | Ś               | 9.9              | 15.7                 | -9.1                        |
| 124    | Unnamed Manly Peak        | 495439               | 3974134               | 21 S     | 46 E   | 29 SE   | 1059      |                 |                  | 15.7                 |                             |
|        | Spring A                  |                      |                       |          |        |         |           |                 |                  |                      |                             |
| 125    | Five Mile Spring A        | 498202               | 3975354               | 21 S     | 46 E   | 29 NW   | 966       |                 |                  | 16.1                 |                             |
| 126    | Five Mile Spring b        | 498157               | 3975443               | 21 S     | 46 E   | 29 NW   | 984       |                 | 10.2             | 16.2                 | -6.0                        |
| 127    | Five Mile Spring C        | 498192               | 3975523               | 21 S     | 46 E   | 27 NW   | 929       | -               | 9.5              | 16.6                 | -7.1                        |
| 128    | Five Mile Spring D        | 498210               | 3975654               | 21 S     | 47 E   | 27 NW   | 911       |                 |                  | 16.7                 |                             |
| 129    | Little Spring             | 498285               | 3974542               | 21 S     | 46 E   | 27 SW   | 975       | -               | 11.9             | 16.3                 | -4.4                        |
| 130    | Across from Little Spring | 498125               | 3974783               | 21 S     | 46 E   | 27 SW   | 984       |                 |                  | 16.2                 |                             |
| 131    | Grapevine Ranch 001       | 464641               | 4097652               | 11 S     | 42 E   | 3 NW    | 643       | 9               | 19.9             | 18.6                 | 1.3                         |
| 132    | Grapevine Ranch 002       | 464582               | 4097698               | 11 S     | 42 E   | 3 NW    | 644       | 12              | 16.6             | 18.6                 | -2.0                        |
| 133    | Grapevine Ranch 005       | 464591               | 4097941               | 11 S     | 42 E   | 3 NW    | 672       | 4               | 14.8             | 18.4                 | -3.6                        |
| 134    | Triangle Spring C         | 488089               | 4064399               | 14 S     | 45 E   | 19 NW   | -15       | 0               | 17               | 23.2                 | -6.2                        |
| 135    | Triangle Spring A         | 487851               | 4064658               | 14 S     | 45 E   | 19 NW   | -18       |                 |                  | 23.2                 |                             |
| 136    | Triangle Spring B         | 487887               | 4064631               | 14 S     | 45 E   | 19 NW   | -18       | 0               |                  | 23.2                 |                             |
| 137    | Triangle Spring D         | 488409               | 4064067               | 14 S     | 45 E   | 19 NW   | ő         | -<br>V          | 13.2             | 23.2                 | -10.0                       |
| 138    | Stovepipe Palm            | 488794               | 4063665               | 14 S     | 45 E   | 19 SE   | ő         | -               | 12.3             | 23.2                 | -10.9                       |
| 139    | Tule Springs              | 510651               | 4010963               | 25 N     | 1<br>T | 28 NW   | -109      | -<br>V          | 24.7             | 23.9                 | 0.8                         |
| 140    | Bennett's Well            | 512407               | 4002399               | 24 N     | 1<br>T | 22 SW   | -109      |                 | 26.1             | 23.9                 | 2.2                         |
| 141    | Gravel Well               | 513647               | 3993797               | 23 N     | 1<br>T | 22 NE   | -100      |                 |                  | 23.8                 |                             |
| 142    | Hawk Spring C             | 515519               | 3988634               | 22 N     | 1<br>T | 1 NW    | -109      |                 | 16.6             | 23.9                 | -7.3                        |
| 143    | Hawk Spring A             | 515540               | 3988691               | 22 N     | 1<br>T | 1 NW    | -111      | 0               | 12.4             | 23.9                 | -11.5                       |
| 144    | Coyote Well               | 522991               | 3984600               | 22 N     | 2 E    | 15 SE   | -107      | ~               | 14               | 23.9                 | 6.6-                        |
| 145    | Table Spring B            | 516325               | 4048625               | 28 N     | 1<br>T | 1 NE    | 351       | -<br>V          | 12.3             | 20.7                 | -8.4                        |
| 146    | Table Spring A            | 516348               | 4048650               | 28 N     | 1<br>T | 1 NE    | 355       | -<br>V          | 13.6             | 20.6                 | -7.0                        |

| Appenc | lix continued       |                      |                       |          |        |         |           |                 |                  |                      |                             |
|--------|---------------------|----------------------|-----------------------|----------|--------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                     | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Number | Spring Name         | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 147    | Table Spring C      | 516286               | 4048553               | 28 N     | 1 E    | 1 NE    | 334       | ,<br>V          | 11.4             | 20.8                 | -9.4                        |
| 148    | Scraper Spring A    | 516709               | 4048051               | 28 N     | 2 E    | 6 SW    | 361       |                 |                  | 20.6                 |                             |
| 149    | Scraper Spring B    | 516813               | 4047812               | 28 N     | 2 E    | 6 SW    | 368       | -<br>V          | 12               | 20.5                 | -8.5                        |
| 150    | Scraper Spring C    | 516983               | 4047648               | 28 N     | 2 E    | 7 NW    | 354       |                 |                  | 20.6                 |                             |
| 151    | Scraper Spring D    | 517248               | 4047500               | 28 N     | 2 E    | 7 NW    | 378       |                 |                  | 20.5                 |                             |
| 152    | USGS Spring A       | 518335               | 4047804               | 28 N     | 2 E    | 6 SE    | 491       | 2               | 21               | 19.7                 | 1.3                         |
| 153    | USGS Spring B       | 518301               | 4047711               | 28 N     | 2 E    | 6 SE    | 476       |                 |                  | 19.8                 |                             |
| 154    | Scraper (Upper)     | 517737               | 4047511               | 28 N     | 2 E    | 7 NW    | 430       |                 |                  | 20.1                 |                             |
| 155    | Scraper Spring I    | 517549               | 4047389               | 28 N     | 2 E    | 7 NW    | 397       | -<br>V          | 13.5             | 20.3                 | -6.8                        |
| 156    | Scraper Spring H    | 517519               | 4047401               | 28 N     | 2 E    | 7 NW    | 396       |                 |                  | 20.3                 |                             |
| 157    | Scraper Spring G    | 517510               | 4047409               | 28 N     | 2 E    | 7 NW    | 395       | ~               |                  | 20.3                 |                             |
| 158    | Scraper Spring F    | 517492               | 4047419               | 28 N     | 2 E    | 7 NW    | 396       | ~               |                  | 20.3                 |                             |
| 159    | Scraper Spring E    | 517449               | 4047449               | 28 N     | 2 E    | 7 NW    | 393       |                 |                  | 20.4                 |                             |
| 160    | Scraper (Lower)     | 517110               | 4047199               | 28 N     | 2 E    | 7 NW    | 353       |                 |                  | 20.6                 |                             |
| 161    | Lantern Seep A      | 465105               | 4093663               | 11 S     | 42 E   | 22 NW   | 563       |                 |                  | 19.2                 |                             |
| 162    | Lantern Spring A    | 465129               | 4093635               | 11 S     | 42 E   | 22 NW   | 562       | 0               | 14.2             | 19.2                 | -5.0                        |
| 163    | Lantern seeps B-l   | 465152               | 4093599               | 11 S     | 42 E   | 22 NW   | 560       | ~               |                  | 19.2                 |                             |
| 164    | Lantern Spring B    | 465214               | 4093524               | 11 S     | 42 E   | 22 NW   | 557       | ~               | 14.5             | 19.2                 | -4.7                        |
| 165    | Virgin Spring A     | 537342               | 3978882               | 21 N     | 4 E    | 6 NE    | 704       |                 |                  | 18.2                 |                             |
| 166    | Virgin Spring B     | 537395               | 3978883               | 21 N     | 4 E    | 6 NE    | 696       | -               | 12               | 18.2                 | -6.2                        |
| 167    | Rhodes Spring       | 542848               | 3976621               | 21 N     | 4 E    | 10 SE   | 554       | -               | 17.4             | 19.2                 | -1.8                        |
| 168    | Rhodes well         | 542849               | 3976593               | 21 N     | 4 E    | 10 SE   | 552       | -               | 19.6             | 19.3                 | 0.4                         |
| 169    | Bradbury A          | 542890               | 3974833               | 21 N     | 4 E    | 15 SE   | 512       |                 |                  | 19.5                 |                             |
| 170    | Bradbury B          | 542856               | 3974841               | 21 N     | 4 E    | 15 SE   | 510       |                 |                  | 19.5                 |                             |
| 171    | Bradbury C          | 542823               | 3974846               | 21 N     | 4 E    | 15 SE   | 511       |                 |                  | 19.5                 |                             |
| 172    | Salsberry A         | 552496               | 3976479               | 21 N     | 5 E    | 10 SE   | 981       | 2               | 12.7             | 16.2                 | -3.5                        |
| 173    | Salsberry B         | 552500               | 3976389               | 21 N     | 5 E    | 10 SE   | 1003      | -               | 8.9              | 16.1                 | 7.2                         |
| 174    | Salsberry C         | 552463               | 3976387               | 21 N     | 5 E    | 10 SE   | 998       | -<br>V          |                  | 16.1                 |                             |
| 175    | Salsberry D         | 552438               | 3976362               | 21 N     | 5 E    | 10 SE   | 1008      | -               | 8.4              | 16.1                 | -7.7                        |
| 176    | Timpapah Spring     | 532371               | 3981021               | 22 N     | 3 E    | 27 SW   | 714       | 10              | 9.9              | 18.1                 | -8.2                        |
| 177    | Scotty's Spring     | 531789               | 3980799               | 22 N     | 3 E    | 34 NW   | 578       | 10              | 14.6             | 19.1                 | -4.5                        |
| 178    | Navel Seeps (Upper) | 525505               | 4026230               | 26 N     | 2 E    | 13 SW   | 565       | m               | 9.6              | 19.2                 | 9.6-                        |
| 179    | Dune Salt Well      | 490700               | 4051100               | 15 S     | 45 E   | 32 NW   | -38       |                 |                  | 23.4                 |                             |
| 180    | Bradbury well       | 542809               | 3974822               | 21 N     | 4 E    | 15 SE   | 513       |                 |                  | 19.5                 |                             |
| 181    | Owl Spring          | 501634               | 4071794               | 13 S     | 46 E   | 28 SW   | 1365      | m               | 6.2              | 13.6                 | -7.4                        |
| 182    | Spider Spring B     | 513829               | 4033141               | 27 N     | 1<br>1 | 27 NE   | 15        | -<br>-          | 20.6             | 23.0                 | -2.4                        |
| 183    | Spider Spring C     | 513824               | 4033124               | 27 N     | 1<br>E | 27 NE   | 17        | -<br>V          | 12.9             | 23.0                 | -10.1                       |

| Appen  | dix continued     |                      |                       |          |               |         |           |                                                  |                  |                      |                             |
|--------|-------------------|----------------------|-----------------------|----------|---------------|---------|-----------|--------------------------------------------------|------------------|----------------------|-----------------------------|
| Spring |                   | UTM                  | UTM                   |          |               | Quarter | Elevation | Discharge                                        | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name     | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range         | Section | (meters)  | (liters/minute)                                  | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 184    | Spider Spring D   | 513804               | 4033114               | 27 N     | 1 E           | 27 NE   | 11        | Ň                                                |                  | 23.0                 |                             |
| 185    | Spider Spring A   | 513784               | 4033160               | 27 N     | -<br>Н        | 27 NE   | 7         | ~                                                | 17.9             | 23.1                 | -5.2                        |
| 186    | Gnome Spring 4A   | 512684               | 4038397               | 27 N     | 1<br>T        | 3 SE    | -20       | ~                                                | 12.6             | 23.3                 | -10.7                       |
| 187    | Gnome Spring 4B   | 512653               | 4038390               | 27 N     | 1<br>T        | 3 SE    | -21       | ~                                                | 11.9             | 23.3                 | -11.4                       |
| 188    | Gnome Spring 4C   | 512634               | 4038384               | 27 N     | 1<br>T        | 3 SE    | -25       | ~                                                | 12               | 23.3                 | -11.3                       |
| 189    | Gnome Spring 1    | 512370               | 4038459               | 27 N     | 1<br>E        | 3 SW    | -40       | -<br>V                                           | 16.4             | 23.4                 | -7.0                        |
| 190    | Gnome Spring 2A   | 512406               | 4038416               | 27 N     | 1<br>T        | 3 SW    | -43       | ~                                                | 12.9             | 23.4                 | -10.5                       |
| 191    | Gnome Spring 2B   | 512397               | 4038422               | 27 N     | 1<br>T        | 3 SW    | -45       | -<br>V                                           | 11.6             | 23.4                 | -11.8                       |
| 192    | Gnome Spring 3    | 512529               | 4038416               | 27 N     | 1<br>T        | 3 SE    | -40       | ~                                                |                  | 23.4                 |                             |
| 193    | Gnome Spring 4D   | 512564               | 4038395               | 27 N     | <b>1</b><br>П | 3 SE    | -35       | ~                                                | 12.1             | 23.4                 | -11.3                       |
| 194    | Gnome Spring 4E   | 512542               | 4038377               | 27 N     | 1<br>T        | 3 SE    | -29       | ~                                                | 13.1             | 23.3                 | -10.2                       |
| 195    | Gnome Spring 4F   | 512531               | 4038374               | 27 N     | 1<br>1        | 3 SE    | -30       | ~                                                | 22.2             | 23.3                 | -1.1                        |
| 196    | Gnome Spring 5B   | 512567               | 4038363               | 27 N     | 1<br>T        | 3 SE    | -21       | ~                                                | 16.4             | 23.3                 | -6.9                        |
| 197    | Gnome Spring 5A   | 512599               | 4038355               | 27 N     | 1<br>T        | 3 SE    | -21       | ~                                                | 16.6             | 23.3                 | -6.7                        |
| 198    | Gnome Spring 6    | 512547               | 4038330               | 27 N     | 1<br>T        | 3 SE    | -21       | ~                                                | 21.3             | 23.3                 | -2.0                        |
| 199    | Gnome Spring G    | 512482               | 4038361               | 27 N     | <b>1</b><br>П | 3 SW    | -38       | ~                                                | 19.3             | 23.4                 | -4.1                        |
| 200    | Gnome Spring H    | 512432               | 4038362               | 27 N     | 1<br>T        | 3 SW    | -39       | ~                                                | 20.7             | 23.4                 | -2.7                        |
| 201    | Gnome Spring I    | 512360               | 4038360               | 27 N     | 1<br>1        | 3 SW    | -49       | <del></del>                                      | 20.8             | 23.5                 | -2.7                        |
| 202    | Gnome Spring J    | 512358               | 4038371               | 27 N     | 1<br>T        | 2 SW    | -41       | <del></del>                                      | 16.8             | 23.4                 | -6.6                        |
| 203    | Gnome Spring K    | 512337               | 4038399               | 27 N     | 1<br>T        | 1 SW    | -43       | <del></del>                                      | 17.5             | 23.4                 | -5.9                        |
| 204    | Gnome Spring L    | 512347               | 4038466               | 27 N     | 1<br>1        | 3 SE    | -44       | <del></del>                                      | 28.9             | 23.4                 | 5.5                         |
| 205    | Gnome Spring M    | 512175               | 4038387               | 27 N     | 1<br>T        | 3 SW    | -56       | 2                                                | 13.7             | 23.5                 | -9.8                        |
| 206    | Gnome Spring N    | 512089               | 4038375               | 27 N     | 1<br>T        | 3 SW    | -55       | <del>.                                    </del> | 17.5             | 23.5                 | -6.0                        |
| 207    | Gnome Spring O    | 511973               | 4038376               | 27 N     | 1<br>T        | З S     | -59       | ~                                                | 18.2             | 23.5                 | -5.3                        |
| 208    | Miller Spring     | 550140               | 3987986               | 22 N     | 3 E           | 11 NW   | 1010      | -<br>V                                           | 1.8              | 16.0                 | -14.2                       |
| 209    | Gnome North #1    | 512280               | 4038552               | 27 N     | 1<br>T        | 3 SW    | -46       | -<br>V                                           | 17               | 23.4                 | -6.4                        |
| 210    | Gnome North #2    | 512283               | 4038517               | 27 N     | <del>,</del>  | 3 SW    | -46       | <del></del>                                      | 15.4             | 23.4                 | -8.0                        |
| 211    | Lost Creek C      | 475793               | 4083773               | 43 E     | 12 S          | 23 NW   | 468       | <del></del>                                      | 13.1             | 19.8                 | -6.7                        |
| 212    | Lost Creek B      | 475829               | 4083832               | 43 E     | 12 S          | 23 NW   | 478       | 2                                                | 16.9             | 19.8                 | -2.9                        |
| 213    | QA Spring         | 476451               | 4084154               | 43 E     | 12 S          | 23 NE   | 601       | 12                                               | 19.9             | 18.9                 | 1.0                         |
| 214    | Forgotten Creek A | 476530               | 4083882               | 43 E     | 12 S          | 23 NE   | 530       | <del>.                                    </del> | 15.4             | 19.4                 | -4.0                        |
| 215    | Sheep Spring E    | 528297               | 3992733               | 22.5 N   | 3 E           | 20 NW   | 633       | -<br>V                                           | 18.3             | 18.7                 | -0.4                        |
| 216    | Sheep Spring A    | 529264               | 3992940               | 23 N     | 3 E           | 32 SE   | 749       | -<br>V                                           | 13.4             | 17.9                 | -4.5                        |
| 217    | Sheep Spring B    | 529233               | 3992922               | 23 N     | Э             | 32 SE   | 749       |                                                  |                  | 17.9                 |                             |
| 218    | Sheep Spring C    | 529024               | 3992870               | 23 N     | З E           | 32 SE   | 725       |                                                  |                  | 18.0                 |                             |
| 219    | Sheep Spring D    | 528691               | 3992844               | 23 N     | Э<br>С        | 32 SE   | 687       |                                                  |                  | 18.3                 |                             |
| 220    | Tinaja Baja       | 521223               | 4003349               | 24 N     | 2 E           | 21 NE   | -114      | ~<br>V                                           | 16.5             | 23.9                 | -7.4                        |
|        |                   |                      |                       |          |               |         |           |                                                  |                  |                      |                             |

| Appenc | lix continued               |                      |                                    |          |               |         |           |                 |                  |                      |                             |
|--------|-----------------------------|----------------------|------------------------------------|----------|---------------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                             | UTM                  | UTM                                |          |               | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Number | Spring Name                 | Easting <sup>1</sup> | <sup>L</sup> Northing <sup>1</sup> | Township | Range         | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 221    | China Garden A              | 452249               | 4018901                            | 19 S     | 41 E          | 4 NE    | 921       | m               | 18               | 16.7                 | 1.3                         |
| 222    | China Garden B              | 452242               | 4018874                            | 19 S     | 41 E          | 4 NE    | 929       | ~<br>V          | 17.4             | 16.6                 | 0.8                         |
| 223    | China Garden Well           | 45229                | 4018872                            | 19 S     | 41 E          | 4 NE    | 920       | 0               | 8.7              | 16.7                 | -8.0                        |
| 224    | Unnamed Darwin Hills        | 452631               | 4019237                            | 19 S     | 41 E          | 3 NW    | 893       | 10              | 21.9             | 16.9                 | 5.0                         |
| 225    | Telephone Spring            | 482313               | 4037312                            | 17 S     | 44 E          | 3 SE    | 833       |                 |                  | 17.3                 |                             |
| 226    | Willow Spring B (Gold Valle | ey)527447            | 3989474                            | 22.5 N   | Э Е<br>Э      | 31 SE   | 717       | 12              | 15.1             | 18.1                 | -3.0                        |
| 227    | Willow Spring C (Gold Valle | ey)527331            | 3989568                            | 22.5 N   | Э Е<br>Э      | 31 SW   | 669       | 12              | 13.7             | 18.2                 | -4.5                        |
| 228    | Willow Spring A (Gold Valle | ey)527828            | 3989572                            | 22.5 N   | Э E           | 31 SE   | 747       | 2               | 11.8             | 17.9                 | -6.1                        |
| 229    | Brown Spring                | 534690               | 3992497                            | 22.5 N   | 3 E           | 23 E    | 1589      | -               | 15.6             | 12.0                 | 3.6                         |
| 230    | Hidden Spring               | 535841               | 3992250                            | 22.5 N   | 3 E           | 24 E    | 1423      | 4               | 11.2             | 13.2                 | -2.0                        |
| 231    | Pool Spring                 | 536183               | 3992378                            | 22.5 N   | Э E           | 24 E    | 1403      | ~               | 13.8             | 13.3                 | 0.5                         |
| 232    | Badwater Potholes           | 520514               | 4012830                            | 25 N     | 2 E           | 21 NW   | -53       |                 |                  | 23.5                 |                             |
| 233    | Ram Spring                  | 507219               | 3973711                            | 21 N     | 1<br>T        | 19 NW   | 695       | œ               | 12.3             | 18.2                 | -5.9                        |
| 234    | Lost Spring                 | 507841               | 3974023                            | 21 N     | 1<br>1        | 19 NW   | 649       | 20              | 27               | 18.6                 | 8.4                         |
| 235    | Anvil Mesquite Spring       | 508118               | 3977561                            | 21 N     | 1<br>E        | 7 NW    | 468       | ~               | 16.1             | 19.8                 | -3.7                        |
| 236    | Upper Talc Mine Spring      | 505443               | 3984053                            | 22 S     | 46 E          | 24 NE   | 875       | ~               | 10.1             | 17.0                 | -6.9                        |
| 237    | Lower Talc Mine Spring      | 505515               | 3984110                            | 22 S     | 46 E          | 24 NE   | 849       | -               | 14.1             | 17.2                 | -3.1                        |
| 238    | McLean Spring               | 498160               | 4051036                            | 16 S     | 46 E          | 10 NE   | -65       | -               | 16.2             | 23.6                 | -7.4                        |
| 239    | Salt Creek                  | 500306               | 4049594                            | 16 S     | 46 E          | 10 NE   | -85       | 12              | 10               | 23.7                 | -13.7                       |
| 240    | East Salt Spring A          | 509172               | 4044984                            | 28 N     | 1<br>E        | 18 NE   | -113      | ~               | 21               | 23.9                 | -2.9                        |
| 241    | East Salt Spring B          | 509190               | 4044952                            | 28 N     | 1<br>E        | 18 NE   | -114      | -<br>V          | 24               | 23.9                 | 0.1                         |
| 242    | East Salt Spring C          | 509205               | 4044950                            | 28 N     | 1<br>T        | 18 NE   | -110      | -<br>V          |                  | 23.9                 |                             |
| 243    | East Salt Spring D          | 509197               | 4044928                            | 28 N     | 1<br>T        | 18 NE   | -108      | -               |                  | 23.9                 |                             |
| 244    | East Salt Spring E          | 509238               | 4044936                            | 28 N     | 1<br>T        | 18 NE   | -109      | ~               |                  | 23.9                 |                             |
| 245    | East Salt Spring F          | 509290               | 4044908                            | 28 N     | 1<br>T        | 18 NE   | -108      | -<br>V          | 20.6             | 23.9                 | с.<br>С.                    |
| 246    | East Salt Spring G          | 509283               | 4044898                            | 28 N     | 1<br>T        | 18 NE   | -111      | ~               |                  | 23.9                 |                             |
| 247    | East Salt Spring H          | 509282               | 4044886                            | 28 N     | —<br>Н        | 18 NE   | -111      | -               | 23.1             | 23.9                 | -0.8                        |
| 248    | East Salt Spring I          | 509283               | 4044873                            | 28 N     | <b>1</b><br>П | 18 NE   | -107      | ,<br>V          | 9.4              | 23.9                 | -14.5                       |
| 249    | East Salt Spring J          | 509315               | 4044863                            | 28 N     | 1<br>1        | 18 NE   | -107      | -<br>V          |                  | 23.9                 |                             |
| 250    | East Salt Spring K          | 509343               | 4044850                            | 28 N     | 1<br>1        | 18 NE   | -106      | -<br>V          |                  | 23.9                 |                             |
| 251    | East Salt Spring L          | 509351               | 4044836                            | 28 N     | 1<br>1        | 18 NE   | -107      | -<br>V          |                  | 23.9                 |                             |
| 252    | East Salt Spring M          | 509352               | 4044817                            | 28 N     | 1<br>E        | 18 NE   | -106      | -<br>V          |                  | 23.9                 |                             |
| 253    | East Salt Spring N          | 509380               | 4044807                            | 28 N     | 1<br>E        | 18 NE   | -106      | -<br>V          | 12.3             | 23.9                 | -11.6                       |
| 254    | East Salt Spring O          | 509378               | 4044778                            | 28 N     | 1<br>T        | 18 NE   | -107      | -<br>V          |                  | 23.9                 |                             |
| 255    | East Salt Spring P          | 509394               | 4044776                            | 28 N     | 1<br>T        | 18 NE   | -108      | ~               | 12.6             | 23.9                 | -11.3                       |
| 256    | East Salt Spring Q          | 509395               | 4044752                            | 28 N     | —<br>Н        | 18 NE   | -106      | ,<br>V          | 13.9             | 23.9                 | -10.0                       |
| 257    | East Salt Spring R          | 509405               | 4044729                            | 28 N     | 1 E           | 18 NE   | -107      | <del>V</del>    |                  | 23.9                 |                             |

| Append | dix continued       |                      |                       |          |               |         |           |                                                  |                  |                      |                             |
|--------|---------------------|----------------------|-----------------------|----------|---------------|---------|-----------|--------------------------------------------------|------------------|----------------------|-----------------------------|
| Spring |                     | UTM                  | UTM                   |          |               | Quarter | Elevation | Discharge                                        | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Number | Spring Name         | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range         | Section | (meters)  | (liters/minute)                                  | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 258    | East Salt Spring S  | 509420               | 4044697               | 28 N     | 1 E           | 18 NE   | -107      | ۲<br>۷                                           | 13.4             | 23.9                 | -10.5                       |
| 259    | East Salt Spring T  | 509419               | 4044668               | 28 N     | 1<br>E        | 18 NE   | -107      | ~                                                |                  | 23.9                 |                             |
| 260    | East Salt Spring U  | 509431               | 4044641               | 28 N     | 1<br>E        | 18 NE   | -107      | -                                                | 15               | 23.9                 | 6.8-                        |
| 261    | East Salt Spring V  | 509468               | 4044622               | 28 N     | 1<br>T        | 18 NE   | -108      | -<br>V                                           |                  | 23.9                 |                             |
| 262    | East Salt Spring W  | 509451               | 4044568               | 28 N     | 1<br>E        | 18 SE   | -106      | ~                                                | 13.8             | 23.9                 | -10.1                       |
| 263    | East Salt Spring X  | 509468               | 4044551               | 28 N     | 1<br>E        | 18 SE   | -107      | ~                                                |                  | 23.9                 |                             |
| 264    | East Salt Spring Y  | 509484               | 4044515               | 28 N     | 1<br>T        | 18 SE   | -108      | ~                                                |                  | 23.9                 |                             |
| 265    | East Salt Spring Z  | 509479               | 4044483               | 28 N     | 1<br>E        | 18 SE   | -108      | ~                                                |                  | 23.9                 |                             |
| 266    | East Salt Spring AA | 509499               | 4044462               | 28 N     | 1<br>T        | 18 SE   | -108      | -<br>V                                           |                  | 23.9                 |                             |
| 267    | East Salt Spring BB | 509515               | 4044416               | 28 N     | 1<br>T        | 18 SE   | -107      | -<br>V                                           | 17               | 23.9                 | -6.9                        |
| 268    | East Salt Spring CC | 509542               | 4044375               | 28 N     | -<br>Н        | 18 SE   | -107      | V                                                |                  | 23.9                 |                             |
| 269    | East Salt Spring DD | 509584               | 4044337               | 28 N     | <b>1</b><br>П | 18 SE   | -107      | V                                                |                  | 23.9                 |                             |
| 270    | East Salt Spring EE | 509632               | 4044327               | 28 N     | <b>1</b><br>П | 18 SE   | -107      | ~                                                | 19.8             | 23.9                 | -4.1                        |
| 271    | Buckboard Spring B  | 509949               | 4043765               | 28 N     | 1<br>T        | 21 SW   | -108      | ~                                                | 22.9             | 23.9                 | -1.0                        |
| 272    | Buckboard Spring C  | 510015               | 4043720               | 28 N     | 1<br>T        | 21 SW   | -109      | ~                                                |                  | 23.9                 |                             |
| 273    | Buckboard Spring D  | 510036               | 4043704               | 28 N     | 1<br>T        | 21 SW   | -109      | 0                                                | 21.9             | 23.9                 | -2.0                        |
| 274    | Buckboard Spring E  | 510063               | 4043700               | 28 N     | 1<br>1        | 21 SW   | -109      | -<br>V                                           | 22.9             | 23.9                 | -1.0                        |
| 275    | Buckboard Spring F  | 510074               | 4043617               | 28 N     | 1<br>T        | 21 SW   | -109      | -<br>V                                           |                  | 23.9                 |                             |
| 276    | Buckboard Spring G  | 510081               | 4043558               | 28 N     | 1<br>T        | 21 SW   | -110      | -<br>V                                           |                  | 23.9                 |                             |
| 277    | Buckboard Spring H  | 510105               | 4043543               | 28 N     | 1<br>П        | 21 SW   | -109      | -<br>V                                           | 19.7             | 23.9                 | -4.2                        |
| 278    | Buckboard Spring I  | 510082               | 4043513               | 28 N     | 1<br>T        | 21 SW   | -109      | -<br>V                                           |                  | 23.9                 |                             |
| 279    | Buckboard Spring J  | 510085               | 4043459               | 28 N     | 1<br>П        | 21 SW   | -110      | -                                                |                  | 23.9                 |                             |
| 280    | Buckboard Spring K  | 510074               | 4043411               | 28 N     | 1<br>E        | 21 SW   | -110      | ~                                                | 22.2             | 23.9                 | -1.7                        |
| 281    | Buckboard Spring L  | 510099               | 4043367               | 28 N     | 1<br>T        | 21 SW   | -109      | -                                                |                  | 23.9                 |                             |
| 282    | Buckboard Spring M  | 510102               | 4043332               | 28 N     | <b>–</b>      | 21 SW   | -108      | ,<br>V                                           |                  | 23.9                 |                             |
| 283    | Buckboard Spring N  | 510110               | 4043285               | 28 N     | <b>–</b>      | 21 SW   | -110      | ,<br>V                                           | 19               | 23.9                 | -4.9                        |
| 284    | Buckboard Spring O  | 510129               | 4043248               | 28 N     | <del>с</del>  | 21 SW   | -110      | ~<br>V                                           |                  | 23.9                 |                             |
| 285    | Buckboard Spring P  | 510167               | 4043274               | 28 N     | 1<br>П        | 21 SW   | -110      | -<br>V                                           | 18.2             | 23.9                 | -5.7                        |
| 286    | Buckboard Spring Q  | 510205               | 4043194               | 28 N     | 1<br>1        | 21 SW   | -108      | -<br>V                                           | 12               | 23.9                 | -11.9                       |
| 287    | Buckboard Spring A  | 509876               | 4043886               | 28 N     | 1<br>T        | 21 SW   | -108      | -<br>V                                           | 20.2             | 23.9                 | -3.7                        |
| 288    | Buckboard Spring R  | 510217               | 4043175               | 28 N     | 1<br>T        | 21 SW   | -107      | -<br>V                                           |                  | 23.9                 |                             |
| 289    | Buckboard Spring S  | 510246               | 4043150               | 28 N     | 1<br>E        | 21 SW   | -107      | ~                                                | 12.5             | 23.9                 | -11.4                       |
| 290    | Buckboard Spring T  | 510196               | 4043121               | 28 N     | 1<br>T        | 21 SW   | -109      | -                                                | 10.9             | 23.9                 | -13.0                       |
| 291    | Buckboard Spring U  | 510177               | 4043048               | 28 N     | 1<br>T        | 21 SW   | -109      | -<br>V                                           | 12.5             | 23.9                 | -11.4                       |
| 292    | Buckboard Spring V  | 510163               | 4043009               | 28 N     | 1<br>T        | 21 SW   | -109      | ~                                                |                  | 23.9                 |                             |
| 293    | Buckboard Spring W  | 510049               | 4042816               | 28 N     | 1<br>T        | 21 SW   | -108      | ~                                                |                  | 23.9                 |                             |
| 294    | Buckboard Spring X  | 510085               | 4042834               | 28 N     | 1<br>T        | 21 SW   | -109      | <del>.                                    </del> |                  | 23.9                 |                             |

| Appen  | dix continued            |                      |                       |          |        |         |           |                 |                  |                      |                             |
|--------|--------------------------|----------------------|-----------------------|----------|--------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                          | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name            | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C      | ) Temperature (°C)          |
| 295    | Buckboard Spring Y       | 510120               | 4042787               | 28 N     | 1 E    | 21 SW   | -108      | -<br>V          | 12.6             | 23.9                 | -11.3                       |
| 296    | Buckboard Spring Z       | 510053               | 4042676               | 28 N     | 1<br>E | 21 SW   | -109      | ~               |                  | 23.9                 |                             |
| 297    | Buckboard Spring AA      | 510114               | 4042583               | 28 N     | 1<br>E | 21 SW   | -107      | -               | 13.4             | 23.9                 | -10.5                       |
| 298    | Buckboard Spring BB      | 510036               | 4042559               | 28 N     | 1<br>1 | 21 SW   | -108      | 0               | 14.6             | 23.9                 | -9.3                        |
| 299    | Buckboard Spring CC      | 509986               | 4042536               | 28 N     | 1<br>1 | 21 SW   | -109      | ~               |                  | 23.9                 |                             |
| 300    | Buckboard Spring DD      | 510051               | 4042499               | 28 N     | 1<br>T | 21 SW   | -108      | ~               |                  | 23.9                 |                             |
| 301    | Buckboard Spring EE      | 510066               | 4042424               | 28 N     | 1<br>T | 21 SW   | -108      | ~               |                  | 23.9                 |                             |
| 302    | Buckboard Spring FF      | 510049               | 4042350               | 28 N     | 1<br>T | 21 SW   | -108      | 1               | 13.9             | 23.9                 | -10.0                       |
| 303    | Buckboard Spring GG      | 510024               | 4042277               | 28 N     | 1<br>T | 21 SW   | -107      | ~               | 17.6             | 23.9                 | -6.3                        |
| 304    | Buckboard Spring HH      | 509988               | 4042175               | 28 N     | 1<br>T | 21 SW   | -108      | m               | 7.7              | 23.9                 | -16.2                       |
| 305    | Buckboard Spring II      | 510045               | 4042134               | 28 N     | 1<br>T | 21 SW   | -108      | m               | 7.7              | 23.9                 | -16.2                       |
| 306    | Buckboard Spring JJ      | 510052               | 4042104               | 28 N     | 1<br>T | 21 SW   | -108      | 2               | 7.7              | 23.9                 | -16.2                       |
| 307    | Buckboard Spring KK      | 510094               | 4041983               | 28 N     | 1<br>T | 21 SW   | -108      | m               | 9.8              | 23.9                 | -14.1                       |
| 308    | Buckboard Spring LL      | 510131               | 4041913               | 28 N     | 1<br>T | 21 SW   | -109      | 1               |                  | 23.9                 |                             |
| 309    | Buckboard Spring MM      | 510150               | 4041841               | 28 N     | 1<br>E | 21 SW   | -106      | m               | 10.4             | 23.9                 | -13.5                       |
| 310    | Buckboard Spring NN      | 510153               | 4041680               | 28 N     | 1<br>T | 21 SW   | -106      | 1               | 14.1             | 23.9                 | -9.8                        |
| 311    | Buckboard Spring OO      | 510154               | 4041579               | 28 N     | 1<br>T | 21 SW   | -107      | m               | 14               | 23.9                 | -9.9                        |
| 312    | Buckboard Spring PP      | 510164               | 4041367               | 28 N     | 1<br>1 | 21 SW   | -108      | 4               | 14               | 23.9                 | 6.9-                        |
| 313    | White Tank Potholes      | 504716               | 3994482               | 21 S     | 47 E   | 37 N    | 567       | 0               | 9.6              | 19.1                 | -9.5                        |
| 314    | White Tanks              | 504297               | 3994776               | 21 S     | 47 E   | 18 SW   | 581       | ~               | 13.9             | 19.0                 | -5.1                        |
| 315    | Benny Spring             | 503915               | 4005298               | 20 S     | 46 E   | 26 NE   | 495       | ~               | 18.5             | 19.6                 | -1.1                        |
| 316    | Shootemup Spring         | 515253               | 4040451               | 28 N     | 1<br>T | 36 SW   | 189       | 10              | 22.4             | 21.8                 | 0.6                         |
| 317    | Bangbang Spring          | 515284               | 4040391               | 28 N     | 1<br>E | 36 SW   | 192       | m               | 19.7             | 21.8                 | -2.1                        |
| 318    | Annie Oakley Spring      | 515378               | 4040372               | 28 N     | 1<br>1 | 36 SW   | 202       | 10              | 30               | 21.7                 | 8.3                         |
| 319    | Ratatat Spring           | 515381               | 4040319               | 28 N     | 1 E    | 36 SW   | 198       | 12              | 23.7             | 21.7                 | 2.0                         |
| 320    | Bighorn Seep A           | 516041               | 4040567               | 28 N     | 1 E    | 36 NW   | 247       | -<br>V          |                  | 21.4                 |                             |
| 321    | Bighorn Seep B           | 516057               | 4040551               | 28 N     | 1<br>E | 36 NW   | 247       | 2               | 16.5             | 21.4                 | -4.9                        |
| 322    | Bighorn Seep C           | 516102               | 4040505               | 28 N     | 1<br>E | 36 NW   | 250       | Ŋ               | 19.8             | 21.4                 | -1.6                        |
| 323    | Bighorn Seep D           | 516120               | 4040452               | 28 N     | 1<br>E | 36 NW   | 250       | 2               | 17.9             | 21.4                 | -3.5                        |
| 324    | Bighorn Seep E           | 516108               | 4040409               | 28 N     | 1<br>1 | 36 NW   | 248       | 2               | 18.6             | 21.4                 | -2.8                        |
| 325    | Bighorn Seep F           | 516136               | 4040359               | 28 N     | 1<br>1 | 36 NW   | 254       | -               | 15.9             | 21.3                 | -5.4                        |
| 326    | Surveyor's Well          | 486426               | 4066764               | 14 S     | 45 E   | 13 NW   | -13       | ~               | 18.1             | 23.2                 | -5.1                        |
| 327    | Stovepipe Airstrip Well  | 486026               | 4051301               | 15 S     | 44 E   | 36 SW   | -31       |                 |                  | 23.3                 |                             |
| 328    | Stovepipe Well #1        | 486806               | 4050721               | 15 S     | 44 E   | 36 SE   | 0         | 20              | 29.9             | 23.1                 | 6.8                         |
| 329    | Stovepipe Ranger Well #1 | 487256               | 4051512               | 15 S     | 44 E   | 36 NE   | -36       |                 |                  | 23.4                 |                             |
| 330    | Stovepipe Ranger Well #2 | 487257               | 4051430               | 15 S     | 44 E   | 36 NE   | -35       |                 |                  | 23.4                 |                             |
| 331    | Stovepipe Ranger Well #3 | 487307               | 4051355               | 15 S     | 44 E   | 36 SE   | -35       |                 |                  | 23.4                 |                             |
|        |                          |                      |                       |          |        |         |           |                 |                  |                      |                             |

| Appen  | dix continued              |                      |                       |          |        |         |           |                 |                  |                  |                             |
|--------|----------------------------|----------------------|-----------------------|----------|--------|---------|-----------|-----------------|------------------|------------------|-----------------------------|
| Spring |                            | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge       | Spring           | Amb Air²         | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name              | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C) | ) Temperature (°C)          |
| 332    | Badwater Spring #1         | 520973               | 4009658               | 25 N     | 2 E    | 33 NW   | -113      | -<br>V          | 19.7             | 23.9             | -4.2                        |
| 333    | Badwater Spring #3         | 520934               | 4009557               | 25 N     | 2 E    | 33 NW   | -110      | Ň               | 17.4             | 23.9             | -6.5                        |
| 334    | Badwater Spring #4         | 520931               | 4009550               | 25 N     | 2 E    | 33 NW   | -112      | V               | 19               | 23.9             | -4.9                        |
| 335    | Badwater Spring #5 (Main)  | 520927               | 4009536               | 25 N     | 2 E    | 33 NW   | -112      | -               | 18.1             | 23.9             | -5.8                        |
| 336    | Main Hanaupah Spring #1    | 496997               | 4004324               | 20 S     | 46 E   | 19 NE   | 1238      | 25              | 11.4             | 14.4             | -3.0                        |
| 337    | Main Hanaupah Spring #2    | 496930               | 4004586               | 20 S     | 46 E   | 19 NE   | 1248      | 15              | 15.8             | 14.4             | 1.4                         |
| 338    | Main Hanaupah Spring #4    | 497606               | 4004700               | 20 S     | 46 E   | 19 NE   | 1146      |                 |                  | 15.1             |                             |
| 339    | South Hanaupah Spring #1   | 498020               | 4003901               | 20 S     | 46 E   | 20 SW   | 1213      | 4               | 16.6             | 14.6             | 2.0                         |
| 340    | South Hanaupah Spring #2   | 498022               | 4003976               | 20 S     | 46 E   | 20 NW   | 1180      | 12              | 16.4             | 14.9             | 1.5                         |
|        | (Middle)                   |                      |                       |          |        |         |           |                 |                  |                  |                             |
| 341    | South Hanaupah Spring #3   | 498073               | 4004284               | 20 S     | 46 E   | 20 NW   | 1129      | 15              | 13.4             | 15.2             | -1.8                        |
|        | (Lower)                    |                      |                       |          |        |         |           |                 |                  |                  |                             |
| 342    | Overlook Seep              | 498641               | 4076078               | 13 S     | 46 E   | 8 NW    | 1458      | -<br>V          | 3.9              | 12.9             | -9.0                        |
| 343    | Lostman Spring             | 497168               | 4070899               | 13 S     | 45.5 E | NONE    | 910       | ~               | 14.2             | 16.7             | -2.5                        |
| 344    | Fern (Upper)               | 498660               | 4072444               | 13 S     | 46 E   | 30 SW   | 1157      | 4               | 15.1             | 15.0             | 0.1                         |
| 345    | Badwater Spring #2         | 520953               | 4009572               | 25 N     | 2 E    | 33 NW   | -113      | ~<br>V          | 16.4             | 23.9             | -7.5                        |
| 346    | Indian Map Well            | 481774               | 4058306               | 15 S     | 44 E   | 9 NW    | -111      |                 |                  | 23.9             |                             |
| 347    | Main Hanaupah Spring #3    | 497333               | 4004593               | 20 S     | 46 E   | 19 NE   | 1190      | Ø               | 15.8             | 14.8             | 1.0                         |
|        | (Middle)                   |                      |                       |          |        |         |           |                 |                  |                  |                             |
| 348    | Fern (Lower)               | 498591               | 4072436               | 13 S     | 46 E   | 30 SW   | 1143      | Ň               | 18.8             | 15.1             | 3.7                         |
| 349    | Potlicker Seep             | 498548               | 4074915               | 13 S     | 46 E   | 8 SW    | 1301      | <del>, -</del>  | 14.7             | 14.0             | 0.7                         |
| 350    | Two Barrel Spring          | 497206               | 4075623               | 13 S     | 45.5 E | NONE    | 1543      |                 |                  | 12.3             |                             |
| 351    | Leadfield Spring           | 495552               | 4078927               | 12.5 S   | 45 E   | 2 NW    | 1304      | ~               |                  | 14.0             |                             |
| 352    | Upper Leadfield Spring     | 496489               | 4077005               | 13 S     | 45 E   | NONE    | 1430      | -<br>V          | 15.7             | 13.1             | 2.6                         |
| 353    | Trigger                    | 492674               | 4075080               | 13 S     | 45.5 E | NONE    | 1065      | ~               | 13.6             | 15.7             | -2.1                        |
| 354    | Poacher                    | 492043               | 4075155               | 13 S     | 45.5 E | NONE    | 1008      |                 |                  | 16.1             |                             |
| 355    | Unnamed Well A             | 425835               | 4061534               | 14 S     | 38 E   | 27 NW   | 298       | 30              | 23.7             | 21.0             | 2.7                         |
|        | (Craig Canyon)             |                      |                       |          |        |         |           |                 |                  |                  |                             |
| 356    | Klare Spring               | 491882               | 4077242               | 12.5 S   | 45 E   | 2 SW    | 911       | 10              | 22.8             | 16.7             | 6.1                         |
| 357    | Salt Well (Craig Canyon)   | 427046               | 4059776               | 14 S     | 38 E   | 35 NW   | 317       | 0               |                  | 20.9             |                             |
| 358    | Gervais Well               | 425687               | 4063263               | 14 S     | 38 E   | 22 NW   | 309       | 0               |                  | 21.0             |                             |
| 359    | Flowing Well               | 425992               | 4064960               | 14 S     | 38 E   | 15 NE   | 299       | ъ               | 22.5             | 21.0             | 1.5                         |
| 360    | Artesian Well 4066600      | 426378               | 4066797               | 14 S     | 38 E   | 10 NE   | 301       | ъ               | 21.3             | 21.0             | 0.3                         |
| 361    | Fat Tuesday (Unnamed Well) | ) 427424             | 4068086               | 14 S     | 38 E   | 2 NE    | 309       |                 |                  | 21.0             |                             |
| 362    | Unnamed Well C             | 424171               | 4066478               | 14 S     | 38 E   | 9 NW    | 314       |                 | 16.4             | 20.9             | -4.5                        |
|        | (Craig Canyon)             |                      |                       |          |        |         |           |                 |                  |                  |                             |

| Appenc | lix continued                                      |                      |                       |          |             |         |           |                 |                  |                      |                             |
|--------|----------------------------------------------------|----------------------|-----------------------|----------|-------------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                                                    | UTM                  | UTM                   |          |             | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Number | Spring Name                                        | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range       | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 363    | Unnamed Well D                                     | 424362               | 4066577               | 14 S     | 38 E        | 9 NE    | 315       |                 |                  | 20.9                 |                             |
| 364    | Lower Warm Springs                                 | 430896               | 4071509               | 13 S     | 39 E        | 30 NW   | 355       | ~<br>V          | 11.9             | 20.6                 | -8.7                        |
|        | South Shelf Spring D                               |                      |                       |          |             |         |           |                 |                  |                      |                             |
| 365    | Lower Warm Springs<br>South Shalf Spring I         | 431570               | 4071393               | 13 S     | 39 E        | 30 NE   | 352       | ₩<br>V          | 15.3             | 20.7                 | -5.4                        |
| 366    | Lower Warm Springs                                 | 431433               | 4071238               | 13 S     | 39 E        | 30 NE   | 345       | -<br>V          | 18.1             | 20.7                 | -2.6                        |
|        | South Shelf Spring H                               |                      |                       |          |             |         |           |                 |                  |                      |                             |
| 367    | Lower Warm Springs                                 | 431296               | 4071328               | 13 S     | 39 E        | 30 NE   | 349       | ~               | 17.7             | 20.7                 | -3.0                        |
| 368    | סטנות South Sheir Spring ש<br>ו מאיפר Warm Snrings | 431072               | 4071383               | 13.5     | 30 F        | 30 NF   | 345       | ,<br>V          | 17 9             | 7 0 2                | -7 8                        |
|        | South Shelf Spring F                               | 10-0+                |                       | 0        | у<br>И<br>Г |         | 2         | 7               | 2                |                      | 0                           |
| 369    | Lower Warm Springs<br>South Shelf Spring E         | 431003               | 4071409               | 13 S     | 39 E        | 30 NE   | 351       | <del>\</del>    | 18.6             | 20.7                 | -2.1                        |
| 370    | Lower Warm Springs                                 | 430759               | 4071610               | 13 S     | 39 E        | 30 NW   | 354       | ,<br>V          | 16               | 20.6                 | -4.6                        |
|        | South Shelf C                                      |                      |                       |          |             |         |           |                 |                  |                      |                             |
| 371    | Lower Warm Springs<br>South Shelf B                | 430708               | 4071693               | 13 S     | 39 E        | 30 NW   | 355       | ₩<br>V          | 16.4             | 20.6                 | -4.2                        |
| 372    | Lower Warm Springs                                 | 430622               | 4071703               | 13 S     | 39 E        | 30 NW   | 354       | -<br>V          | 19.4             | 20.6                 | -1.2                        |
|        | South Shelf Spring A                               |                      |                       |          |             |         |           |                 |                  |                      |                             |
| 373    | Greenleaf Spring A                                 | 498896               | 3991342               | 21 S     | 46 E        | 33 NE   | 1263      | 100             | 16               | 14.3                 | 1.7                         |
| 374    | Greenleaf Spring B                                 | 498724               | 3991087               | 21 S     | 46 E        | 33 NE   | 1311      | 20              | 17               | 13.9                 | 3.1                         |
| 375    | Greenleaf Spring C                                 | 498643               | 3991116               | 21 S     | 46 E        | 33 NE   | 1338      | 10              | 13.5             | 13.7                 | -0.2                        |
| 376    | Cloud Spring                                       | 497280               | 3990346               | 21 S     | 46 E        | 33 NW   | 1693      | -<br>V          | 12.7             | 11.3                 | 1.4                         |
| 377    | High Dog Spring B                                  | 496970               | 3990987               | 21 S     | 46 E        | 32 SE   | 1635      | 12              | 14.5             | 11.7                 | 2.8                         |
| 378    | High Dog Spring A                                  | 497002               | 3991023               | 21 S     | 46 E        | 32 SE   | 1629      | 20              | 15.1             | 11.7                 | 3.4                         |
| 379    | Dog Spring                                         | 497725               | 3991398               | 21 S     | 46 E        | 32 NE   | 1456      | 200             | 16.6             | 12.9                 | 3.7                         |
| 380    | Low Dog Spring                                     | 497929               | 3991405               | 21 S     | 46 E        | 33 NW   | 1428      | S               | 15               | 13.1                 | 1.9                         |
| 381    | Jack 17                                            | 449993               | 4042927               | 16 S     | 40 E        | 19 NW   | 1705      | 25              | 10.7             | 11.2                 | -0.5                        |
| 382    | Jack 20                                            | 449712               | 4043391               | 16 S     | 40 E        | 18 SW   | 1660      | 10              | 10.1             | 11.5                 | -1.4                        |
| 383    | Jack 19                                            | 449622               | 4043507               | 16 S     | 40 E        | 18 SW   | 1628      | 10              | 8.2              | 11.7                 | -3.5                        |
| 384    | Jack 18                                            | 449631               | 4043509               | 16 S     | 40 E        | 18 NE   | 1625      | Ð               | 7.4              | 11.7                 | -4.3                        |
| 385    | Jack A                                             | 449512               | 4043570               | 16 S     | 40 E        | 18 NW   | 1605      | m               | 17.2             | 11.9                 | 5.3                         |
| 386    | Jack 29                                            | 449182               | 4044307               | 16 S     | 40 E        | 18 NW   | 1513      |                 | 12.5             |                      |                             |
| 387    | Jack 42                                            | 448128               | 4047039               | 16 S     | 40 E        | 1 SW    | 1310      | -               | 12.5             | 13.9                 | -1.4                        |
| 388    | Jack 46                                            | 450093               | 4047476               | 16 S     | 40 E        | 6 SW    | 1434      |                 | 13.1             |                      |                             |
| 389    | Jack 45                                            | 449690               | 4047430               | 16 S     | 40 E        | 1 SW    | 1404      | 2.5             | 15.6             | 13.3                 | 2.3                         |

| Appen  | idix continued            |                      |                       |          |          |         |           |                                                  |                  |                      |                             |
|--------|---------------------------|----------------------|-----------------------|----------|----------|---------|-----------|--------------------------------------------------|------------------|----------------------|-----------------------------|
| Spring |                           | UTM                  | UTM                   |          |          | Quarter | Elevation | Discharge                                        | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | er Spring Name            | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range    | Section | (meters)  | (liters/minute)                                  | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 390    | Jack 43                   | 447150               | 4046696               | 16 S     | 40 E     | 14 NW   | 1196      | m                                                | 15.6             | 14.7                 | 0.9                         |
| 391    | Jack 32                   | 447924               | 4046065               | 16 S     | 40 E     | 2 NE    | 1299      | 1.5                                              | 11.2             | 14.0                 | -2.8                        |
| 392    | Jack 33                   | 447913               | 4046030               | 16 S     | 40 E     | 1 NW    | 1299      | 1.5                                              | 13.5             | 14.0                 | -0.5                        |
| 393    | Jack 35                   | 449107               | 4045708               | 16 S     | 40 E     | 11 NW   | 1452      | 7                                                | 12.8             | 13.0                 | -0.2                        |
| 394    | Arrow Spring              | 471752               | 4040235               | 16 S     | 43 E     | 28 SE   | 1070      | ~                                                |                  | 15.6                 |                             |
| 395    | Scout Spring (West)       | 496106               | 4077685               | 13 S     | 45.5 E   | NE      | 1445      | Ŋ                                                | 12.7             | 13.0                 | -0.3                        |
| 396    | Scout Spring (Upper East) | 496297               | 4077664               | 13 S     | 45.5 E   | NE      | 1611      |                                                  |                  | 11.8                 |                             |
| 397    | Scout Spring (Lower East) | 496179               | 4077592               | 13 S     | 45.5 E   | NE      | 1507      | 2                                                | 17.3             | 12.6                 | 4.7                         |
| 398    | Butterfly Spring          | 495711               | 4076518               | 13 S     | 45.5 E   | NE      | 1422      | 40                                               | 13               | 13.2                 | -0.2                        |
| 399    | Shotgun Spring A          | 498318               | 4012650               | 19 S     | 46 E     | 29 NW   | 1196      | 100                                              | 16               | 14.7                 | 1.3                         |
| 400    | Shotgun Spring B          | 498409               | 4012707               | 19 S     | 46 E     | 29 NW   | 1132      | 25                                               |                  | 15.2                 |                             |
| 401    | Uppermost Spring          | 496412               | 4012068               | 19 S     | 46 E     | 30 SW   | 1718      | 50                                               | 13.6             | 11.1                 | 2.5                         |
| 402    | Pistol Spring             | 496607               | 4012059               | 19 S     | 46 E     | 30 SW   | 1548      | 9                                                | 14.4             | 12.3                 | 2.1                         |
| 403    | Mossy Spring              | 498780               | 4012639               | 19 S     | 46 E     | 29 NE   | 1068      | 7                                                | 19               | 15.6                 | 3.4                         |
| 404    | Second Spring             | 499051               | 4012438               | 19 S     | 46 E     | 29 NE   | 1023      | 2                                                | 16.9             | 16.0                 | 0.9                         |
| 405    | Machette Spring           | 499409               | 4012274               | 19 S     | 46 E     | 28 NW   | 950       | 75                                               | 15.6             | 16.5                 | 6.0-                        |
| 406    | Tule George Spring A      | 494334               | 4088497               | 11 S     | 44 E     | 32 NE   | 1869      | ~                                                | 9.3              | 10.0                 | -0.7                        |
| 407    | Tule George Spring B      | 494410               | 4088525               | 11 S     | 44 E     | 32 NE   | 1868      | <del>, -</del>                                   | 13.2             | 10.0                 | 3.2                         |
| 408    | Bonnie Claire Seep        | 481143               | 4096743               | 10 S     | 43 E     | 36 SW   | 1669      | -                                                | 8.8              | 11.4                 | -2.6                        |
| 409    | Tule George Spring C      | 494466               | 4088518               | 11 S     | 44 E     | 32 NE   | 1852      | 00                                               | 12.5             | 10.2                 | 2.4                         |
| 410    | Larkspur Spring           | 493901               | 4087891               | 11 S     | 44 E     | 32 NE   | 1979      | 2                                                | 8.5              | 9.3                  | -0.8                        |
| 411    | Little Willow             | 493987               | 4088547               | 11 S     | 44 E     | 32 NE   | 1946      |                                                  |                  | 9.5                  |                             |
| 412    | Knoll Spring              | 494372               | 4088815               | 11 S     | 44 E     | 29 SE   | 1885      |                                                  |                  | 9.9                  |                             |
| 413    | Black Spot Spring         | 492439               | 4089115               | 11 S     | 44 E     | 30 SE   | 2007      | 4                                                | 9.7              | 9.1                  | 9.0                         |
| 414    | Cow Creek Urban Spring A  | 511960               | 4039770               | 28 N     | <u>-</u> | 34 SW   | -53       |                                                  |                  | 23.5                 |                             |
| 415    | Koramatsu Spring          | 512612               | 4039935               | 28 N     | 1<br>T   | 34 SE   | 11        | <del>.                                    </del> | 18.2             | 23.0                 | -4.8                        |
| 416    | Cow Creek Urban Spring B  | 512128               | 4039875               | 28 N     | 1<br>T   | 34 SW   | -35       | <del>.                                    </del> |                  | 23.4                 |                             |
| 417    | Cow Creek Urban Spring C  | 512063               | 4039899               | 28 N     | 1<br>T   | 34 SW   | -26       | 15                                               | 24.5             | 23.3                 | 1.2                         |
| 418    | Cow Creek Urban Spring D  | 511958               | 4039946               | 28 N     | 1<br>T   | 34 SW   | -38       | ~                                                |                  | 23.4                 |                             |
| 419    | Cow Creek Urban Spring E  | 511933               | 4040045               | 28 N     | 1<br>T   | 34 SW   | -42       | -<br>V                                           |                  | 23.4                 |                             |
| 420    | Cow Creek Urban Spring F  | 511988               | 4040149               | 28 N     | 1<br>T   | 34 SW   | -36       | 2                                                | 23.6             | 23.4                 | 0.2                         |
| 421    | Cow Creek Urban Spring G  | 511847               | 4040290               | 28 N     | 1<br>T   | 34 SW   | -37       | <del>.                                    </del> | 23.4             | 23.4                 | 0.0                         |
| 422    | Cow Creek Urban Spring H  | 511850               | 4040328               | 28 N     | 1<br>T   | 34 SW   | -39       | -<br>V                                           | 21.1             | 23.4                 | -2.3                        |
| 423    | Cow Creek Urban Spring I  | 511830               | 4040443               | 28 N     | 1<br>T   | 34 SW   | -37       | -<br>V                                           | 19.1             | 23.4                 | -4.3                        |
| 424    | Winter Spring             | 501216               | 3991796               | 21 S     | 46 E     | 25 SW   | 1132      | 2                                                | 18.9             | 15.2                 | 3.7                         |
| 425    | Saline Valley Marsh       | 426533               | 4062309               | 14 S     | 38 E     | 22 SE   | 294       |                                                  | 15.3             | 21.1                 | -5.8                        |
| 426    | Jack 41                   | 449730               | 4047169               | 16 S     | 40 E     | 12 NW   | 1403      | 2                                                | 12.4             | 13.3                 | -0.9                        |
|        |                           |                      |                       |          |          |         |           |                                                  |                  |                      |                             |

| Appen  | dix continued             |                      |                       |          |       |         |           |                                                  |                  |                      |                             |
|--------|---------------------------|----------------------|-----------------------|----------|-------|---------|-----------|--------------------------------------------------|------------------|----------------------|-----------------------------|
| Spring |                           | UTM                  | UTM                   |          |       | Quarter | Elevation | Discharge                                        | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Number | Spring Name               | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range | Section | (meters)  | (liters/minute)                                  | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 427    | East Chloride City Well A | 514150               | 4060725               | 30 N     | 1 E   | 26 SW   | 1540      |                                                  |                  | 12.3                 |                             |
| 428    | Jack 02                   | 452506               | 4039708               | 16 S     | 41 E  | 32 NE   | 1291      | 2                                                | 15.6             | 14.1                 | 1.5                         |
| 429    | Mill Canyon Spring        | 452644               | 4039911               | 16 S     | 41 E  | 33 NW   | 1287      | 200                                              | 12               | 14.1                 | -2.1                        |
| 430    | Jack 06                   | 453488               | 4041023               | 16 S     | 41 E  | 28 NE   | 1458      | <del>.                                    </del> | 9.2              | 12.9                 | -3.7                        |
| 431    | Jack 05                   | 453831               | 4040911               | 16 S     | 41 E  | 28 SE   | 1435      | 2                                                | 15.9             | 13.1                 | 2.8                         |
| 432    | Jack 14                   | 454581               | 4042120               | 16 S     | 41 E  | 26 SW   | 1640      | Ø                                                | 10.8             | 11.6                 | -0.8                        |
| 433    | Keir Spring               | 454417               | 4041761               | 16 S     | 41 E  | 27 SE   | 1546      | 15                                               | 15.2             | 12.3                 | 2.9                         |
| 434    | Jack 12                   | 454300               | 4041516               | 16 S     | 41 E  | 27 SE   | 1501      | <del>.                                    </del> | 16.1             | 12.6                 | 3.5                         |
| 435    | Jack 13                   | 454341               | 4041286               | 16 S     | 41 E  | 27 SW   | 1473      | 35                                               | 17.2             | 12.8                 | 4.4                         |
| 436    | Mill Cottonwood           | 454115               | 4040908               | 16 S     | 41 E  | 27 SW   | 1375      | 30                                               | 18               | 13.5                 | 4.5                         |
| 437    | Jack 04                   | 454325               | 4040664               | 16 S     | 41 E  | 34 NW   | 1380      | ~                                                | 10.1             | 13.5                 | -3.4                        |
| 438    | Shannon Spring            | 454019               | 4040276               | 16 S     | 41 E  | 34 NW   | 1286      | 18                                               | 18.5             | 14.1                 | 4.4                         |
| 439    | Jack 03                   | 455004               | 4040383               | 16 S     | 41 E  | 34 NW   | 1377      | ~                                                | 14.6             | 13.5                 | 1.1                         |
| 440    | Heinz Spring              | 454073               | 4040086               | 16 S     | 41 E  | 34 NW   | 1257      | ~                                                | 14.5             | 14.3                 | 0.2                         |
| 441    | Mendoza Spring            | 452126               | 4041125               | 16 S     | 41 E  | 29 SE   | 1435      | m                                                | 14.8             | 13.1                 | 1.7                         |
| 442    | Jack 07                   | 452395               | 4040680               | 16 S     | 41 E  | 29 SE   | 1384      | ~                                                | 11.6             | 13.4                 | -1.8                        |
| 443    | Jack 08                   | 452468               | 4040190               | 16 S     | 41 E  | 32 NE   | 1321      | 12                                               | 15.9             | 13.9                 | 2.0                         |
| 444    | Jack 09                   | 450783               | 4040466               | 16 S     | 41 E  | 29 SW   | 1509      | -<br>V                                           | 13.5             | 12.6                 | 0.0                         |
| 445    | Jack 10                   | 450685               | 4040589               | 16 S     | 41 E  | 30 SE   | 1530      | -<br>V                                           | 13.6             | 12.4                 | 1.2                         |
| 446    | Jack 11                   | 450264               | 4040814               | 16 S     | 41 E  | 30 SE   | 1660      | ~<br>V                                           | 12               | 11.5                 | 0.5                         |
| 447    | Jaybird Spring            | 489050               | 4091789               | 11 S     | 43 E  | 15 NW   | 2020      | 40                                               | 7.7              | 9.0                  | -1.3                        |
| 448    | Pine Spring               | 489754               | 4090893               | 11 S     | 43 E  | 15 SE   | 2068      | 2                                                | 7.9              | 8.6                  | -0.7                        |
| 449    | Log Spring                | 490423               | 4091934               | 11 S     | 43 E  | 13 SW   | 1924      | 18                                               | 12               | 9.6                  | 2.4                         |
| 450    | C-B Spring                | 491020               | 4091846               | 11 S     | 43 E  | 14 NE   | 2000      |                                                  |                  | 9.1                  |                             |
| 451    | Wildhorse Spring          | 490255               | 4011248               | 19 S     | 45 E  | 26 SE   | 1875      |                                                  |                  | 10.0                 |                             |
| 452    | Malapi Spring a           | 482310               | 4028483               | 18 S     | 44 E  | 3 NE    | 1520      |                                                  |                  | 12.5                 |                             |
| 453    | Malapi Spring b           | 482441               | 4028572               | 18 S     | 44 E  | 3 NE    | 1494      | 2                                                | 9.6              | 12.7                 | -3.1                        |
| 454    | Malapi Spring c           | 482493               | 4028670               | 18 S     | 44 E  | 3 NE    | 1477      | 4                                                | 13.2             | 12.8                 | 0.4                         |
| 455    | Malapi Spring d           | 482527               | 4028735               | 18 S     | 44 E  | 3 NE    | 1441      | 15                                               | 10.1             | 13.0                 | -2.9                        |
| 456    | Daylight Pass Spring      | 505619               | 4071470               | 13 S     | 45 E  | 35 NE   | 1329      | 2                                                | 12.6             | 13.8                 | -1.2                        |
| 457    | Staininger Spring         | 471230               | 4098555               | 11 S     | 43 E  | 5 SE    | 968       | >1000                                            | 19.7             | 16.3                 | 3.4                         |
| 458    | Surprise Spring NPS       | 469461               | 4095004               | 11 S     | 43 E  | 18 SE   | 836       | >150                                             | 25.7             | 17.3                 | 8.4                         |
| 459    | Red Rock Spring           | 461118               | 4070316               | 13 S     | 42 E  | 29 SW   | 1932      | -<br>V                                           | 12.2             | 9.6                  | 2.6                         |
| 460    | Wagon Spring              | 461383               | 4069082               | 13 S     | 42 E  | 32 NE   | 1831      |                                                  |                  | 10.3                 |                             |
| 461    | Rye Grass Spring          | 460770               | 4068846               | 13 S     | 42 E  | 32 NW   | 1920      |                                                  |                  | 9.7                  |                             |
| 462    | Wildrose (Station) Spring | 480884               | 4013002               | 19 S     | 44 E  | 21 SE   | 1071      |                                                  |                  | 15.6                 |                             |
| 463    | Mud Spring                | 480459               | 4014374               | 19 S     | 44 E  | 16 SW   | 1202      | <del>,</del><br>V                                | 16.1             | 14.7                 | 1.4                         |

| Appen  | dix continued           |                      |                       |          |       |         |           |                 |                  |                      |                             |
|--------|-------------------------|----------------------|-----------------------|----------|-------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                         | UTM                  | UTM                   |          |       | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name           | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 464    | Roadside Spring         | 482317               | 4013265               | 19 S     | 44 E  | 20 SE   | 1168      | 100             | 18.9             | 14.9                 | 4.0                         |
| 465    | Poplar Spring (b)       | 482634               | 4013400               | 19 S     | 44 E  | 20 SE   | 1198      | -               | 16.7             | 14.7                 | 2.0                         |
| 466    | Poplar Spring (a)       | 482639               | 4013422               | 19 S     | 44 E  | 20 SE   | 1224      | 60              | 20.2             | 14.5                 | 5.7                         |
| 467    | Thorndike Spring        | 493295               | 4009948               | 19 S     | 45 E  | 35 SW   | 2305      | 4               | 6.5              | 7.0                  | -0.5                        |
| 468    | Greenwater Spring       | 533820               | 4000814               | 23 N     | 3 E   | 12 NE   | 1516      |                 |                  | 12.5                 |                             |
| 469    | Young Spring            | 529035               | 4015659               | 25 N     | 3 E   | 20 SW   | 902       |                 |                  | 16.8                 |                             |
| 470    | Navel Spring            | 525463               | 4026217               | 26 N     | 2 E   | 13 SW   | 582       | ~               | 17.6             | 19.0                 | -1.4                        |
| 471    | Salty Navel Spring      | 524956               | 4026424               | 26 N     | 2 E   | 13 SW   | 544       | -               | 17               | 19.3                 | -2.3                        |
| 472    | Fossil Spring           | 523905               | 4026259               | 26 N     | 2 E   | 13 SW   | 466       | ~               | 16.7             | 19.9                 | -3.2                        |
| 473    | West Twin Spring        | 489565               | 4043931               | 16 S     | 45 E  | 30 NE   | 1240      | 2               | 16               | 14.4                 | 1.6                         |
| 474    | Tucki Spring            | 489581               | 4044113               | 16 S     | 45 E  | 30 NE   | 1138      |                 |                  | 15.1                 |                             |
| 475    | Gypsum                  | 489593               | 4044250               | 16 S     | 45 E  | 30 NE   | 1077      | ~               | 12.8             | 15.6                 | -2.8                        |
| 476    | Monarch Spring          | 506929               | 4064024               | 14 S     | 46 E  | 24 SE   | 871       | Ŋ               | 14.9             | 17.0                 | -2.1                        |
| 477    | Bed Spring b            | 507378               | 4064669               | 14 S     | 46 E  | 24 SE   | 952       | >5              | 17.4             | 16.5                 | 0.9                         |
| 478    | Unnamed East Tin Spring | 472260               | 4088494               | 12 S     | 43 E  | 5 NE    | 540       |                 |                  | 19.3                 |                             |
| 479    | Shrike Spring           | 473186               | 4087811               | 12 S     | 43 E  | 4 SE    | 540       | ъ               | 19.6             | 19.3                 | 0.3                         |
| 480    | Whisker Spring          | ×                    | ×                     | 11 S     | 43 E  | 16 SW   | 857       |                 |                  | 17.1                 |                             |
| 481    | Bee Seep                | 472208               | 4093915               | 11 S     | 43 E  | 20 NW   | 849       |                 |                  | 17.2                 |                             |
| 482    | Mortar Spring           | 472076               | 4094186               | 11 S     | 43 E  | 17 SE   | 877       | 4               | 15.1             | 17.0                 | -1.9                        |
| 483    | Bushy Seep (Upper)      | 471489               | 4091802               | 11 S     | 43 E  | 31 NE   | 695       |                 |                  | 18.2                 |                             |
| 484    | Bushy Seep (Lower)      | 470461               | 4090575               | 11 S     | 43 E  | 31 NE   | 615       |                 |                  | 18.8                 |                             |
| 485    | Unnamed LCM 005         | 443668               | 4125438               | 8 S      | 40 S  | 18 NW   | 1336      | -<br>V          | 10.2             | 13.8                 | -3.6                        |
| 486    | Last Chance Springs A   | 440921               | 4126114               | 8 S      | 39 E  | 2 SE    | 1743      | 10              | 13.4             | 10.9                 | 2.5                         |
| 487    | Last Chance Springs B   | 441002               | 4126165               | 8 S      | 39 E  | 2 SE    | 1748      |                 |                  | 10.9                 | -10.9                       |
| 488    | Last Chance Springs C   | 411052               | 4126186               | 8 S      | 39 E  | 2 SE    | 1767      |                 |                  | 10.7                 | -10.7                       |
| 489    | Last Chance Springs F   | 441059               | 4126221               | 8 S      | 39 E  | 2 SE    | 1747      | 2               | 0.8              | 10.9                 | -10.1                       |
| 490    | Last Chance Springs E   | 441056               | 4126208               | 8 S      | 39 E  | 2 SE    | 1746      | ,<br>V          |                  | 10.9                 |                             |
| 491    | Last Chance Springs D   | 441059               | 4126199               | 8 S      | 39 E  | 2 SE    | 1746      | 2               | 11               | 10.9                 | 0.1                         |
| 492    | Last Chance Springs G   | 441080               | 4126211               | 8 S      | 39 E  | 2 SE    | 1739      | -<br>V          | 12.5             | 10.9                 | 1.6                         |
| 493    | Last Chance Springs H   | 441143               | 4126202               | 8 S      | 39 E  | 2 SE    | 1719      | 2               | 13.6             | 11.1                 | 2.5                         |
| 494    | Last Chance Springs I   | 441170               | 4126169               | 8 S      | 39 E  | 2 SE    | 1706      | 2               | 15.3             | 11.2                 | 4.1                         |
| 495    | Last Chance Springs J   | 441180               | 4126192               | 8 S      | 39 E  | 2 SE    | 1717      | ~               | 14.1             | 11.1                 | 3.0                         |
| 496    | Last Chance Springs K   | 441205               | 4126190               | 8 S      | 39 E  | 2 SE    | 1714      |                 |                  | 11.1                 |                             |
| 497    | Last Chance Springs L   | 441265               | 4126224               | 8 S      | 39 E  | 2 SE    | 1716      |                 | 8.4              | 11.1                 | -2.7                        |
| 498    | Last Chance Springs M   | 441226               | 4126108               | 8 S      | 39 E  | 2 SE    | 1680      | 2               | 13.5             | 11.4                 | 2.1                         |
| 499    | Last Chance Springs T   | 441668               | 4126025               | 8 S      | 39 E  | 2 SE    | 1617      | 10              | 10.9             | 11.8                 | -0.9                        |
| 500    | Last Chance Springs S   | 441481               | 4126057               | 8 S      | 39 E  | 2 SE    | 1654      | 5               | 11               | 11.5                 | -0.5                        |
|        |                         |                      |                       |          |       |         |           |                 |                  |                      |                             |
| Appen  | dix continued              |                      |                       |          |       |         |           |                 |                  |                      |                             |
|--------|----------------------------|----------------------|-----------------------|----------|-------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                            | UTM                  | UTM                   |          |       | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name              | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 501    | Last Chance Springs R      | 441449               | 4126023               | 8 S      | 39 E  | 2 SE    | 1645      | Ļ               |                  | 11.6                 |                             |
| 502    | Last Chance Springs Q      | 441426               | 4126061               | 8 S      | 39 E  | 2 SE    | 1663      | <del>, -</del>  | 12.4             | 11.5                 | 0.0                         |
| 503    | Last Chance Springs P      | 441404               | 4126048               | 8 S      | 39 E  | 2 SE    | 1663      | 20              | 15.4             | 11.5                 | 3.9                         |
| 504    | Last Chance Springs O      | 441390               | 4126055               | 8 S      | 39 E  | 2 SE    | 1666      | 20              | 14.5             | 11.5                 | 3.0                         |
| 505    | Last Chance Springs N      | 441358               | 4126065               | 8 S      | 39 E  | 2 SE    | 1668      | 10              |                  | 11.4                 |                             |
| 506    | Unnamed LCM 003            | 441224               | 4125695               | 8 S      | 39 E  | 2 SW    | 1713      | 7               | 15.9             | 11.1                 | 4.8                         |
| 507    | Unnamed LCM 004            | 441748               | 4125560               | 8 S      | 39 E  | 2 SW    | 1586      | 9               | 11.9             | 12.0                 | -0.1                        |
| 508    | Unnamed Sand Seep b        | 450394               | 4116201               | 9 S      | 41 E  | 7 SE    | 931       |                 | 10               | 16.6                 | -6.6                        |
| 509    | Unnamed Sand Seep a        | 450324               | 4116283               | 9 S      | 41 E  | 7 SW    | 932       |                 |                  | 16.6                 |                             |
| 510    | Unnamed Sand Seep c        | 450495               | 4116024               | 9 S      | 41 E  | 7 SE    | 922       |                 |                  | 16.7                 |                             |
| 511    | Unnamed Sand Seep d        | 450459               | 4115962               | 9 S      | 41 E  | 7 SE    | 917       |                 |                  | 16.7                 |                             |
| 512    | Unnamed Sand Seep e        | 450587               | 4115892               | 9 S      | 41 E  | 7 SE    | 917       |                 |                  | 16.7                 |                             |
| 513    | Sand Spring a              | 450802               | 4115930               | 9 S      | 41 E  | 7 SE    | 929       | m               | 16.5             | 16.6                 | -0.1                        |
| 514    | Sand Spring b              | 450854               | 4115935               | 9 S      | 41 E  | 7 SE    | 926       | 2               | 15.2             | 16.6                 | -1.4                        |
| 515    | Sand Spring c              | 450919               | 4115885               | 9 S      | 41 E  | 7 SE    | 926       | 40              | 9.7              | 16.6                 | -6.9                        |
| 516    | Little Sand Spring a       | 452108               | 4114205               | 9 S      | 41 E  | 17 SE   | 890       | m               | 16.7             | 16.9                 | -0.2                        |
| 517    | Little Sand Spring b       | 452215               | 4114117               | 9 S      | 41 E  | 17 SE   | 887       | _               | 15.3             | 16.9                 | -1.6                        |
| 518    | Scotty's Cottonwood        | 468986               | 4096542               | 11 S     | 42 E  | 12 SW   | 800       | 12              | 26               | 17.5                 | 8.5                         |
| 519    | Gargoyle Spring            | 469790               | 4096445               | 11 S     | 43 E  | 7 SE    | 898       | 2               | 10.9             | 16.8                 | -5.9                        |
| 520    | Surprise Springs a         | 469325               | 4095153               | 11 S     | 43 E  | 18 NW   | 829       |                 |                  | 17.3                 |                             |
| 521    | Surprise Springs b         | 469314               | 4095138               | 11 S     | 43 E  | 18 NW   | 826       | 3.5             | 18.9             | 17.3                 | 1.6                         |
| 522    | Surprise Springs c         | 469305               | 4095137               | 11 S     | 43 E  | 18 NW   | 823       |                 |                  | 17.4                 |                             |
| 523    | Surprise Springs d         | 469313               | 4095124               | 11 S     | 43 E  | 18 NW   | 825       | <b>—</b>        | 12               | 17.3                 | -5.3                        |
| 524    | Surprise Springs e         | 469316               | 4095098               | 11 S     | 43 E  | 18 NW   | 820       |                 |                  | 17.4                 |                             |
| 525    | Surprise Springs f         | 469316               | 4095087               | 11 S     | 43 E  | 18 NW   | 820       | v               | 7.8              | 17.4                 | -9.6                        |
| 526    | Surprise Springs g         | 469313               | 4095072               | 11 S     | 43 E  | 18 NW   | 817       |                 |                  | 17.4                 |                             |
| 527    | Surprise Springs h         | 469298               | 4095035               | 11 S     | 43 E  | 18 NW   | 805       | 2               | 17.9             | 17.5                 | 0.4                         |
| 528    | Traderat                   | 467602               | 4094285               | 11 S     | 42 E  | 24 NW   | 648       | V               | 11.9             | 18.6                 | -6.7                        |
| 529    | Unnamed Harris Hill Spring | 460681               | 4055745               | 15 S     | 42 E  | 6 SW    | 1317      |                 |                  | 13.9                 |                             |
| 530    | Single Tree Spring         | 461127               | 4050399               | 15 S     | 42 E  | 29 SW   | 1373      |                 |                  | 13.5                 |                             |
| 531    | Fry Pan Spring             | 460679               | 4050057               | 15 S     | 42 E  | 29 SW   | 1420      |                 |                  | 13.2                 |                             |
| 532    | Burro Slide Spring         | 460196               | 4050215               | 15 S     | 42 E  | 29 SE   | 1483      | <del>, -</del>  | 7.5              | 12.7                 | -5.2                        |
| 533    | Grapevine Ranch Spring o   | 464644               | 4097647               | 11 S     | 42 E  | 3 NW    | 638       | 10              | 20               | 18.6                 | 1.4                         |
| 534    | Grapevine Ranch Spring n   | 464590               | 4097702               | 11 S     | 42 E  | 3 NW    | 636       | <100            | 16.2             | 18.7                 | -2.5                        |
| 535    | Grapevine Ranch Spring m   | 464581               | 4097698               | 11 S     | 42 E  | 3 NW    | 636       | 100             | 16.9             | 18.7                 | -1.8                        |
| 536    | Grapevine Ranch Spring l   | 464603               | 4097793               | 11 S     | 42 E  | 3 NW    | 640       | 100             | 17.6             | 18.6                 | -1.0                        |
| 537    | Grapevine Ranch Spring j   | 464591               | 4097950               | 11 S     | 42 E  | 3 NW    | 567       | D               | 16.6             | 19.1                 | -2.5                        |
|        |                            |                      |                       |          |       |         |           |                 |                  |                      |                             |

| Appen  | dix continued            |                      |                       |          |        |         |           |                                                  |                  |                      |                             |
|--------|--------------------------|----------------------|-----------------------|----------|--------|---------|-----------|--------------------------------------------------|------------------|----------------------|-----------------------------|
| Spring |                          | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge                                        | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name            | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute)                                  | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 538    | Grapevine Ranch Spring k | 464608               | 4097957               | 11 S     | 42 E   | 3 NW    | 668       | 60                                               | 16.6             | 18.4                 | -1.8                        |
| 539    | Grapevine Ranch Spring i | 464574               | 4097988               | 11 S     | 42 E   | 3 NW    | 661       | 60                                               | 17.3             | 18.5                 | -1.2                        |
| 540    | Grapevine Ranch Spring g | 464507               | 4097901               | 11 S     | 42 E   | 3 NW    | 654       | 60                                               | 7.2              | 18.5                 | -11.3                       |
| 541    | Grapevine Ranch Seep o   | 464557               | 4098090               | 11 S     | 42 E   | 3 NW    | 664       | ~                                                |                  | 18.5                 |                             |
| 542    | Grapevine Ranch Seep m   | 464551               | 4098096               | 11 S     | 42 E   | 3 NW    | 665       | ,<br>V                                           |                  | 18.5                 |                             |
| 543    | Grapevine Ranch Spring h | 464542               | 4098103               | 11 S     | 42 E   | 3 NW    | 664       | 2                                                | 14.4             | 18.5                 | -4.1                        |
| 544    | Grapevine Ranch Seep l   | 464535               | 4098109               | 11 S     | 42 E   | 3 NW    | 661       | ~                                                |                  | 18.5                 |                             |
| 545    | Grapevine Ranch Seep i   | 464531               | 4098110               | 11 S     | 42 E   | 3 NW    | 664       | <del>, -</del>                                   |                  | 18.5                 |                             |
| 546    | Grapevine Ranch Seep k   | 464547               | 4098121               | 11 S     | 42 E   | 3 NW    | 674       | ~                                                |                  | 18.4                 |                             |
| 547    | Grapevine Ranch Seep n   | 464569               | 4098109               | 11 S     | 42 E   | 3 NW    | 674       | -<br>V                                           |                  | 18.4                 |                             |
| 548    | Grapevine Ranch Seep p   | ×                    | ×                     | 11 S     | 42 E   | 3 NW    | 674       | ~                                                |                  | 18.4                 |                             |
| 549    | Grapevine Ranch Seep j   | 464568               | 4098134               | 11 S     | 42 E   | 3 NW    | 680       | ,<br>V                                           |                  | 18.4                 |                             |
| 550    | Grapevine Ranch Spring f | 464542               | 4098142               | 11 S     | 42 E   | 3 NW    | 678       | ~                                                | 13.6             | 18.4                 | -4.8                        |
| 551    | Grapevine Ranch Spring e | 464533               | 4098170               | 11 S     | 42 E   | 3 NW    | 679       | <del>.                                    </del> | 14.9             | 18.4                 | -3.5                        |
| 552    | Grapevine Ranch Seep h   | 464505               | 4098179               | 11 S     | 42 E   | 3 NW    | 678       | ~                                                |                  | 18.4                 |                             |
| 553    | Grapevine Ranch Spring d | 464468               | 4098175               | 11 S     | 42 E   | 3 NW    | 671       | >10                                              | 20               | 18.4                 | 1.6                         |
| 554    | Grapevine Ranch Seep f   | 464440               | 4098190               | 11 S     | 42 E   | 3 NW    | 674       |                                                  |                  | 18.4                 |                             |
| 555    | Grapevine Ranch Spring C | 464457               | 4098194               | 11 S     | 42 E   | 3 NW    | 679       | 2                                                | 16.3             | 18.4                 | -2.1                        |
| 556    | Grapevine Ranch Seep g   | 464444               | 4098208               | 11 S     | 42 E   | 3 NW    | 682       | ~                                                |                  | 18.3                 |                             |
| 557    | Grapevine Ranch Seep e   | 464434               | 4098216               | 11 S     | 42 E   | 3 NW    | 683       | ~                                                |                  | 18.3                 |                             |
| 558    | Grapevine Ranch Seep D   | 464419               | 4098224               | 11 S     | 42 E   | 3 NW    | 683       | ~                                                |                  | 18.3                 |                             |
| 559    | Grapevine Ranch Seep C   | 464405               | 4098240               | 11 S     | 42 E   | 3 NW    | 681       | ~                                                |                  | 18.3                 |                             |
| 560    | Grapevine Ranch Seep B   | 464382               | 4098273               | 11 S     | 42 E   | 3 NW    | 681       | ~                                                |                  | 18.3                 |                             |
| 561    | Grapevine Ranch Spring A | 464364               | 4098346               | 11 S     | 42 E   | 3 NW    | 683       | 1.5                                              | 9.6              | 18.3                 | -8.7                        |
| 562    | Grapevine Ranch Spring b | 464391               | 4098439               | 11 S     | 42 E   | 3 NW    | 669       |                                                  |                  | 18.2                 |                             |
| 563    | Grapevine Ranch Seep A   | 464446               | 4098388               | 11 S     | 42 E   | 3 NW    | 702       |                                                  |                  | 18.2                 |                             |
| 564    | Triangle Spring B        | 488101               | 4064404               | 14 S     | 45 E   | 19 NW   | -16       | ~<br>V                                           |                  | 23.2                 |                             |
| 565    | Triangle Seep            | 487887               | 4064631               | 14 S     | 45 E   | 19 NW   | -19       | ~<br>V                                           |                  | 23.2                 |                             |
| 566    | Triangle Spring A        | 487856               | 4064650               | 14 S     | 45 E   | 19 NW   | -18       |                                                  |                  | 23.2                 |                             |
| 567    | Shorty's Well            | 510747               | 4009089               | 25 N     | 1<br>E | 33 SW   | -106      |                                                  |                  | 23.9                 |                             |
| 568    | Eagle Borax Works Well   | 511957               | 4006225               | 20 S     | 1<br>E | 9 NE    | -112      | ~                                                | 20.2             | 23.9                 | -3.7                        |
| 569    | Eagle Borax Works Spring | 511988               | 4006211               | 20 S     | 1<br>E | 9 NE    | -111      |                                                  | 22.2             | 23.9                 | -1.7                        |
| 570    | Sowbelly Well            | 511939               | 4006098               | 25 N     | 1 E    | 9 SE    | -112      |                                                  |                  | 23.9                 |                             |
| 571    | Salisbury Spring         | 514060               | 3997227               | 23 N     | 1<br>1 | 2 SW    | -107      |                                                  |                  | 23.9                 |                             |
| 572    | Mesquite Well a          | 514161               | 3995457               | 23 N     | 1<br>1 | 14 NW   | -106      |                                                  |                  | 23.9                 |                             |
| 573    | Unnamed Mormon Point     | 515036               | 3992195               | 23 N     | 1<br>E | 23 NE   | -108      | <del>.                                    </del> | 12.9             | 23.9                 | -11.0                       |
|        | Spring                   |                      |                       |          |        |         |           |                                                  |                  |                      |                             |

| Appenc | dix continued                     |                      |                       |          |        |         |                 |                 |                  |                      |                             |
|--------|-----------------------------------|----------------------|-----------------------|----------|--------|---------|-----------------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                                   | UTM                  | UTM                   |          |        | Quarter | Elevation       | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Number | <ul> <li>Spring Name</li> </ul>   | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)        | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 574    | Lone Hawk Spring                  | 515368               | 3989035               | 22 N     | 1 E    | 1 NW    | -109            | -               | 13.9             | 23.9                 | -10.0                       |
| 575    | Hawk Spring b                     | 515634               | 3988587               | 22 N     | 1<br>E | 1 NE    | -110            | -               | 12.8             | 23.9                 | -11.1                       |
| 576    | Salt Well (Mormon Point)          | 515411               | 3987288               | 22 N     | 1 E    | 12 NW   | -113            |                 |                  | 23.9                 |                             |
| 577    | Bicentennial Spring               | 522240               | 3987145               | 22 N     | 2 E    | 3 SW    | -111            | -               | 14.5             | 23.9                 | -9.4                        |
| 578    | Wheelbarrow Spring                | 465402               | 4093218               | 11 S     | 42 E   | 16 NE   | 528             | -               | 21.6             | 19.4                 | 2.2                         |
| 579    | Wheelbarrow Seep                  | 465431               | 4093154               | 11 S     | 42 E   | 16 NE   | 550             |                 |                  | 19.3                 |                             |
| 580    | Horsefly Spring (a)               | 465467               | 4093079               | 11 S     | 42 E   | 16 NE   | 549             | -               | 17.3             | 19.3                 | -2.0                        |
| 581    | Horsefly Spring (b)               | 465478               | 4093066               | 11 S     | 42 E   | 16 NE   | 554             | -               | 14.9             | 19.2                 | -4.3                        |
| 582    | Ashford Well                      | 530986               | 3972772               | 21 N     | 3 E    | 28 NE   | -21             |                 |                  | 23.3                 |                             |
| 583    | Confidence Mill Well              | 539415               | 3966265               | 20 N     | 4 E    | 9 NW    | -29             |                 |                  | 23.3                 |                             |
| 584    | Blister Well                      | 542795               | 3953225               | 19 N     | 4 E    | 21 SW   | 13              |                 |                  | 23.0                 |                             |
| 585    | Superior Mine Tank B              | 555336               | 3952592               | 19 N     | 5 E    | 25 NW   | 116             | -               |                  | 22.3                 |                             |
| 586    | lbex Spring #1                    | 553298               | 3958899               | 19 N     | 5 E    | 2 NE    | 317             | ~               |                  | 20.9                 |                             |
| 587    | lbex Spring #2                    | 553269               | 3958866               | 19 N     | 5 E    | 2 NE    | 315             |                 |                  | 20.9                 |                             |
| 588    | BlackJack Spring (a)              | 465979               | 4092270               | 11 S     | 42 E   | 15 SW   | 560             | ~               |                  | 19.2                 |                             |
| 589    | BlackJack Spring (b)              | 465991               | 4092255               | 11 S     | 42 E   | 15 SW   | 553             | ~               |                  | 19.2                 |                             |
| 590    | BlackJack Spring (c)              | 466019               | 4092212               | 11 S     | 42 E   | 15 SW   | 561             | ~               |                  | 19.2                 |                             |
| 591    | BlackJack Spring (d)              | 466021               | 4092194               | 11 S     | 42 E   | 15 SW   | 560             |                 |                  | 19.2                 |                             |
| 592    | BlackJack Spring (e)              | 466026               | 4092186               | 11 S     | 42 E   | 15 SW   | 557             |                 |                  | 19.2                 |                             |
| 593    | BlackJack Spring (f)              | 466028               | 4092181               | 11 S     | 42 E   | 15 SW   | 561             |                 |                  | 19.2                 |                             |
| 594    | BlackJack Spring (g)              | 466031               | 4092166               | 11 S     | 42 E   | 15 SW   | 554             |                 |                  | 19.2                 |                             |
| 595    | BlackJack Spring (h)              | 466026               | 4092146               | 11 S     | 42 E   | 15 SW   | 554             | -<br>V          |                  | 19.2                 |                             |
| 596    | BlackJack Spring (i)              | 466032               | 4092132               | 11 S     | 42 E   | 15 SW   | 556             |                 |                  | 19.2                 |                             |
| 597    | BlackJack Spring (j)              | 466047               | 4092119               | 11 S     | 42 E   | 15 SW   | 556             |                 |                  | 19.2                 |                             |
| 598    | BlackJack Spring (k)              | 466060               | 4092106               | 11 S     | 42 E   | 15 SW   | 554             |                 |                  | 19.2                 |                             |
| 599    | BlackJack Spring (l)              | 466061               | 4092099               | 11 S     | 42 E   | 15 SW   | 552             |                 |                  | 19.3                 |                             |
| 600    | BlackJack Spring (m)              | 466066               | 4092085               | 11 S     | 42 E   | 15 SW   | 553             |                 |                  | 19.2                 |                             |
| 601    | BlackJack Spring (n) Main BJ      | 1466081              | 4092058               | 11 S     | 42 E   | 1 SW    | 552             | Ŋ               | 21               | 19.3                 | 1.8                         |
| 602    | BlackJack Spring (o)              | 466084               | 4092017               | 11 S     | 42 E   | 15 SW   | 555             |                 |                  | 19.2                 |                             |
| 603    | BlackJack Spring (p)              | 466134               | 4091908               | 11 S     | 42 E   | 15 SW   | 548             |                 |                  | 19.3                 |                             |
| 604    | Hobo Spring (a)                   | 466620               | 4091298               | 11 S     | 42 E   | 22 SW   | 518             |                 |                  | 19.5                 |                             |
| 605    | Mesquite Campground               | 466926               | 4090906               | 11 S     | 42 E   | 26 SE   | 516             |                 |                  | 19.5                 |                             |
|        | spring (a)                        |                      |                       |          |        |         |                 |                 |                  |                      |                             |
| 606    | Mesquite Campground               | 467091               | 4090843               | 11 S     | 42 E   | 26 SE   | 541             |                 |                  | 19.3                 |                             |
|        |                                   |                      |                       | (<br>,   |        |         | C<br>T          |                 |                  | L                    |                             |
| 60/    | Mesquite Campground<br>spring (d) | 46/332               | 4090894               | S 11     | 42 E   | 20 SE   | <del>ک</del> ار |                 |                  | C.91                 |                             |
|        |                                   |                      |                       |          |        |         |                 |                 |                  |                      |                             |

| Appen  | dix continued            |                      |                       |          |        |         |           |                 |                  |                      |                             |
|--------|--------------------------|----------------------|-----------------------|----------|--------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                          | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name            | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 608    | Mesquite Campground      | 467233               | 4090954               | 11 S     | 42 E   | 26 SE   | 519       |                 | 22.6             | 19.5                 | 3.1                         |
| 609    | Blackjack Annex a        | 466431               | 4092208               | 11 S     | 42 E   | 26 NE   | 560       |                 |                  | 19.2                 |                             |
| 610    | Blackjack Annex b        | 466384               | 4092174               | 11 S     | 42 E   | 26 NE   | 562       |                 |                  | 19.2                 |                             |
| 611    | Blackjack Annex c        | 466326               | 4092140               | 11 S     | 42 E   | 26 NE   | 562       |                 |                  | 19.2                 |                             |
| 612    | Blackjack Annex d        | 466257               | 4092103               | 11 S     | 42 E   | 26 NE   | 562       |                 |                  | 19.2                 |                             |
| 613    | Blackjack Annex e        | 466237               | 4092060               | 11 S     | 42 E   | 26 NE   | 556       | -               |                  | 19.2                 |                             |
| 614    | Grapevine Palm           | 467037               | 4095112               | 11 S     | 42 E   | 11 SE   | 650       |                 |                  | 18.6                 |                             |
| 615    | Grapevine Niblet         | 466204               | 4096224               | 11 S     | 42 E   | 11 NW   | 656       |                 |                  | 18.5                 |                             |
| 616    | Valley Spring            | 544525               | 3953058               | 19 N     | 4 E    | 24 SE   | -         |                 |                  | 23.1                 |                             |
| 617    | Amargosa River           | 543746               | 3953712               | 19 N     | 4 E    | 24 NW   | 9-        | >1000           | 8.6              | 23.2                 | -14.6                       |
| 618    | Montgomery Spring        | 549691               | 3978274               | 21 N     | 5 E    | 4 SW    | 1035      | 2               | 12               | 15.9                 | -3.9                        |
| 619    | Unnamed Salsberry Peak   | 550099               | 3978406               | 21 N     | 5 E    | 4 SW    | 983       | ~               |                  | 16.2                 |                             |
| 620    | Bed Spring a             | 507374               | 4064765               | 30 N     | 45 E   | 18 NW   | 942       |                 |                  | 16.5                 |                             |
| 621    | Salty Navel              | 525028               | 4026372               | 26 N     | 2 E    | 14 SW   | 552       |                 |                  | 19.3                 |                             |
| 622    | Triangle Spring c        | 488405               | 4064069               | 14 S     | 45 E   | 19 NW   | -11       | -               | 15.3             | 23.2                 | -7.9                        |
| 623    | Hobo Spring (b)          | 466698               | 4091200               | 11 S     | 42 E   | 22 SW   | 517       |                 |                  | 19.5                 |                             |
| 624    | Lost Creek B             | 475829               | 4083833               | 43 E     | 12 S   | 23 NW   | 484       | ъ               | 15.9             | 19.7                 | -3.8                        |
| 625    | Lost Creek A             | 475857               | 4083898               | 43 E     | 12 S   | 23 NW   | 482       | -               | 10.7             | 19.7                 | 0.6-                        |
| 626    | Lost Creek C             | 475795               | 4083773               | 43 E     | 12 S   | 23 NW   | 488       | 2               | 14.5             | 19.7                 | -5.2                        |
| 627    | Trickling Spring A       | 476694               | 4083745               | 43 E     | 12 S   | 23 NE   | 579       | -               | 17.3             | 19.1                 | -1.8                        |
| 628    | Trickling Spring B       | 476759               | 4083748               | 43 E     | 12 S   | 23 NE   | 558       | -               |                  | 19.2                 |                             |
| 629    | Trickling Spring C       | 476860               | 4083827               | 43 E     | 12 S   | 23 NE   | 570       | 2               | 13               | 19.1                 | -6.1                        |
| 630    | Forgotten Creek B        | 476417               | 4083748               | 43 E     | 12 S   | 23 NE   | 511       | -               | 9.6              | 19.5                 | 6.9-                        |
| 631    | Cow Springs              | 513324               | 4039554               | 27 N     | 1<br>E | 3 NW    | 29        | 10              | 19.3             | 22.9                 | -3.6                        |
| 632    | Calf Spring b            | 512863               | 4039581               | 27 N     | 1<br>T | 3 NW    | 29        |                 |                  | 22.9                 |                             |
| 633    | Calf Spring a            | 512960               | 4039530               | 27 N     | 1<br>T | 3 NW    | 14        | 2               | 12.8             | 23.0                 | -10.2                       |
| 634    | Jacknife Spring          | 477670               | 4083629               | 12 S     | 43 E   | 24 SW   | 603       | 4               | 15.9             | 18.9                 | -3.0                        |
| 635    | Midway Well              | 487827               | 4066716               | 14 S     | 45 E   | 18 NW   | 6-        | -               | 19               | 23.2                 | -4.2                        |
| 636    | Stovepipe Well 2         | 492884               | 4057052               | 15 S     | 46 E   | 15 NW   | -44       |                 |                  | 23.4                 |                             |
| 637    | Tiger Beetle Creek       | 485785               | 4065512               | 14 S     | 45 E   | 14 SE   | -20       |                 | 11.6             | 23.3                 | -11.7                       |
| 638    | Ruiz Well                | 484906               | 4065238               | 14 S     | 45 E   | 14 SW   | -15       |                 |                  | 23.2                 |                             |
| 639    | Unnamed Mesquite Flat We | ell 484845           | 4066604               | 14 S     | 45 E   | 14 NW   | -14       |                 |                  | 23.2                 |                             |
| 640    | Moth Spring              | 515550               | 4050883               | 29 N     | 1<br>1 | 36 NW   | 346       |                 |                  | 20.7                 |                             |
| 641    | Maidenhair Spring        | 516364               | 4051323               | 29 N     | 1<br>1 | 25 SE   | 429       | ъ               | 21.5             | 20.1                 | 1.4                         |
| 642    | Poison Spring            | 517527               | 4051604               | 29 N     | 2 E    | 30 SE   | 553       | Ŋ               | 12.9             | 19.2                 | -6.3                        |
| 643    | Point Spring             | 517717               | 4051452               | 29 N     | 2 E    | 30 SE   | 577       | 2               | 15.2             | 19.1                 | -3.9                        |
|        |                          |                      |                       |          |        |         |           |                 |                  |                      |                             |

| Appen  | dix continued               |                      |                       |          |       |         |           |                                                  |                  |                      |                             |
|--------|-----------------------------|----------------------|-----------------------|----------|-------|---------|-----------|--------------------------------------------------|------------------|----------------------|-----------------------------|
| Spring |                             | UTM                  | UTM                   |          |       | Quarter | Elevation | Discharge                                        | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name               | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range | Section | (meters)  | (liters/minute)                                  | Temperature (°C) | Temperature (°C)     | ) Temperature (°C)          |
| 644    | Indian Pass Potholes Spring | 518009               | 4051349               | 25 N     | 2 E   | 30 SE   | 603       | 2                                                | 14               | 18.9                 | -4.9                        |
| 645    | Petroglyph Spring           | 520060               | 4051323               | 29 N     | 2 E   | 29 SW   | 796       |                                                  |                  | 17.5                 |                             |
| 646    | Copperbell Spring           | 518531               | 4054542               | 29 N     | 46 E  | 17 SW   | 955       |                                                  |                  | 16.4                 |                             |
| 647    | Shanche Spring d            | 468216               | 4101933               | 10 S     | 42 E  | 25 NW   | 1110      | m                                                | 9.7              | 15.3                 | -5.6                        |
| 648    | Shanche Spring c            | 468201               | 4101943               | 10 S     | 42 E  | 25 NW   | 1110      | ~                                                |                  | 15.3                 |                             |
| 649    | Shanche Spring b            | 468160               | 4101947               | 10 S     | 42 E  | 25 NW   | 1107      | 2                                                | 26.8             | 15.4                 | 11.4                        |
| 650    | Shanche Spring a            | 467833               | 4101737               | 10 S     | 42 E  | 25 NW   | 1071      | ~                                                | 15.8             | 15.6                 | 0.2                         |
| 651    | Whisper Spring              | 504880               | 4000576               | 20 S     | 46 E  | 19 NE   | 420       | ~                                                | 12.7             | 20.2                 | -7.5                        |
| 652    | Arsenic Spring              | 503861               | 4002979               | 20 S     | 46 E  | 35 SE   | 518       | 0                                                |                  | 19.5                 |                             |
| 653    | Panamint Burro Spring       | 502329               | 4002461               | 20 S     | 46 E  | 28 NE   | 684       | 11                                               | 15.6             | 18.3                 | -2.7                        |
| 654    | Panamint Mule Spring        | 501639               | 4002327               | 20 S     | 46 E  | 28 NW   | 784       | 9                                                | 14.5             | 17.6                 | -3.1                        |
| 655    | Dry Trail Spring            | 493129               | 4017469               | 19 S     | 45 E  | 11 NW   | 1583      |                                                  |                  | 12.0                 |                             |
| 656    | Apron Spring                | 493581               | 4017809               | 19 S     | 45 E  | 2 SE    | 1523      | 4                                                | 6.3              | 12.5                 | -6.2                        |
| 657    | Tarantula Spring            | 493750               | 4018362               | 19 S     | 45 E  | 2 NW    | 1397      | Ŀ                                                | 9.6              | 13.3                 | -3.7                        |
| 658    | High Noon Spring            | 493756               | 4018743               | 19 S     | 45 E  | 2 NW    | 1355      | 4                                                | 12.2             | 13.6                 | -1.4                        |
| 629    | Blue Cliff B                | 493377               | 4017083               | 19 S     | 45 E  | 11 NW   | 1718      | 15                                               | <del>,</del>     | 11.1                 | -10.1                       |
| 660    | Blue Cliff A                | 493372               | 4017143               | 19 S     | 45 E  | 11 NW   | 1704      | Ŀ                                                | 0.6              | 11.2                 | -10.6                       |
| 661    | Flicker Spring              | 496640               | 4008852               | 20 S     | 46 E  | 6 NW    | 1498      | 4                                                | 13.9             | 12.6                 | 1.3                         |
| 662    | Noggin Spring               | 498868               | 4008219               | 20 S     | 46 E  | 5 SW    | 1273      | 10                                               | 15.3             | 14.2                 | 1.1                         |
| 663    | Tin Can Spring              | 494601               | 4082442               | 12 S     | 44 E  | 27 NE   | 1556      |                                                  |                  | 12.2                 |                             |
| 664    | Epipactus Spring a          | 494650               | 4080510               | 12 S     | 44 E  | 34 SE   | 1378      | <del>.                                    </del> | 19.8             | 13.5                 | 6.3                         |
| 665    | Epipactus Spring b          | 494677               | 4080533               | 12 S     | 44 E  | 34 SE   | 1389      | ~                                                | 18.4             | 13.4                 | 5.0                         |
| 666    | Hohum Spring a              | 494095               | 4079267               | 12.5 S   | 44 E  | 3 NW    | 1173      | 2                                                | 13.7             | 14.9                 | -1.2                        |
| 667    | Hohum Spring b              | 494106               | 4079265               | 12.5 S   | 44 E  | 3 NW    | 1174      | <del>.                                    </del> | 14.4             | 14.9                 | -0.5                        |
| 668    | Upper Warm Spring a         | 434242               | 4076549               | 13 S     | 39 E  | 9 NW    | 532       | <del>.                                    </del> | 16.2             | 19.4                 | -3.2                        |
| 669    | Upper Warm Spring b         | 434201               | 4076532               | 13 S     | 39 E  | MN 6    | 532       | >2                                               | 42.1             | 19.4                 | 22.7                        |
| 670    | Upper Warm Mesquite Sprin   | 1g434025             | 4076647               | 13 S     | 39 E  | 4 SW    | 528       | <del>.                                    </del> | 15.7             | 19.4                 | -3.7                        |
| 671    | Travertine Seep             | 433812               | 4076680               | 18 S     | 39 E  | 5 SE    | 531       |                                                  |                  | 19.4                 |                             |
| 672    | Unnamed West of             | 433484               | 4076750               | 18 S     | 39 E  | 5 SE    | 531       | <del>.                                    </del> | 16.2             | 19.4                 | -3.2                        |
|        | Teakettle Junction          |                      |                       |          |       |         |           |                                                  |                  |                      |                             |
| 673    | Stone Spring                | 432965               | 4076809               | 18 S     | 39 E  | 5 SE    | 531       | m                                                | 18.3             | 19.4                 | -1.1                        |
| 674    | Dry Stone Seep              | 432924               | 4076732               | 13 S     | 39 E  | 5 SE    | 520       |                                                  |                  | 19.5                 |                             |
| 675    | Doggie Spring               | 432758               | 4076597               | 18 S     | 39 E  | 5 SE    | 517       | 2                                                | 16.9             | 19.5                 | -2.6                        |
| 676    | Palm Spring                 | 431692               | 4074419               | 18 S     | 13 E  | 18 NE   | 423       | 30                                               | 47.1             | 20.2                 | 26.9                        |
| 677    | Lower Warm Springs D        | 431155               | 4073392               | 13 S     | 39 E  | 18 SE   | 394       | 2                                                | 34.6             | 20.4                 | 14.2                        |
| 678    | Lower Warm Springs C        | 431124               | 4073474               | 13 S     | 39 E  | 18 SE   | 393       | ~<br>V                                           |                  | 20.4                 |                             |
| 679    | Lower Warm Springs A        | 431093               | 4073614               | 13 S     | 39 E  | 18 SE   | 396       | 4                                                | 18.3             | 20.3                 | -2.0                        |
|        |                             |                      |                       |          |       |         |           |                                                  |                  |                      |                             |

| Appen  | dix continued          |                      |                       |          |       |         |           |                 |                  |                      |                             |
|--------|------------------------|----------------------|-----------------------|----------|-------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                        | UTM                  | UTM                   |          |       | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name          | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 680    | Lower Warm Springs B   | 431038               | 4073601               | 13 S     | 39E   | 18 SE   | 395       | 30              | 42.6             | 20.3                 | 22.3                        |
| 681    | Lemonade Spring        | 526036               | 4016585               | 25 N     | 2 E   | 1 SE    | 1141      |                 |                  | 15.1                 |                             |
| 682    | Ward Spring            | 524875               | 4019535               | 25.5 N   | 25 E  | 35 NE   | 1015      | -               | 8.3              | 16.0                 | -7.7                        |
| 683    | Monument Canyon Spring | 525348               | 4020288               | 25.5 N   | 2 E   | 26 SE   | 860       | -               | 11.4             | 17.1                 | -5.7                        |
| 684    | Jack 35                | 448553               | 4045732               | 16 S     | 40 E  | 12 SE   | 1373      |                 |                  | 13.5                 |                             |
| 685    | SOSP 04 (Myers Ranch)  | 492509               | 3968651               | 20 N     | 45 E  | 11 NE   | 995       | Ø               | 24.2             | 16.1                 | 8.1                         |
| 686    | SOSP 03 (Meyers Ranch) | 492515               | 3968604               | 20 N     | 45 E  | 11 NE   | 992       | Ŋ               | 25.6             | 16.2                 | 9.4                         |
| 687    | SOSP 02                | 492169               | 3968415               | 20 N     | 45 E  | 11 NE   | 970       | -               | 7.6              | 16.3                 | -8.7                        |
| 688    | Sourdough Spring       | 491287               | 3968370               | 20 N     | 45 E  | 11 SW   | 919       | 2               | 16.9             | 16.7                 | 0.2                         |
| 689    | Jacobs Spring          | 500025               | 3972128               | 21 N     | 46 E  | 34 NW   | 1033      | Ŋ               | 14.9             | 15.9                 | -1.0                        |
| 069    | Nopah Spring           | 499638               | 3971825               | 21 N     | 46 E  | 34 NW   | 1105      | 4               | 12.6             | 15.4                 | -2.8                        |
| 691    | Nopah Falls Spring     | 499463               | 3971863               | 21 N     | 46 E  | 34 NW   | 1172      | -               | 11.7             | 14.9                 | -3.2                        |
| 692    | Needle Spring          | 499701               | 3972360               | 21 N     | 46 E  | 34 NW   | 1059      | 12              | 12.5             | 15.7                 | -3.2                        |
| 693    | Strummer Spring        | 499657               | 3972563               | 21 N     | 46 E  | 27 SW   | 1044      |                 |                  | 15.8                 | -15.8                       |
| 694    | Squaw Spring D         | 499107               | 3973768               | 21 N     | 46 E  | 28 NE   | 663       | 12              | 13.9             | 16.2                 | -2.3                        |
| 695    | Squaw Spring C         | 499152               | 3973974               | 21 N     | 46 E  | 28 NE   | 982       | -               | 16.5             | 16.2                 | 0.3                         |
| 696    | Squaw Spring B         | 499035               | 3974067               | 21 N     | 46 E  | 28 NE   | 976       | m               | 14.8             | 16.3                 | -1.5                        |
| 697    | Squaw Spring A         | 499145               | 3974258               | 21 N     | 46 E  | 28 NE   | 919       | 12              | 14.2             | 16.7                 | -2.5                        |
| 698    | Arrastre Spring        | 497288               | 3985524               | 22 N     | 46 E  | 17 SE   | 1690      | -               |                  | 11.3                 | -11.3                       |
| 669    | Wilson Spring          | 499325               | 3993863               | 23 N     | 46 E  | 22 SW   | 1157      | >40             | 13.4             | 15.0                 | -1.6                        |
| 700    | Fang Spring            | 497496               | 3994100               | 21 S     | 46 E  | 20 SW   | 1387      | 4               | 14.4             | 13.4                 | 1.0                         |
| 701    | Hungry Bill Spring B   | 496802               | 3994206               | 21 S     | 46 E  | 20 SW   | 1491      | 50              | 17.1             | 12.7                 | 4.4                         |
| 702    | Hungry Bills Spring A  | 496802               | 3994441               | 21 S     | 46 E  | 20 SW   | 1489      | >50             | 17.6             | 12.7                 | 4.9                         |
| 703    | Towhee Spring          | 496131               | 3995100               | 21 S     | 46 E  | 20 NW   | 1639      | 12              | 18               | 11.6                 | 6.4                         |
| 704    | Mint Spring            | 497629               | 3994134               | 23 N     | 46 E  | 21 SW   | 1365      | 30              | 13.9             | 13.6                 | 0.3                         |
| 705    | Jack 22                | 450693               | 4043534               | 13 S     | 34 E  | 18 SW   | 1738      | 7               | 7.9              | 10.9                 | -3.0                        |
| 706    | Jack 23                | 451104               | 4043969               | 13 S     | 34 E  | 17 SE   | 1800      | Ţ,              | 13.6             | 10.5                 | 3.1                         |
| 707    | Lee Pump               | 451115               | 4043869               | 13 S     | 34 E  | 17 SE   | 1772      | 8               | 15.9 1           | 10.7                 | 5.2                         |
| 708    | Jack 25                | 451225               | 4043524               | 13 S     | 34 E  | 17 SW   | 1794      | Ъ               | 10.9 1           | 10.6                 | 0.3                         |
| 709    | Jack 28                | 450690               | 4044196               | 13 S     | 34 E  | 18 NE   | 1743      | 9               | 9.2              | 10.9                 | -1.7                        |
| 710    | Jack 21                | 449690               | 4044196               | 13 S     | 34 E  | 18 NW   | 1622      | ~               | 11.5             | 11.8                 | -0.3                        |
| 711    | Jack 44                | 447913               | 4048187               | 13 S     | 35 E  | 1 NW    | 1103      |                 |                  | 15.4                 |                             |
| 712    | Jack 51                | 447714               | 4048473               | 13 S     | 35 E  | 1 NE    | 1045      | -               | 12.2             | 15.8                 | -3.6                        |
| 713    | Jack 48                | 450078               | 4048335               | 13 S     | 34 E  | 6 NW    | 1337      | 2               | 11.7             | 13.8                 | -2.1                        |
| 714    | Little Dodd Spring     | 449115               | 4048413               | 13 S     | 35 E  | 1 NE    | 1229      | 2               | 14.5             | 14.5                 | 0.0                         |
| 715    | Big Dodd Spring        | 448687               | 4049016               | 13 S     | 34 E  | 36 SE   | 1153      | 10              | 15.9             | 15.0                 | 0.9                         |
| 716    | Jack 31                | 448166               | 4044365               | 13 S     | 35 E  | 13 NW   | 1541      | 1               | 20.4             | 12.3                 | 8.1                         |
|        |                        |                      |                       |          |       |         |           |                 |                  |                      |                             |

| Appen  | dix continued          |                      |                       |          |        |         |           |                 |                  |                      |                             |
|--------|------------------------|----------------------|-----------------------|----------|--------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                        | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name          | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | ) Temperature (°C)          |
| 717    | Jack 30                | 448267               | 4044848               | 13 S     | 35 E   | 13 NW   | 1447      |                 |                  | 13.0                 |                             |
| 718    | Jack 34                | 448386               | 4045493               | 13 S     | 35 E   | 12 NW   | 1358      | -               | 13.7             | 13.6                 | 0.1                         |
| 719    | Widow Spring           | 499863               | 3998404               | 21 S     | 46 E   | 3 NW    | 978       | m               | 16.5             | 16.3                 | 0.2                         |
| 720    | Lower Snake Spring     | 497521               | 3999404               | 21 S     | 46 E   | 5 SE    | 1266      | >20             | 12.2             | 14.3                 | -2.1                        |
| 721    | Upper Snake Spring     | 498581               | 4000061               | 21 S     | 46 E   | 5 SE    | 1399      | m               | 13.9             | 13.3                 | 0.6                         |
| 722    | Phantom Spring         | 495927               | 4000478               | 21 S     | 46 E   | 31 NW   | 1557      | ~~              | 11.5             | 12.2                 | -0.7                        |
| 723    | Middle Snake Spring    | 496703               | 3999999               | 21 S     | 46 E   | 5 SE    | 1404      | ~               | 14.3             | 13.3                 | 1.0                         |
| 724    | Primrose Spring        | 496374               | 3999408               | 21 S     | 46 E   | 5 NW    | 1424      | Ø               | 15.1             | 13.1                 | 2.0                         |
| 725    | Road Runner Spring     | 497202               | 3999149               | 21 S     | 46 E   | 5 NE    | 1297      | m               | 11.3             | 14.0                 | -2.7                        |
| 726    | Flores Ranch Spring    | 500522               | 3996699               | 21 S     | 46 E   | 15 NE   | 957       | 2               | 21               | 16.4                 | 4.6                         |
| 727    | Quartzite Spring       | 503235               | 3998144               | 21 S     | 46 E   | 1 SE    | 754       | ~               | 21.1             | 17.8                 | 3.3                         |
| 728    | Mexican Camp Spring    | 497094               | 4086836               | 12 S     | 45 E   | 3 NE    | 1748      |                 |                  | 10.9                 |                             |
| 729    | Alkali Spring          | 493528               | 4086003               | 12 S     | 45 E   | 5 SE    | 2015      | 2               | 13.3             | 9.0                  | 4.3                         |
| 730    | Wombat Spring          | 492848               | 4087277               | 12 S     | 43 E   | 31 SE   | 1982      |                 |                  | 9.2                  |                             |
| 731    | Ghost Spring           | 500521               | 3998184               | 21 S     | 46 E   | 10 NE   | 1056      |                 |                  | 15.7                 |                             |
| 732    | Windy Spring           | 498181               | 3999145               | 21 S     | 46 E   | 4 NW    | 1199      | 0               | 0                | 14.7                 | -14.7                       |
| 733    | Unnamed Monarch Canyon | 507936               | 4064340               | 30 N     | 1<br>T | 18 SW   | 1096      | <del>, -</del>  | 12.7             | 15.4                 | -2.7                        |
| 734    | SOSP 06                | 497305               | 3968782               | 20 N     | 46 E   | 8 NE    | 1146      | 2               | 20               | 15.1                 | 4.9                         |
| 735    | SOSP 05                | 495158               | 3969356               | 20 N     | 46 E   | 6 SW    | 1143      |                 |                  | 15.1                 | -15.1                       |
| 736    | Birch Spring           | 490804               | 4005149               | 20 S     | 45 E   | 16 SE   | 2248      | 600             | 9.6              | 7.4                  | 2.2                         |
| 737    | Mexican Spring         | 494878               | 4086780               | 12 S     | 45 E   | 3 NE    | 1907      |                 |                  | 9.8                  |                             |
| 738    | Drum Spring            | 500857               | 3987813               | 22 S     | 46 E   | 10 NE   | 1291      |                 |                  | 14.1                 |                             |
| 739    | Six Spring Canyon      | 499990               | 3989560               | 22 S     | 46 E   | 3 NW    | 1274      |                 |                  | 14.2                 |                             |
| 740    | Sidehill Spring        | 497656               | 3988913               | 22 S     | 46 E   | 4 SW    | 1609      | >6              | 17.1             | 11.9                 | 5.2                         |
| 741    | Jigger Spring          | 497526               | 3988624               | 22 S     | 46 E   | 5 SE    | 1682      |                 |                  | 11.3                 | -11.3                       |
| 742    | Lizard Spring          | 497603               | 3988149               | 22 S     | 46 E   | 9 NW    | 1651      | ~               |                  | 11.6                 | -11.6                       |
| 743    | Liar Spring            | 497966               | 3988477               | 22 S     | 46 E   | 9 NW    | 1544      | 15              | 14.3             | 12.3                 | 2.0                         |
| 744    | Edge Spring            | 499240               | 3989025               | 22 S     | 46 E   | 3 NW    | 1469      |                 |                  | 12.8                 |                             |
| 745    | Blackrock Well         | 443490               | 4042081               | 13 S     | 35 E   | 21 SW   | 1774      | 0               | 16.4             | 10.7                 | 5.7                         |
| 746    | Blackwater Spring B    | 496402               | 4026922               | 18 S     | 47 E   | 7 NW    | 936       | ~               | 24.5             | 16.6                 | 7.9                         |
| 747    | Blackwater Spring A    | 496389               | 4026931               | 18 S     | 47 E   | 7 NW    | 936       | <del>, -</del>  | 15               | 16.6                 | -1.6                        |
| 748    | Wetfork Spring         | ×                    | ×                     | 18 S     | 47 E   | 7 NW    | 917       |                 |                  | 16.7                 |                             |
| 749    | Cliff Spring           | 493084               | 4091427               | 11 S     | 44 E   | 19 NE   | 1844      | ~               | 10.6             | 10.2                 | 0.4                         |
| 750    | Delfs Spring #1        | 490314               | 4090486               | 11 S     | 44 E   | 22 SW   | 2058      | ~               | 12               | 8.7                  | 3.3                         |
| 751    | Delfs Spring #2        | 490735               | 4091185               | 11 S     | 44 E   | 22 SE   | 2087      |                 |                  | 8.5                  |                             |
| 752    | Rabbit Brush Spring    | 493548               | 4090327               | 11 S     | 44 E   | 20 SW   | 1824      | >2              | 10.7             | 10.3                 | 0.4                         |
| 753    | Jack 40 (Unnamed)      | 452019               | 4046366               | 16 S     | 41 E   | 8 NE    | 1832      | 9               | 10.9             | 10.3                 | 0.6                         |

| Appen  | dix continued             |                      |                       |          |        |         |           |                                                  |                  |                      |                             |
|--------|---------------------------|----------------------|-----------------------|----------|--------|---------|-----------|--------------------------------------------------|------------------|----------------------|-----------------------------|
| Spring |                           | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge                                        | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name             | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute)                                  | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 754    | Zawada Spring             | 458300               | 4045425               | 16 S     | 41 E   | 13 NE   | 1872      | >200                                             | 14.1             | 10.0                 | 4.1                         |
| 755    | Hunter Spring Creek       | 457330               | 4045694               | 16 S     | 41 E   | 11 SE   | 1990      | 200                                              | 16               | 9.2                  | 6.8                         |
| 756    | Niebyl Spring             | 457241               | 4045734               | 16 S     | 41 E   | 11 SE   | 1996      | <del>.                                    </del> | 12.6             | 9.1                  | 3.5                         |
| 757    | Claussen Spring           | 457618               | 4047340               | 16 S     | 41 E   | 2 SW    | 1954      | 12                                               | б                | 9.4                  | -0.4                        |
| 758    | Dirty Fingers             | 458807               | 4047225               | 16 S     | 41 E   | 1 SE    | 2003      |                                                  |                  | 9.1                  |                             |
| 759    | Early Bird                | 459232               | 4046928               | 16 S     | 42 E   | 6 SW    | 1891      | <del>.                                    </del> | 14.4             | 9.9                  | 4.5                         |
| 760    | Muska Spring              | 461206               | 4047101               | 16 S     | 42 E   | 5 SW    | 1606      | 2                                                | 15               | 11.9                 | 3.1                         |
| 761    | Badman Spring             | 461500               | 4047068               | 16 S     | 42 E   | 5 E     | 1592      | m                                                | 13.6             | 12.0                 | 1.6                         |
| 762    | Flycatcher                | 462522               | 4047189               | 16 S     | 42 E   | 4 SW    | 1499      | 20                                               | 14.6             | 12.6                 | 2.0                         |
| 763    | Longhorn Spring           | 466153               | 4047630               | 16 S     | 42 E   | 11 NW   | 1012      | 5                                                | 19.5             | 16.0                 | 3.5                         |
| 764    | Deadhorse                 | 465695               | 4047433               | 16 S     | 42 E   | 2 NE    | 1108      |                                                  |                  | 15.4                 |                             |
| 765    | Horseshoe                 | 465033               | 4047640               | 16 S     | 42 E   | 3 NE    | 1141      | 10                                               | 14.2             | 15.1                 | 6.0-                        |
| 766    | Lightning                 | 465659               | 4046677               | 16 S     | 42 E   | 11 NW   | 1234      |                                                  |                  | 14.5                 |                             |
| 767    | Jail Spring               | 491216               | 4005038               | 20 S     | 45 E   | 15 SW   | 2374      | 180                                              | 10               | 6.5                  | 3.5                         |
| 768    | Yellowjacket Spring       | 486959               | 4005580               | 20 S     | 45 E   | 13 NW   | 1594      | 30                                               | 13.4             | 12.0                 | 1.4                         |
| 769    | Wildrose Ranger Station W | 'ell484166           | 4013385               | 19 S     | 44 E   | 23 SE   | 1288      |                                                  |                  | 14.1                 |                             |
| 770    | Antimony Spring           | 481247               | 4013302               | 19 S     | 44 E   | 21 SW   | 1114      |                                                  |                  | 15.3                 |                             |
| 771    | Roadside Spring           | 481872               | 4013298               | 19 S     | 44 E   | 22 SW   | 1147      |                                                  |                  | 15.1                 |                             |
| 772    | Furnace Creek Inn Well    | 513873               | 4034107               | 27 N     | 1<br>E | 23 NW   | -2        |                                                  |                  | 23.1                 |                             |
| 773    | Echo Waterholes           | 528792               | 4040719               | 28 N     | 3 E    | 32 NE   | 1360      |                                                  |                  | 13.6                 |                             |
| 774    | Naghipah Spring           | 497868               | 4008219               | 20 S     | 45 E   | 13 NW   | 1981      | 2.5                                              | 14.8             | 9.2                  | 5.6                         |
| 775    | WACA 01                   | 412652               | 4092026               | 11 S     | 37 E   | 30 NW   | 2229      |                                                  |                  | 7.5                  |                             |
| 776    | WACA 02                   | 413447               | 4093277               | 11 S     | 37 E   | 19 NE   | 2097      | 12                                               | 10.6             | 8.4                  | 2.2                         |
| 777    | Panamint A                | 490694               | 3991689               | 21 S     | 45 E   | 34 NE   | 1696      | 50                                               | 16               | 11.2                 | 4.8                         |
| 778    | Lightfoot Spring          | 490374               | 3991865               | 21 S     | 45 E   | 34 NE   | 1659      | 100                                              | 15.9             | 11.5                 | 4.4                         |
| 779    | Panamint B                | 490868               | 3992126               | 21 S     | 45 E   | 27 SE   | 1774      | >100                                             | 14.2             | 10.7                 | 3.5                         |
| 780    | Stone Corral              | 491223               | 3987673               | 22 S     | 45 E   | 10 SE   | 1764      | 0.5                                              | 14.6             | 10.8                 | 3.8                         |
| 781    | South Fork Spring         | 497724               | 4026068               | 46 E     | 18 S   | 8 NE    | 842       |                                                  |                  | 17.2                 |                             |
| 782    | Waucoba 3B                | 412780               | 4095038               | 11 S     | 37 E   | 7 SE    | 2010      |                                                  |                  | 9.0                  |                             |
| 783    | Waucoba 3A                | 412770               | 4095061               | 11 S     | 37 E   | 7 SE    | 2005      | 20                                               | 10.5             | 9.1                  | 1.4                         |
| 784    | Waucoba 04                | 413208               | 4095276               | 11 S     | 37 E   | 7 SE    | 1991      | 50                                               | 8.3              | 9.2                  | -0.9                        |
| 785    | Jack 39                   | 453507               | 4046257               | 16 S     | 41 E   | 9 NE    | 1964      |                                                  |                  | 9.4                  |                             |
| 786    | Spanish Spring (Well)     | 454260               | 4048944               | 15 S     | 41 E   | 33 SE   | 1846      |                                                  |                  | 10.2                 |                             |
| 787    | Hunter Cabin              | 456265               | 4044781               | 16 S     | 41 E   | 11 SW   | 2055      |                                                  |                  | 8.7                  |                             |
| 788    | Hunter Spring             | 456265               | 4044781               | 16 S     | 41 E   | 11 SW   | 2084      | 20                                               | 11.9             | 8.5                  | 3.4                         |
| 789    | Hunter Corral             | 456365               | 4044762               | 16 S     | 41 E   | 11 SE   | 2053      | 12                                               | 10.5             | 8.7                  | 1.8                         |
| 790    | Panic Pete's Spring       | 456052               | 4044548               | 16 S     | 41 E   | 14 NE   | 2071      | 12                                               | 7.6              | 8.6                  | -1.0                        |
|        |                           |                      |                       |          |        |         |           |                                                  |                  |                      |                             |

| Appen  | dix continued            |                      |                       |          |       |         |           |                 |                  |                      |                             |
|--------|--------------------------|----------------------|-----------------------|----------|-------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                          | UTM                  | UTM                   |          |       | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Numbe  | r Spring Name            | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | ) Temperature (°C)          |
| 791    | Jack 38                  | 454623               | 4045417               | 16 S     | 41 E  | 10 SE   | 2060      | 20              | 9.6              | 8.7                  | 0.9                         |
| 792    | Quail Spring             | 454581               | 4045594               | 16 S     | 41 E  | 10 NW   | 2044      | 12              | 9.5              | 8.8                  | 0.7                         |
| 793    | Jack 36                  | 454381               | 4045908               | 16 S     | 41 E  | 10 NW   | 2028      | 30              | 8.9              | 8.9                  | 0.0                         |
| 794    | Jackass Spring           | 453523               | 4044378               | 16 S     | 41 E  | 16 NW   | 2102      |                 |                  | 8.4                  |                             |
| 795    | Jack 26                  | 453322               | 4044015               | 16 S     | 41 E  | 16 SW   | 2028      | <del>, -</del>  | 4.7              | 8.9                  | -4.2                        |
| 796    | Johnnie Shoshone         | 493533               | 4011415               | 19 S     | 45 E  | 35 SW   | 2148      | <del>, -</del>  | 4.7              | 8.1                  | -3.4                        |
| 797    | Green Spring             | 482260               | 4028972               | 18 S     | 44 E  | 3 NW    | 1514      |                 |                  | 12.5                 |                             |
| 798    | Newfound Spring          | 456928               | 4044787               | 16 S     | 41 E  | 14 NE   | 2070      | 0.3             | 9.3              | 8.6                  | 0.7                         |
| 799    | Amos Spring              | 457782               | 4045048               | 16 S     | 41 E  | 8 SE    | 2024      | 0.5             | 6.5              | 8.9                  | -2.4                        |
| 800    | Walrus Spring            | 458980               | 4045546               | 16 S     | 41 E  | 12 SE   | 1811      |                 | 14.4             | 10.4                 | 4.0                         |
| 801    | Bottle Spring            | 458081               | 4046379               | 16 S     | 42 E  | 7 NE    | 1934      | 1.25            | 10.9             | 9.6                  | 1.3                         |
| 802    | Colin Spring             | 459081               | 4046666               | 16 S     | 41 E  | 1 SW    | 1870      | 1.5             | 10.8             | 10.0                 | 0.8                         |
| 803    | Jolley Spring            | 459467               | 4046734               | 16 S     | 42 E  | 7 NW    | 1810      | 0.5             | 11.7             | 10.4                 | 1.3                         |
| 804    | Duke Spring              | 459750               | 4046762               | 16 S     | 42 E  | 7 SE    | 1787      | 0.3             | 14.6             | 10.6                 | 4.0                         |
| 805    | Open Spring              | 464795               | 4044696               | 16 S     | 42 E  | 10 SE   | 1346      |                 |                  | 13.7                 |                             |
| 806    | Panther Spring           | 463125               | 4046549               | 16 S     | 42 E  | 9 NE    | 1489      | 0.1             | 14               | 12.7                 | 1.3                         |
| 807    | Heather Spring           | 463740               | 4044532               | 16 S     | 42 E  | 16 NE   | 1375      | 0.1             |                  | 13.5                 |                             |
| 808    | Poorman Spring           | 463402               | 4043949               | 16 S     | 42 E  | 16 SE   | 1459      | 0.2             | 15               | 12.9                 | 2.1                         |
| 809    | Rising Sun               | ×                    | ×                     | 16 S     | 42 E  | 15 NW   | 1346      |                 |                  | 13.7                 |                             |
| 810    | Tiny Tank                | 463920               | 4043390               | 16 S     | 42 E  | 15 SW   | 1299      |                 |                  | 14.0                 |                             |
| 811    | Tuber Spring             | 490695               | 4007683               | 20 S     | 45 E  | 9 NE    | 2379      | 5               | 9.7              | 6.5                  | 3.2                         |
| 812    | Upper Tuber Spring       | 490911               | 4007795               | 20 S     | 45 E  | 9 NE    | 2480      |                 |                  | 5.8                  |                             |
| 813    | Hummingbird Spring       | 490273               | 4008536               | 20 S     | 45 E  | 4 SW    | 2184      | 2               | 7.3              | 7.8                  | -0.5                        |
| 814    | Cottonwood Spring        | 466264               | 4040786               | 42 E     | 16 S  | 26 SW   | 1074      | 15              | 16.6             | 15.6                 | 1.0                         |
| 815    | Sidewinder Spring        | 468815               | 4042279               | 16 S     | 43 E  | 19 SW   | 935       | 25              | 14.1             | 16.6                 | -2.5                        |
| 816    | Lower Cottonwood         | 468961               | 4043028               | 16 S     | 43 E  | 19 NW   | 896       | 2.5             | 15.4             | 16.8                 | -1.4                        |
| 817    | Sister D                 | 458395               | 4044863               | 16 S     | 41 E  | 13 NE   | 1986      | <del></del>     | 9.1              | 9.2                  | -0.1                        |
| 818    | Sister A                 | 458301               | 4045021               | 16 S     | 41 E  | 12 SW   | 1947      | 0.4             | 10.4             | 9.5                  | 0.9                         |
| 819    | Sister E                 | 458597               | 4044932               | 16 S     | 41 E  | 13 NE   | 1943      | m               | Ø                | 9.5                  | -1.5                        |
| 820    | Sister C                 | 458583               | 4044937               | 16 S     | 41 E  | 13 NE   | 1932      | 4               | 10.3             | 9.6                  | 0.7                         |
| 821    | Sister B                 | 458527               | 4045033               | 16 S     | 41 E  | 12 SE   | 1910      | 4               | 10.7             | 9.7                  | 1.0                         |
| 822    | Sister F                 | 458809               | 4045074               | 16 S     | 41 E  | 12 SE   | 1837      | 1.3             | 11.6             | 10.3                 | 1.3                         |
| 823    | Obsidian Seeps (a, b, c) | 474151               | 4089087               | 12 S     | 43 E  | 3 NW    | 730       |                 |                  | 18.0                 | -18.0                       |
| 824    | Mahogany Spring A        | 493257               | 4006728               | 20 S     | 45 E  | 11 SE   | 2220      | 30              | 12               | 7.6                  | 4.4                         |
| 825    | Noggin Spring            | 499868               | 4008219               | 20 S     | 46 E  | 5 SW    | 1273      |                 |                  | 14.2                 |                             |
| 826    | Late Spring              | 490520               | 4002995               | 20 S     | 45 E  | 25 SW   |           |                 |                  | 23.1                 |                             |
| 827    | Upper Hall Canyon Pipe   | 487020               | 4000045               | 21 S     | 46 E  | 5 NW    | 2214      |                 |                  | 7.6                  |                             |
|        |                          |                      |                       |          |       |         |           |                 |                  |                      |                             |

| Append | dix continued                   |                      |                       |          |       |         |           |                 |                  |                      |                             |
|--------|---------------------------------|----------------------|-----------------------|----------|-------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                                 | UTM                  | UTM                   |          |       | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Number | <ul> <li>Spring Name</li> </ul> | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 828    | Upper Hall Canyon Spring        | ×                    | ×                     | 20 S     | 45 E  | 36 NW   |           | 10              | 19               | 23.1                 | -4.1                        |
| 829    | Middle Tuber Canyon Spring      | 1 484974             | 4008123               | 20 S     | 45 E  | 1 SW    | 1490      | >20             | 16.7             | 12.7                 | 4.0                         |
| 830    | Ideal Spring                    | 483270               | 4008445               | 20 S     | 45 E  | 2 SW    | 1235      | ~               | 17.8             | 14.5                 | 3.3                         |
| 831    | Lower Tuber Spring              | 481787               | 4007981               | 20 S     | 45 E  | 3 SW    | 1050      | >6              | 17.5             | 15.8                 | 1.7                         |
| 832    | Jack 16                         | 451188               | 4042574               | 16 S     | 41 E  | 20 NW   | 1718      | ~               | 10.8             | 11.1                 | -0.3                        |
| 833    | Jack 15                         | 451240               | 4042428               | 16 S     | 41 E  | 20 SW   | 1672      | ~               | 12.3             | 11.4                 | 0.9                         |
| 834    | Jack 15b                        | 451316               | 4042241               | 16 S     | 41 E  | 20 SW   | 1630      | ~               | 9.8              | 11.7                 | -1.9                        |
| 835    | Lamb Spring                     | 458883               | 4048367               | 16 S     | 41 E  | 1 NE    | 1739      | 4               | 12               | 10.9                 | 1.1                         |
| 836    | Bighorn Spring 1                | 461126               | 4076660               | 13 S     | 42 E  | 5 NW    | 1799      | ~               | 9.4              | 10.5                 | -1.1                        |
| 837    | Bighorn Spring 2                | 461113               | 4076638               | 13 S     | 42 E  | 5 NW    | 1804      | ~               | 11.1             | 10.5                 | 0.6                         |
| 838    | Bighorn Spring 3                | ×                    | ×                     | 13 S     | 42 E  | 5 NW    | 1808      | -<br>V          | 9.6              | 10.5                 | 6.0-                        |
| 839    | Sheep Spring                    | 459905               | 4076199               | 13 S     | 42 E  | 6 SE    | 2029      | 0               |                  | 8.9                  |                             |
| 840    | Yashiro Spring                  | 459561               | 4076047               | 13 S     | 42 E  | 6 SW    | 2083      | ~               | 5.5              | 8.5                  | -3.0                        |
| 841    | Sheepwater Spring               | 495950               | 4075100               | 13 S     | 42 E  | 7 NW    | 2238      |                 |                  | 7.4                  |                             |
| 842    | Pinyon Spring                   | 460700               | 4074600               | 13 S     | 42 E  | 7 NE    | 2253      |                 |                  | 7.3                  |                             |
| 843    | Paintbrush Spring               | 459245               | 4048454               | 13 S     | 41 E  | 31 SW   | 1630      | >10             | 12.6             | 11.7                 | 0.9                         |
| 844    | Upper Lamb                      | 457618               | 4047323               | 16 S     | 41 E  | 1 SW    | 1950      | Ŋ               | 10.2             | 9.5                  | 0.7                         |
| 845    | Morning Glory Spring            | 494473               | 4014937               | 11 S     | 43 E  | 13 SW   | 1951      | m               | 5.9              | 9.5                  | -3.6                        |
| 846    | Dose Spring                     | 461719               | 4047324               | 16 S     | 42 E  | 5 NE    | 1562      | 9               | 17.2             | 12.2                 | 5.0                         |
| 847    | Dripping Spring                 | 495737               | 4019523               | 19 S     | 47 E  | 12 NW   | 1257      | 2               | 14.6             | 14.3                 | 0.3                         |
| 848    | Wheel Spring                    | 499175               | 4019726               | 19 S     | 47 E  | 33 SW   | 744       | -               | 17.6             | 17.9                 | -0.3                        |
| 849    | LCM Willow Spring               | 437539               | 4132038               | 39 E     | 7 SE  | 21 NE   | 1731      | 7               | 7.1              | 11.0                 | -3.9                        |
| 850    | Mound Spring                    | 465820               | 4097486               | 11 S     | 42 E  | 2 SW    | 776       | ъ               | 33.8             | 17.7                 | 16.1                        |
| 851    | White Crown Spring              | 460222               | 4049528               | 15 S     | 42 E  | 31 NE   | 1490      | 1.5             | 15.2             | 12.7                 | 2.5                         |
| 852    | Bull Spring                     | 460975               | 4048852               | 15 S     | 42 E  | 32 NW   | 1546      |                 |                  | 12.3                 |                             |
| 853    | Wahguyhe Spring                 | 489741               | 4086486               | 12 S     | 45 E  | 7 E     | 1798      |                 |                  | 10.5                 |                             |
| 854    | Doe Spring                      | 488877               | 4089751               | 11 S     | 45 E  | 1 NW    | 2189      |                 |                  | 7.8                  |                             |
| 855    | Bechtold Spring                 | 461913               | 4049098               | 15 S     | 42 E  | 32 NE   | 1330      | 15              | 12.4             | 13.8                 | -1.4                        |
| 856    | Coyote Hole                     | 458840               | 4049347               | 15 S     | 42 E  | 31 NW   | 1713      |                 |                  | 11.1                 |                             |
| 857    | Kroll Spring                    | 462250               | 4049125               | 15 S     | 42 E  | 33 NW   | 1292      | 9               | 15.1             | 14.1                 | 1.0                         |
| 858    | Highison Spring                 | 462287               | 4049751               | 15 S     | 42 E  | 33 NW   | 1272      | ~               | 14.4             | 14.2                 | 0.2                         |
| 859    | Marble Potholes                 | ×                    | ×                     | 15 S     | 42 E  | 21 NW   | 1322      |                 |                  | 13.9                 |                             |
| 860    | Pate Spring                     | 462443               | 4049719               | 15 S     | 42 E  | 33 NE   | 1249      | -<br>V          | 12.1             | 14.4                 | -2.3                        |
| 861    | Tjonakwie Spring                | 462622               | 4049015               | 15 S     | 42 E  | 33 NW   | 1255      | 100             | 16.1             | 14.3                 | 1.8                         |
| 862    | Pussywillow Spring              | 464573               | 4049140               | 15 S     | 42 E  | 34 NE   | 1096      | -               |                  | 15.4                 |                             |
| 863    | Schwab Spring                   | ×                    | ×                     | 15 S     | 42 E  | 34 NW   | 1125      | ~<br>V          | 14.4             | 15.2                 | -0.8                        |
| 864    | Grapevine Willow Spring         | 489769               | 4097065               | 10 S     | 43 E  | 35 SE   | 1902      | <del>V</del>    | Ø                | 9.8                  | -1.8                        |

| Appenc | dix continued             |                      |                       |          |        |         |           |                 |                  |                      |                             |
|--------|---------------------------|----------------------|-----------------------|----------|--------|---------|-----------|-----------------|------------------|----------------------|-----------------------------|
| Spring |                           | UTM                  | UTM                   |          |        | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> | Spring–Amb Air <sup>3</sup> |
| Number | - Spring Name             | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range  | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C)     | Temperature (°C)            |
| 865    | Grapevine Willow 2        | 489736               | 4097142               | 10 S     | 43 E   | 35 SE   | 1895      | 1               | 8.8              | 9.8                  | -1.0                        |
| 866    | Grapevine Willow Tank     | 489826               | 4097114               | 10 S     | 43 E   | 35 SE   | 1870      |                 |                  | 10.0                 |                             |
| 867    | Nelson Spring             | 486482               | 4092394               | 11 S     | 43 E   | 16 SE   | 2052      | ~               | 8.7              | 8.8                  | -0.1                        |
| 868    | Nelson B Spring           | 486461               | 4092411               | 11 S     | 43 E   | 9 SW    | 2045      | m               | 8.6              | 8.8                  | -0.2                        |
| 869    | Funston Spring            | 486315               | 4092231               | 11 S     | 43 E   | 16 SE   | 2040      | ~               | 4.6              | 8.8                  | -4.2                        |
| 870    | Ramhorn Spring            | 482791               | 4088387               | 12 S     | 44 E   | 4 SE    | 1298      |                 |                  | 14.0                 |                             |
| 871    | Willow Spring (LCM)       | 437539               | 4132038               | 7 S      | 39 E   | 21 NE   | 1731      | 20              | 7.1              | 11.0                 | -3.9                        |
| 872    | Nevares A                 | 516023               | 4040823               | 28 N     | 1<br>1 | 36 NE   | 260       | 1.5             | 36.2             | 21.3                 | 14.9                        |
| 873    | Nevares B                 | 516020               | 4040823               | 28 N     | 1<br>1 | 36 NE   | 260       | 0.5             | 37.8             | 21.3                 | 16.5                        |
| 874    | Nevares E                 | 516042               | 4040784               | 28 N     | 1<br>1 | 36 NE   | 260       | -               | 38.5             | 21.3                 | 17.2                        |
| 875    | Nevares D                 | 516039               | 4040791               | 28 N     | 1<br>1 | 36 NE   | 264       | ~               | 37.7             | 21.3                 | 16.4                        |
| 876    | Nevares C                 | 516028               | 4040797               | 28 N     | 1<br>1 | 36 NE   | 261       | ~               | 33.8             | 21.3                 | 12.5                        |
| 877    | Waucoba Spring            | 416673               | 4095777               | 11 S     | 37 E   | 8 SE    | 1834      | ~               | 15.7             | 10.3                 | 5.4                         |
| 878    | Waucoba 06                | 414628               | 4095381               | 11 S     | 37 E   | 8 SW    | 1903      | 9               | 10.4             | 9.8                  | 0.6                         |
| 879    | Waucoba 05                | ×                    | ×                     | 11 S     | 37 E   | 8 SW    | 1914      | m               | 9.5              | 9.7                  | -0.2                        |
| 880    | Travertine F              | 515432               | 4033091               | 27 N     | 1<br>1 | 25 NW   | 92        | 1000            | 35.4             | 22.5                 | 12.9                        |
| 881    | Travertine G              | 515453               | 4033090               | 27 N     | 1<br>1 | 25 NW   | 92        | Ŋ               | 35.6             | 22.5                 | 13.1                        |
| 882    | Travertine H              | 515466               | 4033068               | 27 N     | 1<br>1 | 25 NW   | 91        |                 |                  | 22.5                 | -22.5                       |
| 883    | Travertine I              | 515476               | 4033096               | 27 N     | 1<br>1 | 25 NW   | 94        |                 |                  | 22.5                 | -22.5                       |
| 884    | Travertine J              | 515553               | 4032874               | 27 N     | 1<br>1 | 25 NW   | 88        | -<br>V          | 23.1             | 22.5                 | 0.6                         |
| 885    | Travertine K              | 515506               | 4033113               | 27 N     | 1<br>1 | 25 NW   | 66        | -<br>V          | 32.4             | 22.4                 | 10.0                        |
| 886    | Leaning Rock Tanks        | ×                    | ×                     | 13 S     | 42 E   | 4 NW    | 1676      |                 |                  | 11.4                 |                             |
| 887    | Brewery Spring            | 488216               | 3996651               | 21 S     | 45 E   | 16 NW   | 1448      | 700             |                  | 13.0                 |                             |
| 888    | Sourdough Spring          | 491132               | 3997298               | 21 S     | 45 E   | 16 NW   | 1999      | 19              |                  | 9.1                  |                             |
| 889    | Unnamed Panamint C        | 486485               | 3996280               | 21 S     | 4 SE   | 17 NW   | 1204      |                 |                  | 14.7                 |                             |
| 890    | Jody Spring               | 491780               | 3997070               | 21 S     | 45 E   | 11 SW   | 1999      | 12              |                  | 9.1                  |                             |
| 891    | Water Canyon/             | 492293               | 3997547               | 21 S     | 45 E   | 11 NW   | 2060      |                 | 13.6             | 8.7                  | 4.9                         |
|        | Thompson Spring           |                      |                       |          |        |         |           |                 |                  |                      |                             |
| 892    | Saratoga Springs          | 552341               | 3948596               | 18 N     | 5 E    | 2 NW    | 70        | 200             | 28.5             | 22.6                 | 5.9                         |
| 893    | Falcon Seep               | ×                    | ×                     |          |        |         | 1313      |                 |                  | 13.9                 |                             |
| 894    | Unnamed Dry Bone Tanks    | ×                    | ×                     | 14 S     | 43 E   | 6 NE    | 714       |                 |                  | 18.1                 |                             |
| 895    | Unnamed* (East Salt Flat) | ×                    | ×                     | 14 S     | 43 E   | 9 NW    | 343       |                 |                  | 20.7                 |                             |
| 896    | Palmer Seep               | ×                    | ×                     | 12 S     | 44 E   | 29 NW   | 1658      |                 |                  | 11.5                 |                             |
| 897    | Spur Spring               | ×                    | ×                     | 20 S     | 46 E   | 34      | 1000      |                 |                  | 16.1                 |                             |
| 898    | Eagle Spring              | ×                    | ×                     | 20 S     | 45 E   | 22 NE   | 2885      |                 |                  | 2.9                  |                             |
| 899    | Telescope Spring          | ×                    | ×                     | 20 S     | 45 E   | 23 SW   | 2704      |                 |                  | 4.2                  |                             |
| 006    | Dixon Spring              | ×                    | ×                     | 20 S     | 45 E   | 29 NW   | 2918      |                 |                  | 2.7                  |                             |

| Appen  | dix continued             |                      |                       |          |               |              |           |                 |                  |                                     |   |
|--------|---------------------------|----------------------|-----------------------|----------|---------------|--------------|-----------|-----------------|------------------|-------------------------------------|---|
| Spring |                           | UTM                  | UTM                   |          |               | Quarter      | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> Spring–Amb Air | ñ |
| Numbe  | r Spring Name             | Easting <sup>1</sup> | Northing <sup>1</sup> | Township | Range         | Section      | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C) Temperature (°     | Û |
| 901    | Superior Mine Tanks A     | ×                    | ×                     | 19 N     | 3 E           | 26 NW        | 804       |                 |                  | 17.5                                |   |
| 902    | Sump in Furnace Creek Was | ×                    | ×                     | 27 N     | 1<br>1        | 26 NE        | 79        |                 |                  | 22.6                                |   |
| 903    | Furnace Creek Inn Tunnel  | ×                    | ×                     | 27 N     | -<br>Н        | 23 SW        | 56        |                 |                  | 22.7                                |   |
| 904    | NPS Trench                | ×                    | ×                     | 27 N     | 1<br>1        | 23 SW        | 45        |                 |                  | 22.8                                |   |
| 905    | NPS Well #1               | ×                    | ×                     | 27 N     | 1<br>1        | 24 NW        | 153       |                 |                  | 22.0                                |   |
| 906    | Sewer Lagoon              | ×                    | ×                     | 28 N     | 1<br>1        | 33 SW        | ő         |                 |                  | 23.2                                |   |
| 907    | Furnace Creek Ranch Ponds | ×                    | ×                     | 27 N     | 1<br>1        | 19 NE        | 51        |                 |                  | 22.8                                |   |
| 908    | Lower Nevares (12)        | ×                    | ×                     | 28 N     | 1<br>1        | 33-36        | 144       |                 |                  | 22.1                                |   |
| 606    | Saltbush (sewer)          | ×                    | ×                     | 27 N     | 1<br>1        | 4 NW         | 72        |                 |                  | 22.6                                |   |
| 910    | Wired Rock Spring         | ×                    | ×                     | 13 S     | 45 E          | NE1/4 NE1/4  | 1493      |                 |                  | 12.7                                |   |
| 911    | White Pass Gate Seep      | ×                    | ×                     | 13 S     | 46 E          | SE1/4 NE1/4  | 1524      |                 |                  | 12.4                                |   |
| 912    | Shell Spring              | ×                    | ×                     | 11 S     | 44 E          | 34 NW        | 2347      |                 |                  | 6.7                                 |   |
| 913    | Stovepipe Wells (Hotel)   | ×                    | ×                     | 16 S     | 44 E          | 1 NE         | 37        |                 |                  | 22.9                                |   |
| 914    | NPS RO Well               | ×                    | ×                     | 15 S     | 44 E          | 36 SE        | 9         |                 |                  | 23.1                                |   |
| 915    | Salt Spring               | ×                    | ×                     | 16.5 S   | 46 E          | 28 NE        | -75       |                 |                  | 23.6                                |   |
| 916    | Sulfur Spring             | 502550               | 4040300               | 16.5 S   | 46 E          | 27 NE        | -78       |                 |                  | 23.7                                |   |
| 917    | Furnace Creek Wash        | ×                    | ×                     |          |               |              |           |                 |                  | 23.1                                |   |
|        | Monitoring Site           |                      |                       |          |               |              |           |                 |                  |                                     |   |
| 918    | Confidence                | ×                    | ×                     |          |               |              |           |                 |                  | 23.1                                |   |
| 919    | Pry Well                  | ×                    | ×                     | 23 N     | 1<br>E        | 2            |           |                 |                  | 23.1                                |   |
| 920    | Mesquite Well B           | ×                    | ×                     |          |               |              |           |                 |                  | 23.1                                |   |
| 921    | Salt Well                 | ×                    | ×                     |          |               |              |           |                 |                  | 23.1                                |   |
| 922    | Charlie's Well            | ×                    | ×                     | 28 N     | 1<br>1        | SE1/4 NW1/2  | 4 -76     |                 |                  | 23.6                                |   |
| 923    | Prospector                | ×                    | ×                     | 20 S     | 46 E 2        | 6 NE1/4 NE1/ | 4         |                 |                  | 23.1                                |   |
| 924    | Wildrose Stock Tank       | ×                    | ×                     | 19 S     | 44 E 2        | 3 NW1/4 SE1  | /4 1325   |                 |                  | 13.8                                |   |
| 925    | Pioneer Spring            | ×                    | ×                     | 17 S     | 44 E 2        | 2 SW1/4 SE1/ | /4 1146   |                 |                  | 15.1                                |   |
| 926    | Unnamed Wildrose Peak     | ×                    | ×                     |          |               |              |           |                 |                  | 23.1                                |   |
| 927    | Buried Tile FC Wash       | ×                    | ×                     | 27 N     | 2 E           | 26 NE        | 1036      |                 |                  | 15.9                                |   |
| 928    | Feather Spring            | ×                    | ×                     | 21 S     | 46 E 3.       | 3 NE1/4 NE1/ | 4         | 25              |                  | 23.1                                |   |
| 929    | Highgrade Spring          | 496350               | 4019250               | 18 S     | 46 E          | 31 SW        | 1200      |                 |                  | 14.7                                |   |
| 930    | Texas Springs (9)         | ×                    | ×                     | 27 N     | 1<br>1        | 23 NE`       | 127       | 210             |                  | 22.2                                |   |
| 931    | 27 Undeveloped springs in | ×                    | ×                     |          |               |              |           |                 |                  | 23.1                                |   |
|        | Furnace Creek area        |                      |                       |          |               |              |           |                 |                  |                                     |   |
| 932    | Black Spring #4495        | ×                    | ×                     |          |               |              |           |                 |                  | 23.1                                |   |
| 933    | Trail Spring              | ×                    | ×                     |          |               |              |           |                 |                  | 23.1                                |   |
| 934    | Nevares Spring (5)        | 516114               | 4040543               | 28 N     | 1<br>1        | 36 NE        | 195       | 150             | 40               | 21.7 18.3                           |   |
| 935    | Nevares Spring Cave       | 515989               | 4040469               | 28 N     | <b>1</b><br>П | 36 NE        | 185       | 20              | 33               | 21.8 11.2                           |   |
|        |                           |                      |                       |          |               |              |           |                 |                  |                                     |   |

| Appendi                                                                  | x continued                                                                          |                                          |                                |                      |        |         |           |                 |                  |                                                  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|--------------------------------|----------------------|--------|---------|-----------|-----------------|------------------|--------------------------------------------------|
| Spring                                                                   |                                                                                      | UTM                                      | UTM                            |                      |        | Quarter | Elevation | Discharge       | Spring           | Amb Air <sup>2</sup> Spring–Amb Air <sup>3</sup> |
| Number                                                                   | Spring Name                                                                          | Easting <sup>1</sup>                     | Northing <sup>1</sup>          | Township             | Range  | Section | (meters)  | (liters/minute) | Temperature (°C) | Temperature (°C) Temperature (°C)                |
| 936                                                                      | Travertine A                                                                         | ×                                        | ×                              | 27 N                 | 1 E    | 25 NW   |           |                 |                  | 23.1                                             |
| 937                                                                      | Travertine B                                                                         | ×                                        | ×                              | 27 N                 | 1<br>T | 25 NW   |           |                 |                  | 23.1                                             |
| 938                                                                      | Travertine C                                                                         | ×                                        | ×                              | 27 N                 | 1<br>T | 25 NW   |           |                 |                  | 23.1                                             |
| 939                                                                      | Travertine D                                                                         | ×                                        | ×                              | 27 N                 | 1<br>T | 25 NW   |           |                 |                  | 23.1                                             |
| 940                                                                      | Travertine E                                                                         | ×                                        | ×                              | 27 N                 | 1<br>T | 25 NW   |           |                 |                  | 23.1                                             |
| 941                                                                      | Grapevine Ranch                                                                      | ×                                        | ×                              |                      |        |         |           |                 |                  | 23.1                                             |
| 942                                                                      | Redtail Spring                                                                       | 488450                                   | 4007300                        | 20 S                 | 45 E   | 8 NW    | 1250      |                 |                  | 14.4                                             |
| <sup>1</sup> Universal<br><sup>2</sup> Ambient<br><sup>3</sup> Spring te | Transverse Mercator projec<br>air temperature at spring c<br>mperature minus ambient | ction, Zone 1<br>outlet.<br>air temperat | 11, NAD27; in<br>ure at spring | n meters.<br>outlet. |        |         |           |                 |                  |                                                  |

## **Bibliography**

- Andrew, J. E. 1999. Preliminary results of detailed structural investigation and large-scale mapping in the southern Panamint Range, California. U. S. Geological Survey Open-File Report 99-153: 31–32.
- Aarno, S. F. 1984. Timberline: Mountain and arctic forest frontiers. Seattle: The Mountaineers.
- Avon, L., and T. J. Durbin. 1994. Evaluation of the Maxey–Eakin method for estimating recharge to groundwater basins in Nevada. American Water Resources Association Water Resources Bulletin 30, no. 1:99–111.
- Beatley, J. C. 1976. Vascular plants of the Nevada Test Site and central-southern Nevada: Ecologic and geographic distributions. Technical Report TID-26881. Technical Information Center, Office of Technical Information, Energy Research and Development Administration.
- Bedinger, M. S. 1989. Geohydrologic aspects for siting and design of low-level radioactive waste disposal. U. S. Geological Survey Circular 1034.
- Bedinger, M. S., and J. R. Harrill. 2006a. The Death Valley regional groundwater flow system in southeastern California. National Park Service, Fort Collins, Colorado.

——. 2006b. Analytical regression stage analysis for Devils Hole, Death Valley National Park, Nevada. Journal of the American Water Resources Association 42, no. 4:0827–0839.

- ———. 2010. Regional potential for interbasin flow, Appendix I. In Death Valley regional groundwater flow system, Nevada and California—Hydrogeologic framework and transient groundwater flow model, ed. W. R. Belcher, and D. S. Sweetkind. U.S. Geological Survey Scientific Investigations Professional Paper 1711, 345–364. (Originally released in U. S. Geological Survey Scientific Investigations Report 2004-5205.)
- Bedinger, M. S., J. R. Harrill, and J. M. Thomas. 1984. Maps showing groundwater units and withdrawal, Basin and Range province, Nevada. U.S. Geological Survey Water Resources Investigations Report 83-4119A.
- Bedinger, M.S., W. H. Langer, W. R. Moyle. 1984. Maps showing groundwater units and withdrawal, Basin and Range province, Southern California. U.S. Geological Survey Water Resources Investigations Report 83-4116-A.
- Bedinger, M. S., W. H. Langer, and J. E. Reed. 1989a. Groundwater hydrology. In Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste—Characterization of the Death Valley region, Nevada and California. ed. M. S. Bedinger, K. A. Sargent, and W. H. Langer, 28–35. U.S. Geological Survey Professional Paper 1370-F.
- ———. 1989b. Hydraulic properties of rocks in the Basin and Range province. In Studies of geology and hydrology in the Basin and Range province, southwestern United State,s for isolation of high-level radioactive waste —Basis of characterization and evaluation, ed. M. S. Bedinger, K. A. Sargent, W. H. Langer, F. B. Sherman, J. E. Reed, and B. T. Brady, 16–18. U. S. Geological Survey Professional Paper 1370-A.
- Belcher, W. R., F. A. D'Agnese, and G. M. O'Brien. 2010. Chapter A, Introduction. In Death Valley regional groundwater flow system, Nevada and California—Hydrogeologic framework and transient groundwater flow model, ed. W. R. Belcher and D. S. Sweetkind, 3–18. U.S. Geological Survey Professional Paper 1711. (Originally released in U. S. Geological Survey Scientific Investigations Report 2004-5205.)
- Belcher, W. R., and D. S. Sweetkind, eds. 2010. Death Valley regional groundwater flow system, Nevada and California—Hydrogeologic framework and transient groundwater flow model. U.S. Geological Survey Professional Paper 1711. (Originally released in U.S. Geological Survey Scientific Investigations Report 2004-5205.)
- Blakely, R. J., and D. S. Ponce. 2001. Map showing depth to Pre-Cenozoic basement in the Death Valley model area, Nevada and California. U. S. Geological Survey Miscellaneous Field Studies Map MF 2381-E, version 1.0.

- Bryant, E. A., and M. Fabryka. 1991. Survey of hazardous materials used in nuclear testing. Los Alamos National Laboratory Report LA-12014-MS.
- Bredehoeft, J., C. Fridrich, and M. King. 2005. The lower carbonate aquifer as a barrier to radionuclide transport. Waste Management Conference '05, WM-5482. Tucson, AZ.
- California Department of Water Resources. 2004. California's groundwater. California Department of Water Resources Bulletin 118 (with basin descriptions available online).
- Carr, W. J. 1991 Geology of the Devils Hole Area, Nevada. U. S. Geological Survey Open-File Report 87-560.
- Cemen, I., L. A. Wright, R. E. Drake, and F. C. Johnson. 1985. Cenozoic sedimentation and sequence of deformational events at the southeastern end of the Furnace Creek strike-slip fault zone, Death Valley region, California. In Strike-slip deformation and basin formation. ed. K. T. Biddle and N. Christie-Blick, 127–141. Society of Economic Paleontologists and Mineralogists Special Publication 37.
- D'Agnese, F. A., C. C. Faunt, K. A. Turner, and M. C. Hill. 1997. Hydrogeologic evaluation and numerical simulation of the Death Valley regional groundwater flow system, Nevada and California. U.S. Geological Survey Water Resources Investigations Report 96-4300.
- Dettinger, M. D., J. R. Harrill, D. L. Schmidt, and J. W. Hess. 1995. Distribution of carbonate-rock aquifers and the potential for their development, southern Nevada and parts of Arizona, California, and Utah. U.S. Geological Survey Water Resources Investigations Report 91-4146.
- DeMeo, G. A., R. J. Laczniak, R. A. Boyd, J. L. Smith, and W. E. Nylund. 2003. Estimated groundwater discharge by evapotranspiration from Death Valley, California, 1997–2001. U.S. Geological Survey Water Resources Investigations Report 03-4254.
- Dudley, W. W., Jr., and J. D Larson. 1976. Effect of irrigation pumping on desert pupfish habitats in Ash Meadows, Nye County, Nevada. U.S. Geological Survey Professional Paper 927.
- Durbin, T. J. 1978. Calibration of a mathematical model of the Antelope Valley groundwater basin, California. U.S. Geological Survey Water Supply Paper 2046.
- Eakin, T. E. 1966. A regional interbasin groundwater system in the White River area, southeastern Nevada. Water Resources Research 2, no. 2:251-271.
- Eakin, T. E. and D. O. Moore. 1964. Uniformity of discharge of Muddy River Springs, southeastern Nevada and relation to interbasin movement of groundwater. In Geological Survey Research 1964, 171–176. U.S. Geological Survey Professional Paper 501-D.
- Eakin, T. E., D. Price, and J. R. Harrill. 1976. Summary appraisals of the nation's groundwater resources-Great Basin region. U.S. Geological Survey Professional Paper 813-G.
- Eakin, T. E. and I. J. Winograd. 1965. Interbasin movement of groundwater in South-Central Nevada—some implications. In Abstracts for 1964: Geological Society of America Special Paper 82:52.
- Faunt, C. C., J. B. Blainey, M. C. Hill, F. A. D'Agnese, and G. M. O'Brien. 2010. Chapter F, Transient Numerical Model. In Death Valley regional groundwater flow system, Nevada and California—Hydrogeologic framework and transient groundwater flow model, ed. W. R. Belcher and D. S. Sweetkind, 251–344. U.S. Geological Survey Professional Paper 1711. (Originally released in U. S. Geological Survey Scientific Investigations Report 2004-5205.)
- Faunt, C. C., F. A. D'Agnese, and G. M. O'Brien. 2010. Chapter D, Hydrology. In Death Valley regional groundwater flow system, Nevada and California—Hydrogeologic framework and transient groundwater flow model, ed. W. R. Belcher and D. S. Sweetkind, 133–160. U.S. Geological Survey Professional Paper 1711. (Originally released in U. S. Geological Survey Scientific Investigations Report 2004-5205.)

<sup>110</sup> Groundwater Geology and Hydrology of Death Valley National Park, California and Nevada

- Faunt, C. C., D. S. Sweetkind, and W. R. Belcher. 2010. Chapter E, Three-dimensional hydrogeologic framework model. In Death Valley regional groundwater flow system, Nevada and California—Hydrogeologic framework and transient groundwater flow model, ed. W. R. Belcher and D. S. Sweetkind, 161–250. U.S. Geological Survey Professional Paper 1711. (Originally released in U. S. Geological Survey Scientific Investigations Report 2004-5205.)
- Flint, A. L., L. E. Flint, J. A. Hevesi, and J. B. Blainey. 2004. Fundamental concepts of recharge in the desert southwest, a regional modeling perspective. In Groundwater recharge in a desert environment, the Southwestern United States, ed. J. F. Hogan, F. M. Phillips, and B. R. Scanlon, 115–128. American Geophysical Union, Geophysical Monograph 122.
- Forester, R. M. 2000. An Ostracode record of Holocene climate change from Owens Lake, California. In Impacts of climate change on landscapes of the eastern Sierra Nevada and western Great Basin, 7–8. U.S. Geological Survey Open-File Report 01-202.
- Fridrich, C., R. Blakely, and R. Thompson. 2003a. Hydrogeologic investigations of the southern Funeral Mountains, Part I Studies in FY 2002. U. S. Geological Survey Administrative Report to Inyo County, California, August 5, 2003:1–7
- ------. 2003b, Hydrogeologic investigations of the southern Funeral Mountains, Part I Studies in 2003. U.S. Geological Survey Administrative Report to Inyo County, California, August 5, 2003:8–24
- Gale, H. S. 1914. Salt, borax, and potash in Saline Valley, Inyo County, California. In Contributions to Economic Geology 1912, Part I.—Metals and Nonmetals except fuels, 416–421. U.S. Geological Survey Bulletin 540.
- Greene, R. C. 1997. Geology of the northern Black Mountains, Death Valley, California. U.S. Geological Survey Open-File Report 97-79.
- Grose, T. L., and G. I. Smith. 1989. Geology. In Studies of geology and hydrogeology in the Basin and Range Province, southwestern United States, for isolation of high-level radioactive waste, ed. M. S. Bedinger, K. A. Sargent, and W. H. Langer, 5–19. U.S. Geological Survey Professional Paper 1370-F.
- Hale, G. S. and C. L. Westenberg. 1995. Selected groundwater data for Yucca Mountain region, southern Nevada and eastern California, calendar year 1993. U.S. Geological Survey Open-File Report 95-158.
- Hamilton, W. B. 1988. Detachment faulting in the Death Valley region, California and Nevada. In Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada, ed. M. D. Carrand J. C. Yount, 51–85. U. S. Geological Survey Bulletin 1790.
- Harrill, J. R. 1986. Groundwater storage depletion in Pahrump Valley, Nevada–California, 1962-75. U.S. Geological Survey Water Supply Paper 2279.
- ------. 1995a. Evaluation of scientific literature pertaining to the conceptualization of the groundwater flow system, Nevada and California. Private Consultant, Pal Consultants Inc., 14380 Story Road, San Jose, California.
- ——. 1995b. A conceptual model of the Death Valley groundwater flow system Nevada and California. Private Consultant, Pal Consultants Inc., 14380 Story Road, San Jose, California.
- Harrill, J. R. and M. S. Bedinger. 2005 (Originally released in 2000). Groundwater level fluctuations in Devils Hole, 1962-1999, regional stresses and water-level changes in the Death Valley Region, Nevada and California. Technical Report NPS/NRWRD/NRTR-2005/339, U.S. Department of the Interior, National Park Service.
  - 2010. Estimated model boundary flows, Appendix 2, Plate 1. In Death Valley regional groundwater flow system, Nevada and California—Hydrogeologic framework and transient groundwater flow model, ed. W. R. Belcher and D. S. Sweetkind, 345–364. U.S. Geological Survey Professional Paper 1711. (Originally released in U. S. Geological Survey Scientific Investigations Report 2004-5205.)

- Harrill, J. R., J. S. Gates, and J. M. Thomas. 1988. Major groundwater flow systems in the Great Basin Region of Nevada, Utah, and adjacent States. 2 sheets, map scale 1:1,000,000, with errata sheet. U.S. Geological Survey Hydrologic Investigations Atlas HA-694-C.
- Hevesi, J. A., A. L. Flint, and L. E. Flint. 2002. Preliminary estimates of spatially distributed net infiltration and recharge for the Death Valley region, Nevada–California. USGS Water Resources Investigation Report 02-4010.
- . 2003. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California. U.S. Geological Survey Water Resources Investigation Report 2003-4090.
- Hollett, K. J., W. R. Danskin, W. F. McCaffrey, and C. L. Walti. 1991. Geology and water resources on Owens Valley, California. U.S. Geological Survey Water Supply Paper 2370-B.
- Hunt, C. B. 1967. Natural regions of the United States and Canada. W. H. Freeman and Company, San Francisco, California.
- . 1975. Death Valley, geology, ecology, archaeology. University of California Press, Berkeley, California.
- Hunt, C. B. and L. W. Durrell. 1966. Distribution of fungi and algae. In Plant ecology of Death Valley, California, ed. C.B. Hunt. U.S. Geological Survey Professional Paper 509.
- Hunt, C. B., and D. R. Mabey. 1966. Stratigraphy and structure Death Valley, California. U.S. Geological Survey Professional Paper 494-B.
- Hunt, C. B., and T. W. Robinson. 1960. Possible interbasin circulation of groundwater in the southern part of the Great Basin. U.S. Geological Survey Professional Paper 400-B: B273–B274.
- Hunt, C. B., T. W. Robinson, W. A. Bowles, and A. L. Washburn. 1966. Hydrologic basin Death Valley, California. U.S. Geological Survey Professional Paper 494-B: B1–B147.
- Inyo County Yucca Mountain Repository Assessment Office. 2005. Death Valley lower carbonate aquifer monitoring program—wells downgradient of the proposed Yucca Mountain nuclear waste repository. Final Project Report. U. S. Department of Energy Cooperative Agreement DE-FC08-02RW12162.
- Jacobs, C. 2005. Death Valley National Park spring inventory. Great Basin Institute. University of Nevada, Reno, Nevada.
- James, J. W. 1993. Climate of the Death Valley Region, Nevada, California. State of Nevada, Office of the State Climatologist. University of Nevada, Reno, Nevada.
- Johannesson, K. H., K. J. Stetzenbach, and V. Hodge. 1997. Rare earth elements as geochemical tracers of regional groundwater mixing. Geochemica et Cosmochimica Acta, 61:3605–3618.
- King, M. J., and J. D. Bredehoeft. 1999. Death Valley springs geochemical investigation, Yucca Mountain Nuclear Repository, Inyo County Oversight–1998. The Hydrodynamics Group, Edmonds, Washington.
- La Camera, R. J. and G. L. Locke. 1997. Selected groundwater data for Yucca Mountain region, southern Nevada and Eastern California, through December 1996. U.S. Geological Survey Open-File Report 97-821.
- La Camera, R. J., and C. L. Westenberg. 1994. Selected groundwater data for Yucca Mountain region, southern Nevada and Eastern California, through December 1992. U.S. Geological Survey Open File Report 94-54.
- La Camera, R. J., C. L. Westenburg, and G. L. Locke. 1996. Selected groundwater data for Yucca Mountain region, southern Nevada and eastern California, through December 1995. U.S. Geological Survey Open-file Report 96-553.

<sup>112</sup> Groundwater Geology and Hydrology of Death Valley National Park, California and Nevada

- Laczniak, R. J., J. C. Cole, D. A. Sawyer, and D. A. Trudeau. 1996. Summary of hydrogeologic controls on groundwater flow at the Nevada Test Site, Nye County, Nevada. U.S. Geological Survey Water Resources Investigations Report 96-4109.
- Laczniak, R. J., L. J. Smith, and G. A. DeMeo. 2006. Annual groundwater discharge by evapotranspiration from areas of spring-fed riparian vegetation along the eastern margin of Death Valley, 2000-02. U.S. Geological Survey Scientific Investigations Report 2006-5145.
- Laczniak, R. J., L. J. Smith, P. E. Elliot, G. A. DeMeo, M. A. Chatigny, and G. J. Roemer. 2001. Groundwater discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California. U.S. Geological Survey Water-Resources Investigations Report 01-4195.
- Lamb, C. E., and D. J. Downing. 1979. Hydrologic data, 1974-77, Stovepipe Wells Hotel area, Death Valley National Monument, Inyo County, California. U.S. Geological Survey Open-file Report 79-203.
- Lingenfelter, R. E. 1986. Death Valley & the Amargosa—A land of illusion. University of California Press, Berkeley, California.
- Machette, M. N., W. J. Stephenson, R. A. Williams, J. K. Odum, D. M. Worley, and R. L. Dart. 2000. Seismic-reflection investigations of the Texas Springs Syncline for groundwater development, Death Valley National Park. U.S. Geological Survey Open-File Report 2000-106.
- Malmberg, G. T. 1967. Hydrology of the valley-fill and carbonate-rock reservoirs, Pahrump Valley, Nevada–California. U.S. Geological Survey Water Supply Paper 1832.
- Mase, C. W., S. P. Galanis, Jr., and R. J. Munroe. 1979. Near-surface heat flow in Saline Valley, California. U.S. Geological Survey Open-File Report 79-1136.
- Maxey, G. B. and T. E. Eakin. 1949. Groundwater in White River Valley, White Pine, Nye, and Lincoln Counties, Nevada. Nevada State Engineer, Water Resources Bulletin 8.
- McAllister, J. F. 1970. Geology of the Furnace Creek borate area, Death Valley, Inyo County, California. California Department of Conservation, Division of Mines and Geology Map Sheet 14.
- Mifflin, M. D. 1968. Delineation of groundwater flow systems in Nevada. University of Nevada, Las Vegas, Desert Research Institute Technical Report Series H-W, Publication 4.
- Mifflin, M. D., and J. W. Hess. 1979. Regional carbonate flow systems in Nevada. In Hydrogeology—The George Burke Maxey Memorial Volume, ed. W. Back and D. A. Stephenson. Contemporary Journal of Hydrology 43:217–235.
- Miller, G. A. 1977. Appraisal of the water resources of Death Valley, California–Nevada. U.S. Geological Survey Open-File Report 77-728.
- Moreo, M. T., K. J. Halford, R. J. La Camera, and R. J. Laczniak. 2003. Estimated groundwater withdrawals from the Death Valley regional flow system, Nevada and California, 1913–1998. U.S. Geological Survey Water-Resources Investigations Report 03-4245.
- Noble, L. F. 1934. Rock formations of Death Valley, California Science 80, no. 2069:173–180.
- Noble, L. F. 1941. Structural features of the Virgin Spring area, Death Valley, California. Geological Society of America Bulletin 52:942–1000.
- Pistrang, M. A. and F. Kunkel. 1964. A brief geologic and hydrologic reconnaissance of the Furnace Creek Wash area, Death Valley National Monument, California. U.S. Geological Survey Water Supply Paper 1779-Y.

- Potter, C. J., D. S. Sweetkind, R. P. Dickerson, and M. L. Kilgore. 2002. Hydrostructural maps of the Death Valley regional flow system, Nevada and California. U.S. Geological Survey Miscellaneous Field Studies Map MF-2372.
- Prudic, D. E., J. R. Harrill, and T. J. Burbey. 1995. Conceptual evaluation of regional groundwater flow in the carbonate rock province of the Great Basin, Nevada, Utah, and adjacent states. U.S. Geological Survey Professional Paper 1409-D.
- Reynolds, M. W. 1974. Geology of the Grapevine Mountains, Death Valley, California—A summary. In Guidebook— Death Valley Region, California and Nevada, 92–99. Geological Society of America Field Trip Number 1, Cordilleran Section, 70th annual meeting. The Death Valley Publishing Company, Shoshone, California.
- Rice, W. A. 1984. Preliminary two-dimensional regional hydrologic model of the Nevada Test Site and vicinity. Pacific Northwest Laboratory, Richland, Washington, under Sandia Contract No. 37-3171.
- Riggs, A. C. and J. E. Deacon. 2002. Connectivity in desert aquatic ecosystems: The Devils Hole story. In Conference Proceedings, Spring-fed Wetlands: Important Scientific and Cultural Resources of the Intermountain Region, May 7–9, 2002, Las Vegas, Nevada, ed. D. W. Sada and S. E. Sharpe. DHS Publication No. 41210.
- Rojstaczer, S. 1987. The local effects of groundwater pumpage within a fault-influenced groundwater basin, Ash Meadows, Nye County, Nevada, USA. Journal of Hydrology 91:319–337.
- Rowlands, P. G. 1993. Vegetation and climate of Death Valley National Monument and the adjacent Mojave and Great Basin Deserts, California and Nevada. In Proceedings of the Fourth Conference on research in California's National Parks, National Park Service. National Park Service Transactions and Proceedings Series 9:66-82.
- Rush, F. E. 1968. Water Resources appraisal of Clayton Valley-Stonewall Flat area, Nevada and California. Nevada Department of Conservation and Natural Resources, Water Resources-Reconnaissance Report 45.
- Sada, D. W., and K. F. Pohlmann. 2003. National Park Service Mojave inventory and monitoring network spring survey protocols, Level I, Draft Unpublished.
- ——. 2006. Environmental and biological characteristics of springs in Death Valley National Park, California. Draft Report to Death Valley National Park, National Park Service.
- San Juan, C. A., W. R. Belcher, R. J. Laczniak, and H. M. Putnam. 2010. Chapter C, Hydrologic components for model development. In Death Valley regional groundwater flow system, Nevada and California—Hydrogeologic framework and transient groundwater flow model, ed. W. R. Belcher and D. S. Sweetkind, 95–132. U.S. Geological Survey Professional Paper 1711. (Originally released in U. S. Geological Survey Scientific Investigations Report 2004-5205.)
- Sargent, K. A. 1989.Quaternary tectonism. In Studies of Geology and Hydrology in the Basin and Range Province, Southwestern United State, for isolation of high-level radioactive waste – Characterization of the Death Valley Region, Nevada and California, ed. M. S. Bedinger, K. A. Sargent, and W. M. Langer, 24–27. U.S. Geological Survey Professional Paper 1370-F.
- Sibson, R. H. 1986. Brecciation processes in fault zones—inferences from earthquake rupturing. PAGEOPH 124: 159–175.
- Snow, J. K. 1989. Day 7: Neogene dextral translation of the Cottonwood Mountain Area, California. In Extension Tectonics in the Basin and Range Province between the southern Sierra Nevada and the Colorado Plateau, ed. J. Wernicke, J. K. Snow, G. J. Axen, B. C. Burchfiel, K. V. Hodges, J. D. Walker, and P. L. Guth, 56–67. American Geophysical Union, IGC Field Trip T138.
- Stamos, C. L., T. Nishikawa, and P. Martin. 2001. Water supply in the Mojave River Groundwater Basin 1931-99, and the benefits of artificial recharge. U.S. Geological Survey Water Fact Sheet 122-0.

<sup>114</sup> Groundwater Geology and Hydrology of Death Valley National Park, California and Nevada

- Stamos, C. L., P. Martin, T. Nishikawa, and B. Cox. 2001. Simulation of groundwater flow in the Mojave River basin, California. U.S. Geological Survey Water Resources Investigations Report 01-4002 Version 1-2.
- Steinkampf, W. C., and W. L. Werrell. 2001. Groundwater flow to Death Valley, as inferred from the chemistry and geohydrology of selected springs in Death Valley National Park, California and Nevada. U.S. Geological Survey Water-Resources Investigations Report 98-4114.
- Stewart, J. H. 1967. Possible large right-lateral displacement along fault and shear zones in Death Valley–Las Vegas area, California and Nevada. Geological Society of America Bulletin 78, no. 2:131–142.
- ———. 1970. Upper Precambrian and Lower Cambrian strata in the southern Great Basin, California and Nevada. U.S. Geological Survey Professional Paper 620.
- Sweetkind, D. S., R. P. Dickerson, R. J. Blakely, and P. D. Dunning. 2001. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California. U.S. Geological Survey Miscellaneous Filed Studies Map MF-2370.
- Sweetkind, D. S., W. R. Belcher, C. C. Faunt, and C. J. Potter. 2010. Chapter B., Geology and Hydrogeology. In Death Valley regional groundwater flow system, Nevada and California—Hydrogeologic framework and transient groundwater flow model, ed. W. R. Belcher and D. S. Sweetkind, 19–94. U.S. Geological Survey Professional Paper 1711. (Originally released in U. S. Geological Survey Scientific Investigations Report 2004-5205.)
- Thomas, J. M., A. H. Welch, and M. D. Dettinger. 1996. Geochemistry and isotope hydrology of representative aquifers in the Great Basin region of Nevada, Utah, and adjacent states. U.S. Geological Survey Professional Paper 1409-C.
- Thornthwaite, C. W. 1948. An approach toward a rational classification of climates. Geographical Review 38, no. 1:54–94.
- Troxel, B. W., and L. A. Wright. 1976. Geologic features Death Valley, California. California Division of Mines and Geology Special Report 106.
- ———. 1987. Tertiary extensional features, Death Valley region, eastern California. In Decade of North America Geology, Centennial Field Guide: v. 1, ed. M. L. Hill, 121–132.
  - ——. 1989. Geologic map of the central and northern Funeral Mountains and adjacent areas, Death Valley region, southern California. U.S. Geological Survey Open-File Report 89-348.
- U.S. Department of Agriculture. 1988. Database for CONUS, Alaska, and Hawaii in BASINS Publication Information. U.S. Environmental Protection Agency. http://www.epa.gov/OST/BASINS
- U.S. Department of Energy. 1991. Environmental restoration and waste management—Five year plan for fiscal years 1992-1996. U.S. Department of Energy, Nevada Operations Office, unnumbered report.
- ———. 1994. United States nuclear tests: July 1945 through September 1992. U.S. Department of Energy, Nevada Operations Office, DOE/NV-209 (rev. 14).
- U.S. Environmental Protection Agency. 1991. Offsite environmental monitoring report—Radiation monitoring around United States nuclear test areas calendar year 1990. U.S. Environmental Protection Agency Report, EPA 600/4-91/030 (DOE/DP 00539-063).
- Waddell, R. K., Jr. 1982. Two dimensional, steady state model of groundwater flow, Nevada Test Site and vicinity, Nevada–California. U.S. Geological Survey Water Resources Investigations Report 82 4085.

- Waddell, R. K., J. H. Robison, and R. K. Blankenagel. 1984. Hydrology of Yucca Mountain and vicinity, Nevada–California—Investigative results through mid-1983. U.S. Geological Survey Water-Resources Investigations Report 84-4267.
- Walker, G. E. and T. E. Eakin. 1963. Geology and groundwater of Amargosa Desert, Nevada–California. Nevada Department of Conservation and Natural Resources, Groundwater Resources–Reconnaissance Report 14.
- Wernicke, J., J. K. Snow, G. J. Axen, B. C. Burchfiel, K. V. Hodges, J. D. Walker, and P. L. Gurht. 1989. Extension tectonics in the Basin and Range Province between the southern Sierra Nevada and the Colorado Plateau. American Geophysical Union, IGC Field Trip T138.
- Westenberg, C. L. and R. La Camera. 1996. Selected groundwater data for Yucca Mountain region, southern Nevada and Eastern California, through December 1994. U.S. Geological Survey Open-File Report 96-205.
- Williams, T. R. and M. S. Bedinger. 1984. Selected geologic and hydrologic characteristics of the Basin and Range Province, Western United States, Pleistocene Lakes and Marshes. U.S. Geological Survey Miscellaneous Investigations Series Map 1523-D.
- Winograd, I. J., and W. Thordarson. 1975. Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada–California, with special reference to the Nevada Test Site. U.S. Geological Survey Professional Paper 712-C.
- Workman, J. B., C. M. Menges, W. R. Page, E. Taylor, E. B. Ekren, P. D. Rowley, G. L. Dixon, R. A. Thompson, and L. A. Wright. 2002a. Geologic map of the Death Valley groundwater model area, Nevada and California. U.S. Geological Survey Miscellaneous Field Studies Map MF-2381-A.
- Workman, J. B., C. M. Menges, W. R. Page, E. B. Ekren, P. D. Rowley, G. L. Dixon, R. A. Thompson, and L. A. Wright. 2002b. Tectonic map of the Death Valley groundwater model area, Nevada and California. U.S. Geological Survey Miscellaneous Field Studies Map MF-2381-B.
- Wright, L.A., and B. W. Troxel. 1993. Geologic map of the central and northern Funeral Mountains and adjacent areas, Death Valley region, southern California. U.S. Geological Survey Miscellaneous Investigations Series Map I-2305.
- Wright, L.A., R. C. Green, I. Cemen, F. C. Johnson, and A. R. Prave. 1999. Tectonostratigraphic development of the Miocene–Pliocene Furnace Creek Basin and related features, Death Valley region, California. In Cenozoic basins of the Death Valley region, ed. L. A. Wright and B. W. Troxel, 87–114. Geological Society of America Special Paper No. 333.

The Department of the Interior protects and manages the nation's natural resources and cultural heritage; provides scientific and other information about those resources; and honors its special responsibilities to American Indians, Alaska Natives, and affiliated Island Communities.

National Park Service U.S. Department of the Interior



## Natural Resource Stewardship and Science

1201 Oakridge Drive, Suite 150 Fort Collins, Colorado 80525

www.nature.nps.gov



Plate 1. Regional potential for flow of groundwater in the Death Valley regional groundwater flow system, Nevada and California. After Bedinger and Harrill 2010.



118°

Plate 2: Stuctural setting of Death Valley showing thrust faults, detachment faults, strike-slip faults, and major normal faults. From Potter et al. 2002.