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PREFACE 

California’s Climate Change Assessments provide a scientific foundation for understanding 
climate-related vulnerability at the local scale and informing resilience actions. These 
Assessments contribute to the advancement of science-based policies, plans, and programs to 
promote effective climate leadership in California. In 2006, California released its First Climate 
Change Assessment, which shed light on the impacts of climate change on specific sectors in 
California and was instrumental in supporting the passage of the landmark legislation 
Assembly Bill 32, California’s Global Warming Solutions Act. The Second Assessment 
concluded that adaptation is a crucial complement to reducing greenhouse gas emissions 
(2009), given that some changes to the climate are ongoing and inevitable, motivating and 
informing California’s first Climate Adaptation Strategy released the same year. In 2012, 
California’s Third Climate Change Assessment made substantial progress in projecting local 
impacts of climate change, investigating consequences to human and natural systems, and 
exploring barriers to adaptation.  

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 
managed and supported California’s Fourth Climate Change Assessment: California’s Natural 
Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 
California Energy Commission (Energy Commission). The Climate Action Team Research 
Working Group, through which more than 20 state agencies coordinate climate-related 
research, served as the Steering Committee, providing input for a multi-sector call for 
proposals, participating in selection of research teams, and offering technical guidance 
throughout the process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 
science that serves the growing needs of state and local-level decision-makers from a variety of 
sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 
scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 
California; datasets and tools that improve integration of observed and projected knowledge 
about climate change into decision-making; and recommendations and information to directly 
inform vulnerability assessments and adaptation strategies for California’s energy sector, water 
resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 
habitat, and public health.  

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 
understanding climate-related risks and resilience options, nine regional reports plus an oceans 
and coast report to outline climate risks and adaptation options, reports on tribal and 
indigenous issues as well as climate justice, and a comprehensive statewide summary report. 
All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 
and relevance to practitioners and stakeholders.  

For the full suite of Fourth Assessment research products, please visit 
www.climateassessment.ca.gov. This report contributes to energy sector resilience by 
providing methods to improve management of hydropower through improved streamflow 
forecasting. 

http://www.climateassessment.ca.gov/
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ABSTRACT 

Changing climatic conditions and a lack of representative snow cover data challenge the 
ability to accurately model and fully utilize the water resources of montane snowpack on 
which California depends. This project aims to improve scientific understanding of 
snowpack modeling and streamflow forecasting techniques. Though relevant across 
industries and the state, this research focuses on hydropower applications in the North 
Fork of the Feather River. Central components of the project are four wireless sensor 
networks, installed in locations that are representative of vegetation and topography 
patterns across the basin. The networks collect snow, temperature, relative humidity, soil 
moisture, and soil temperature data every 15 minutes. By blending this information with 
remote sensing data and historical maps, we estimate the spatial distribution of snow water 
resources at high resolution. These outputs can help improve runoff forecasting tools such 
as the Precipitation-Runoff Modeling System (PRMS). Preliminary results show that 
wireless sensor networks can successfully track hydrologic states and fluxes in real time 
and provide a more representative picture of snowpack accumulation and melt than 
traditional index stations. Network data are also used to gain insight into rain-on-snow 
events, which are a key streamflow generation mechanism for the Feather River. The data 
show that the current calibration of PRMS on the Feather River could overestimate 
snowfall and underestimate liquid precipitation. Future steps include a sensitivity analysis 
of PRMS to identify its dominant parameters and conceptual limitations, as well as a full, 
dynamic recalibration of the model. Blended maps of snow water equivalent will also be 
assimilated into the model. These results will be included in the decision-support suite for 
PG&E, California’s largest electric and natural gas utility, and an analysis will be 
performed to assess results’ economic value for stakeholders in the energy and water-
supply sectors.  

Keywords: wireless sensor networks, hydrologic forecasting, hydropower, climate change, 
PRMS model, snow water equivalent, snow melt runoff, streamflow, remote sensing 
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HIGHLIGHTS 

• This research demonstrates the use of wireless sensor networks in tracking 
hydrologic states and fluxes, which are key to understanding storage and release of 
water from California’s snowpack, across physiographically representative 
locations, as well as their resilience to extreme snow conditions. 

• Networks show capability of detecting and quantifying key streamflow 
generation mechanisms in real time. Examples include infiltration of water in 
soils during rain-on-snow events and transitions between periods dominated 
by either snow melt or evapotranspiration. 

• Data from these networks can be blended with traditional sensors to enhance 
existing weather and snowpack-monitoring capabilities on the Feather River. For 
example, snow-depth data from wireless sensor networks can be combined with 
traditional devices for measuring snowpack (snow pillows) and precipitation 
gauges to improve phase (rain or snow) identification methods. 

• Areas prone to rain-on-snow events, such as the Feather River basin, have been 
among the first to see the effects of increasing global temperatures.  

• Networks can support better energy- and mass-balance models by improving data 
inputs and parameter calibration. Opportunities include combining data from 
wireless sensor networks with remote sensing to perform multi-objective 
calibration of hydrologic models and data assimilation. 

• The ongoing work aims to improve forecasting of streamflow and thus quantify 
benefits of this decision-support system for electric utilities and other stakeholders on 
the Feather River, such as water agencies.  

• An important goal of the project is to estimate changes in generation economics using 
wireless sensor networks as measurement tools. Doing so requires full cooperation of 
PG&E, which is expected. A paper on this topic will be submitted by August 2019. 

 

WEB LINKS 

http://frho.us/ 

  

http://frho.us/
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1: Introduction 

1.1 Context: California’s Water and Energy in a Changing 
Climate 

California, like most parts of the world, is facing growing pressure on its human 
and natural systems from climate change [13, 28]. Warming temperatures are 
projected to increase the length and severity of droughts and contribute to more 
serious heat waves and wildfires [16]. These issues are likely to be particularly 
problematic for the state’s water supply system [55].  

California has one of the most intricate and complex water delivery systems in the 
world, with a network of reservoirs, aqueducts, and groundwater pumps that 
deliver water from the headwaters in the northern and eastern portions of the state 
to population centers and agricultural land in the west and south. The two primary 
delivery systems, the Central Valley Project and the State Water Project, deliver 
water over distances of 500 and 600 miles, respectively (800 and 960 km) [50, 73]. In 
addition to balancing the need for human drinking water and irrigation supply, 
various environmental considerations are enshrined in state law. These require, for 
example, that minimum flows are maintained in certain water ways for the benefit 
of native aquatic species.  

Water in California is also intertwined with energy production; in 2016, 
hydroelectricity accounted for nearly 15% of in-state electricity generation [12]. 
Other energy sources such as natural gas plants rely on water for cooling. 
Conversely, water-related energy consumption accounts for 19% of the state’s 
electricity and 30% of its natural gas consumption. Temperature increases [79] can 
lead to reduced water supply and water stress [81]. In response to these effects, the 
state is also starting to use more energy-intensive water supplies, such as 
desalinated water and deeper groundwater, which requires more energy 
consumption to pump to the surface [30]. 

Currently, California’s system relies on fairly rigid expectations of seasonal and 
interannual water availability, as well as location and type of precipitation. A 
geographic imbalance between water supply and water demand, coupled with 
minimal storage near end users, means that the system lacks long-term resilience to 
drought and is not able to fully capture and store all available water in wet years 
[24]. Significant changes to the amount, timing, or quality of available water will 
strain this already sensitive balance. Many of the other impacts of climate change 
will exacerbate the problems; warmer temperatures will likely spur higher water 
use among the state’s population. Longer droughts will necessitate a more flexible 
water storage system to maintain reserves for dry years. However, the extreme 
weather exacerbated by climate change may also mean that wet years become, on 
average, wetter. Such a situation could raise the risk of flooding and damage water 
infrastructure such as dams and water distribution systems [24]. 

Climate change may also contribute to water quality degradation in several ways. 
Warmer temperatures will lead to warmer water, which could have an adverse 
effect on native fish populations such as salmon [42]. Energy resources that rely on 
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water for cooling may see degraded efficiencies with warmer water temperatures 
[53]. If wildfire activity and severity increase [76, 77, 78], surrounding waterways 
will become more susceptible to contamination by toxic ash and debris [48, 59]. 
Expanding use of desalination will generate increasing amounts of highly saline 
brine, which can substantially harm water quality if not disposed of properly [24]. 

The following report focuses on the climate change impacts on the state’s snowpack, 
an integral component of its water and energy system [5]. It describes how specific 
research efforts aim to improve understanding and estimation of snowpack 
conditions, particularly under shifting hydrologic regimes due to climate-change 
context [41]. 

1.2 Focus: California Snow Hydrology and Climate Change 

The state of California relies heavily on winter snowfall for its annual water supply; 
melting snowpack from mountains in the northern and eastern regions of the state 
accounts for more than 60% of the state’s consumptive water and up to one-third of 
total supply [11, 49]. Falling primarily between the months of November and April, 
the snowpack traditionally serves as a low-cost water storage option. As the snow 
melts through the spring and dry summer, the runoff that is generated is 
incrementally captured by the state’s numerous water storage reservoirs. From 
there, it is released as needed to downstream communities for drinking and 
irrigation water. Streams and rivers fed by snowpack are also an important source 
of hydroelectricity production [65]. 

In general, the state’s reservoirs are sized to accept water over an extended period, 
relying on the snowpack to mitigate the inflow of winter precipitation. Though 
reservoirs are legally obligated to maintain some storage space for emergency flood 
scenarios, their capacity for handling greatly increased inflows is limited. While 
climate change projections for California are divided on how the overall quantity of 
precipitation will be affected, warming temperatures will cause more of the 
precipitation to fall as rain rather than snow [40]. The reduction in snowpack will 
test the state’s existing water storage capacity, increasing the potential for flood 
events and potentially reducing water agencies’ abilities to maintain buffering 
supplies, both seasonally and year to year [54]. 

These changes will result in the rain/snow transition zone rising in elevation, so that 
mid-elevation locations that currently experience mixed or primarily snow events 
will receive more rain [25]. Warming temperatures will also lengthen the growing 
season for alpine vegetation, increasing evapotranspiration [22, 33]. Net runoff is 
therefore expected to decrease [8]. 

The magnitudes of these combined effects are challenging to anticipate, but there is 
substantial evidence that adaption will be costly [24]. The storage services currently 
provided by the snowpack, for example, will need to be replaced with another part 
of the state’s water infrastructure system. Otherwise, a shift in streamflow 
seasonality could translate into a net loss of water available for civil, industrial, and 
agricultural uses [54]. A reduction in overall available water has the potential to 
significantly impact the state’s precarious water balance, especially as the 
population grows. Understanding the mechanisms and impacts of the changing 
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climate will be imperative for the future management of California’s water and 
hydroelectricity supplies. 

1.3 Hydropower and Climate Change 

Hydroelectric plants tend to have lower climate change impacts than fossil fuel 
energy sources such as natural gas and coal. As such, these plants are important to 
maintain as a component in energy portfolios. For example, the largest energy 
utility in Northern California, Pacific Gas & Electric (PG&E, see 
https://www.pge.com/), maintains hydropower plants on rivers across the Sierra 
Nevada, which runs along the eastern edge of the state from the Feather River basin 
north of Sacramento to the Kern River basin east of Bakersfield. In total, the utility’s 
hydroelectricity-power capacity is 3,900 MW [66]. However, the future productivity 
and economic viability of hydropower facilities are threatened by changes in 
climate and energy portfolios. 

More variable and extreme weather could undermine traditional forecasting 
methods, in which stream flow is generally predicted by regressing against 
historical patterns of snow melt and runoff [47]. Forecasting uncertainty is 
exacerbated by the frequent lack of representative measurement sites at high 
elevation, where most of snow accumulates and contributes to stream flow during 
summer [62] A good example of this data gap is the heat wave in June 2017, which 
caused massive snow melt at high elevation in the Kings River basin that could not 
be monitored in real time [67]. This growing uncertainty in runoff makes day-to-day 
operations of hydropower plants more uncertain, necessitating accurate daily 
streamflow estimates. 

Accurate streamflow forecasts are even more important as a result of the 2015 
passage of California’s Senate Bill 350, which mandates that California’s utility 
companies increase the proportion of renewable energy in their portfolios to 50% 
by 2050 [43]. The inclusion of often-intermittent renewable energy sources, like 
solar and wind power, has made energy pricing less predictable. At any given 
moment, excess wind and solar resources flooding the electricity grid may drive 
prices negative. This causes a situation in which any additional energy resources 
supplying the grid (including hydropower) will cost rather than produce profit for 
the utility company [29, 56]. The uncertainty in electricity prices coupled with 
uncertainty in stream flow forecasts can render hydropower plants uneconomical 
for utility companies [56]. It is beneficial to both utility companies and the California 
public to improve forecasting models and maintain the economic viability of these 
energy sources. 

 

2: Scope of Work 

This project aims to improve hydrologic snow-melt and streamflow forecasting 
using intelligent information. The final goal is to develop the core elements of a 
next-generation hydrographic data network and use this newly gained information 
to provide more adaptive decision-support tools for water resources forecasting. By 
including state agencies and stakeholders like PG&E, the project is expected to help 

http://www.pge.com/)
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offset growing uncertainty in hydropower and water forecasting owing to growing 
demand, an increasingly variable energy portfolio, and a changing climate. More 
accurate forecasts will reduce the risk and associated costs assumed by PG&E and 
other stakeholders, and by extension, the California rate- and tax-payers. 

2.1 Study Area 

We focus primarily on the North and Middle Fork of the Feather River (FR, Figure 
1). The river is in northern California at the conjunction between the Sierra Nevada 
and the Cascade mountain ranges. The Feather River is an important tributary of the 
Sacramento River, draining an area of about 6,000 mi2 (15,500 km2). Approximately 
half of that area (3,600 mi2, or 9,400 km2) drains into Lake Oroville, the largest 
reservoir of the State Water Project. Water from the Feather River constitutes about 
a third of all water distributed by the Metropolitan Water District of Southern 
California, the wholesale water retailer serving Los Angeles, San Diego, and the 
South Coast. 

2.1.1 North Fork 

The North Fork of the Feather River has headwaters in the northern portion of the 
catchment near Lassen Peak. A major tributary, the East Branch, meets the North 
Fork near Belden. Upstream of this confluence, the Upper North Fork Feather River 
Project by PG&E comprises three reservoirs and five powerhouses. The most 
important reservoir is Lake Almanor, a natural, largely spring-fed lake that was 
augmented by the construction of Canyon Dam. The other two reservoirs are Butt 
Valley, located on Butt Creek, and Belden Forebay. Lake Almanor, Butt Valley, and 
Belden Forebay have a total gross capacity of about 1,100,000 AF, 50,000 AF, and 
2,400 AF, respectively  (1.36×109 m3, 6.17 ×107 m3, and 3×106 m3). These three 
reservoirs are interconnected through a complex network of tunnels and penstocks 
as shown in Figure 2. The five powerhouses are Hamilton Branch, Butt Valley, 
Caribou (1 and 2), Belden, and Oak Flat. Overall, the nominal capacity is 367 MW. 
A specific branch of North Fork of the Feather River includes Mt. Meadows 
reservoir and the Hamilton Branch powerhouse [31]. 

The East Branch of the North Fork (EBNF) encompasses some 1,025 mi2 (2,655 km2) 
and is less developed for hydropower than the main stem of the North Fork [21]. 
Sparse data for the East Branch make the unregulated flows particularly uncertain 
to model. Minimum daily temperatures, especially in the summer, have risen 
significantly during the past 35 years [21]. As a result, annual water-year outflow of 
the subbasin has started decreasing since about the 1960s [21]. This trend has resulted 
in a negative impact on PG&E’s hydroelectric production through both direct 
equivalent energy losses as well as a rise in the uncertainty about the amount of 
snowpack storage. 

The most relevant subbasins of the East Branch are Spanish Creek and Indian 
Creek. Indian Creek originates in the northern part of the basin and flows 
through Indian Valley close to Greenville, Crescent Mills, and Taylorsville. 
Spanish Creek is more southerly and crosses the American Valley close to 
Quincy, one of the largest towns in the basin. The main land use here is 
agricultural. The confluence between the East Branch and the North Fork is 
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located at Belden, from which point flows from the East Branch can substantially 
impact downstream operations. 

Indeed, optimizing water planning for Lake Almanor is highly dependent on 
understanding the uncontrolled flows from the East Branch. The ridge between 
the East Branch and the North Fork represents an important rain shadow for 
moist air moving east from the Pacific Ocean [21].  

Between the Middle and North Forks is Bucks Lake reservoir, managed by PG&E 
and directly connected to the Grizzly and Bucks Creek powerhouses and Grizzly 
Forebay (again, see Figure 2). Water from Bucks Lake ultimately drains into the 
North Fork and then Lake Oroville. 

While the West Branch is now a direct tributary of Lake Oroville, this tributary was 
originally a branch of the North Fork (hence the name).  

 

 

 

Figure 1: Map of the Feather River above the Thermalito Afterbay of the Oroville – 
Thermalito complex. Red dots represent the site of the four target sites where wireless 

sensor networks have been deployed (see Section 3.1.2). 12.5, 25, and 50 km correspond 
to 7.7, 15.5, and 31 miles, respectively. 

 

 

2.1.2 Middle and South Forks 

The Middle Fork of the Feather River (MFFR) is of comparable length to the North 
Fork (about 100 miles and 70 miles, or 160 and 112 km, respectively). The 
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headwaters are located at the north- eastern boundary of the Feather River basin 
(Sierra Valley), where water from Lake Davis and several minor streams flows into 
one another. The total area of the Middle Fork is 1,046 mi2, or 2,706 km2. 

The South Fork is of considerably smaller extent compared to both the North Fork 
and the Middle Fork (107 mi2, or 278 km2), but drains some relevant reservoirs like 
the Little Grass Valley Reservoir. Further details can be found in [31]. 
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Figure 2: Schematic of the Upper North Fork Feather River Project and other PG&E 
projects on the river (source: [71]). 
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2.2 Hydrology of the Feather River 

The Feather River basin is a hydrologically unique watershed. Straddling the 
border between the southern Cascades and the northern Sierra Nevada, the basin’s 
geology varies from more permeable volcanic soil in the northern and western 
portions of the basin to harder, granitic soils in the southern portion [31]. The basin 
is the only watershed in the Sierra Nevada in which water east of the Sierra Divide 
cuts through the crest and drains to the west. The portion that drains into Lake 
Oroville has a lower average elevation than other Sierra watersheds, with a peak 
elevation of about 10,440 ft (3,182 m) at Lassen Peak [72]. The lower elevations 
make the basin more prone to mixed rain-snow events as well as rain-on-snow 
events in the wintertime [31], both of which are notoriously challenging to model 
[60]. Areas that are prone to rain-on-snow events, like the Feather, have been among 
the first to see the effects of increasing global temperatures. 

Water year (WY) 2017 was particularly demonstrative of the impacts of severe rain-
on-snow events. Between December 2016 and March 2017, periodic and intense 
atmospheric rivers from the Pacific Ocean hit the Californian coast. These storms 
resulted in significant reservoir management challenges due to the substantial 
influxes of water to Lake Oroville after each event. The most consequential storm of 
the season occurred in February. The simultaneous damage of the Oroville Dam 
spillway caused the California Department of Water Resources (DWR) to operate 
the emergency spillway for the first time since the dam was built. The subsequent 
near- failure of the emergency spillway resulted in the emergency evacuation of 
180,000 residents from downstream of the dam. According to DWR, about 12.8 
inches (325 mm) of precipitation fell on the basin between February 6 and 10, 2017. 
This period saw the maximum daily volume of water stored in the reservoir since 
at least February 1985, the date of the oldest data available on the California Data 
Exchange Center (CDEC, see http://cdec.water.ca.gov/). Repairs to both spillways 
are estimated to cost in excess of $500 million USD [2]. 

Orographic effects on the Feather River also pose a modeling challenge. Most traditional 
hydrologic models use a lumped-calibrated approach, where a given set of 
parameters are applied to broad geographic areas and tuned based on streamflow 
observations at the outlet of a basin [31]. However, the deep and narrow canyon 
that the North Fork follows below Lake Almanor often captures and funnels 
incoming winter storms. As the storms rise and their moisture condenses, they drop 
large amounts of precipitation on the ridges above the canyon. As a result, 
measurement stations such as Bucks Lake (CDEC code BKL) and Four Trees (FOR) 
regularly compete for the wettest locations in California (again, see 
http://cdec.water.ca.gov/). The relatively coarse resolution of many models can 
complicate the identification of these important intra-basin patterns, especially with 
respect to orographic precipitation and flow. 

2.3 Project Objectives 

The stated goals (and steps) of the project are as follows: 

1. Create an intelligent water-information system to optimize real-time knowledge 
of hydrology across the landscape. 

http://cdec.water.ca.gov/).
http://cdec.water.ca.gov/)
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2. Use this system to provide more-detailed water-basin storage information. 

3. Leverage this advanced monitoring capability to improve current runoff 
predictions and forecasting on the North Fork of the Feather River. 

4. Demonstrate the actual cost savings from using this decision-support chain for 
Feather River stakeholders,  including utility companies and water 
agencies. 

5. Ultimately, contribute to mitigate the effects of climate change on California 
hydropower generation. 

The core component of the intelligent water-information system (objective 1) is 
represented by wireless sensor networks (WSNs), a new type of environmental 
sensing infrastructure [61]. By measuring weather, snow, and soil data at 
physiographically representative locations within 1 km2 patches (0.386 mi2), these 
networks can complement existing standard index stations like snow pillows, 
which are usually installed in flat, open sites [15]. As we detail in Section 3, wireless 
sensor networks are constituted by multiple measurement or sensing nodes, which 
communicate using a wireless network. Data are transmitted to a base station, 
which sends them in real time to a remote server, available for users like forecasters. 
Previous prototype applications on the American River and at Providence Creek in 
southern Sierra have already proven that such networks can reliably provide multi-
year hydrologic data at various scales [62, 74]. 

A specific challenge is to convert data measured from wireless sensor networks to 
more significant hydrologic scales, e.g., the entire North Fork of the Feather River 
(objective 2). This goal points to synergy between data collected on the ground and 
monitoring tools like remote sensing, which have high spatial but low temporal 
resolution [17]. The working hypothesis is that blending data from wireless sensor 
networks with, e.g., MODIS snow covered area products (https://nsidc.org/) or 
Lidar scans (https://aso.jpl.nasa.gov/) can enhance the value of both datasets and 
provide coherent pictures of snow patterns at unprecedented spatial and temporal 
scales. Because the necessary resolution of these decision-support tools should be 
relatively high (say, comparable to the extension of single wireless sensor networks) 
and because such products should be available in real time, an effective data system 
must be put in place to manage large amounts of data. 

Next, this project aims to demonstrate that such advanced spatial information can 
effectively improve hydrologic predictions (objective 3). Current runoff forecasting 
tools in California mainly rely on statistical regressions between historical peak 
snowpack, precipitation, and streamflow [47]. These approaches lack the necessary 
physical base to cope with changing climatic conditions and/or extreme 
precipitation. Complex rainfall-runoff models are a promising tool, but often lack 
details about the spatial distribution of input variables as well as basin properties. 
Data could be assimilated with model outputs to lessen data and prediction 
uncertainty. 

 Objective 4 is the real testing ground for wireless sensor networks. From a 
hydrologic perspective, the amount of available data is usually considered a 
determinant driver of model performance. From an economic perspective, 

https://nsidc.org/
https://aso.jpl.nasa.gov/
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however, collecting data represents an additional overhead. The value of data and 
of monitoring networks must be therefore justified in a cost-benefit framework. 
Ultimately, the project aims to quantify the return of investment of the intelligent 
water-information system. This step will assess the economic value of advanced 
hydrologic information and will evaluate the financial added-value of high-
resolution data. The project will demonstrate if and to what extent detailed 
hydrologic information can offset the risks and associated costs of hydropower as 
an energy resource in California. 

 

3: Methods and Key Findings 

3.1  Real-Time Intelligent Water-Information System 

3.1.1. Overview of Methods 

The first step of the project has been the deployment of four wireless sensor 
networks over the North Fork of the Feather River (see objective 1 and Section 3.1.3 
for a description of the WSNs). Our site selection process over the Feather River was 
driven by a desire to expand current monitoring capabilities on the North Fork, 
where most of the powerhouses are located, with particular focus on the under-
monitored and largely undeveloped East Branch. Networks – from here also 
referred to as clusters or sites – were chosen to be co-located with existing snow 
pillows that measure snow water equivalent (SWE). These sites where chosen 
together with PG&E and DWR. Co-located SWE measurements enable better 
estimation of snow-water storage across the landscape as well as comparison 
between WSNs and traditional monitoring tools. Sites were also chosen to sample 
along a large elevation gradient, as hydrologic processes in mountainous regions are 
driven by factors that change with elevation. Finally, sites were selected to capture 
hydrologic variability induced from orographic effects, including the ridge between 
the North Fork and the East Branch of the Feather River (see Section 2.1.1). 

Next, the measurement locations within each cluster were identified based on a 
combination of hydrologic and network considerations. The goal was to find 12 
locations (based on budgetary considerations) within the 1 km2 deployment area 
(0.386 mi2) that capture the variability of factors known to affect snow cover: slope, 
aspect, vegetation, and elevation. This was done by a machine-learning program 
developed in our laboratory [44]. One measurement station per site was installed at 
the location of the snow pillow to enable direct comparisons between our 
measurements of snow depth and pillow SWE (henceforth, this node is referred to 
as the pillow node). At the same location, a shielded rain gauge is available. 

Section 3.1.2 describes the characteristics of each cluster in more detail. Section 
3.1.3 describes the hardware used by wireless sensor networks to measure and 
transmit data in real time. Examples of hydrologic data measured during water 
year 2017 are provided and compared to standard hydrologic data at co-located 
snow pillows in Section 3.1.4. We comment on the key findings and implications 
from a forecasting perspective in Section 3.1.5 Details about the software used to 
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manage the measurement nodes and transmit data in real time can be found in 
[36]1. 

3.1.2 Deployments 

The chosen measurement sites are Bucks Lake (BKL, latitude 39.85N, longitude 
121.242W, elevation 5750 ft /1750 m), Grizzly Ridge (GRZ, latitude 39.917N, 
longitude 120.645W, elevation 6900 ft / 2100 m), Kettle Rock (KTL, latitude 
40.14N, longitude 120.715W, elevation 7300 ft / 2220 m), and Humbug (HMB, 
latitude 40.115N, longitude 121.368W, elevation 6500 ft / 1980 m). The Bucks 
Lake, Grizzly Ridge, and Kettle Rock clusters were installed during the summer 
of 2016. The Humbug cluster was installed during the summer of 2017. This 
report includes results based on data from BKL, GRZ, and KTL. 

Tables 1 through 4 summarize the topographic features of the sensor station 
locations in each deployment. The number in the “Sensor Station” column refers to 
the locations shown in Figure 4. “Slope” indicates the slope of the ground at the 
sensor station location. “Aspect” indicates the orientation of the slope relative to 
North. “Vegetation” indicates the percentage of vegetation at the sensor station 
location, which was estimated basing on the National Land Cover Database 
(NLCD) canopy dataset (https://www.mrlc.gov/). The original 30 m cell size of the 
NLCD dataset was downscaled to 10 m using bilinear interpolation for the scope of 
this work. Figure 4 shows a bird’s eye view of the deployments. 

3.1.3 Measurement System 

Four different types of hardware are used in these deployments: 

• Sensor stations (Figure 3a) are installed at physiographically representative 
locations within each network clusters and measure snow and meteorological 
variables, which are transmitted to the base station. 

• If the sensor station is too far away from the base station for direct 
communication, repeater nodes (Figure 3b) are installed to serve as data 
relays. 

• The base station (Figure 3c) serves as a collection point for all the data 
gathered by the sensor stations and forwards these data to the server over 
a cellular Internet link. 

• The server receives, stores, and displays the data (not shown). 

 

Each type of hardware is detailed below. Circled numbers (e.g. ①) refer to annotations 
in Figure 3. 

 

                                                      

1This section includes excerpts from the following paper: http://www.mdpi.com/1424-8220/17/11/2583 

 

https://www.mrlc.gov/
http://www.mdpi.com/1424-8220/17/11/2583


12 
 

   

(a) (b) (c) 

Figure 3: The hardware used. Circled numbers refer to specific modules of the 
system in Section 3.1.3. (a) Sensor station; (b) Repeater node; and (c) Base station. 

 

Sensor Station: A sensor station (Figure 3a) consists of an aluminum pole with 
sensors attached and a mote to control the sensors, make local calculations, and 
communicate the sensor measurements to the base station. Up to four types of 
sensors are mounted onto the pole: 

• An MB7363 MaxBotix ultrasonic range-finder (①) is mounted on the tip of 
the cross arm, oriented downwards. It measures the distance to ground or 
snow by measuring the round-trip time of an ultrasonic pulse. It has a 
resolution of 1 mm (0.04 inches), an accuracy of 1%, and a range of 50 cm to 
10 m (1.64 to 33 ft). Like all ultrasonic devices, it is less accurate while it is 
snowing. 

• Temperature and relative humidity are measured by a Sensirion SHT25 
sensor ②. It is enclosed in a radiation shield and mounted about halfway 
across the cross arm. 

• Decagon GS3 soil moisture sensor ③ which measures soil dielectric 
constant, electric conductivity and temperature. Soil moisture is more 
accurately estimated via a calibration relation (see 
http://manuals.decagon.com/Manuals/13822\_GS3\_Web.pdf). Results 
reported have not been locally calibrated. Two such sensors are installed per 

http://manuals.decagon.com/Manuals/13822/_GS3/_Web.pdf
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sensor station, at depths of 25 cm and 50 cm into the ground (0.82 and 1.64 
ft, respectively). 

• One Hukseflux LP02 pyranometer solar radiation sensor ④ is installed per 
WSN in an open area. Unshaded solar radiation tends to be uniform across a 
1–2 km2 area (0.38 – 0.77 mi2). 

These sensors are connected through wires to a managing NeoMote by Metronome 
Systems (http://www.metronomesystems.com/), a multi-purpose, ultra-low mote 
housed in ⑤. An omnidirectional antenna is mounted on the top of the pole (⑦) to 
allow the wireless module to communicate with other components of the network. The 
sensor nodes are powered by a twelve-pack lithium ion battery and a solar panel (⑥). 

Repeater Node: The role of the repeater node (Figure 3b) is to provide connectivity 
between the sensor stations and the base station and maintain redundancy in the mesh 
network. It is more simple than a sensor station, as it only contains a waterproof 
fiberglass enclosure (①) with a Metronome Systems Wireless Sensing Relay Board. An 
antenna is mounted on the top of the box (②). 

Base Station: The base station (Figure 3c) serves four roles: (i) control and maintain 
the network, (ii) collect the sensor measurements from the sensor stations via radio 
antenna (④), (iii) locally store the data, and (iv) transmit the data to the server on 
the Internet through a cellular connection (⑤). Electronics are housed in ①, while 
power comes from the solar panel (②) and batteries housed in ③. 

Within each target site, the base station was placed in an area of high cellular 
connectivity and as close as possible to the center of the field site. This placement 
minimizes the number of connections to the farthest nodes in the final mesh 
network, reducing power consumption and increasing reliability. Given multiple 
potential sensor station locations, we preferred locations that are close to the base 
station to limit the number of repeaters. 

Server: The server serves three roles: (i) receive the data sent by the base stations of 
multiple deployments; (ii) store the data in a database; and (iii) offer a web interface 
to navigate and download the data. 

Table 1: Sensor station features: Bucks Lake 

Sensor Station Elevation, ft (m) Slope, ° Aspect, ° Vegetation, % 

0 5748 (1752) 5 238 70 

1 5705 (1739) 13 272 60 
2 (pillow) 5803 (1769) 0 158 50 

3 5626 (1715) 15 277 70 
4 5800 (1768) 2 109 70 
5 5754 (1754) 10 319 60 
6 5583 (1702) 17 222 80 
7 5810 (1771) 2 133 70 
8 5751 (1753) 4 90 20 
9 5695 (1736) 8 324 40 

10 5577 (1700) 14 339 80 
11 5721 (1744) 4 54 70 

http://www.metronomesystems.com/
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Table 2: Sensor station features: Grizzly Ridge 

Sensor Station Elevation, ft (m) Slope, ° Aspect, ° Vegetation, % 

1 (pillow) 6833 (2083) 5 15 10 

2 6768 (2063) 11 54 70 
3 6893 (2101) 5 102 50 
4 6551 (1997) 15 58 60 
5 6883 (2098) 18 348 70 
6 6919 (2109) 10 328 50 
7 6807 (2075) 6 109 40 
8 6827 (2081) 3 73 20 
9 6624 (2019) 11 48 50 

10 6938 (2115) 7 324 50 
11 6610 (2015) 12 59 40 
12 6791 (2070) 16 39 70 

 

Table 3: Sensor station features: Kettle Rock 

Sensor Station Elevation, ft (m) Slope, ° Aspect, ° Vegetation, % 

1 7309 (2228) 18 196 40 

2 7345 (2239) 8 231 40 
3 7467 (2276) 12 153 40 
4 7122 (2171) 15 180 90 
5 7211 (2198) 14 54 30 
6 7106 (2166) 14 154 60 

7 (pillow) 7250 (2210) 8 179 0 
8 7329 (2234) 15 99 0 
9 7273 (2217) 11 213 50 

10 7076 (2157) 9 156 60 
11 6991 (2131) 15 180 60 
12 7329 (2234) 12 14 30 

 

Table 4: Sensor station features: Humbug 

Sensor Station Elevation, ft (m) Slope, ° Aspect, ° Vegetation, % 

0 6666 (2032) 2 37 70 

1 6509 (1984) 11 39 70 
2 (pillow) 6551 (1997) 5 151 10 

3 6538 (1993) 1 63 60 
4 6548 (1996) 3 169 40 
5 6538 (1993) 2 37 70 
6 6578 (2005) 6 168 60 
7 6519 (1987) 2 167 60 
8 6653 (2028) 6 16 60 
9 6637 (2023) 11 174 70 

10 6597 (2011) 9 17 60 
11 6663 (2031) 4 165 70 
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                                          (a)  (b) 

 

(c) (d) 

 

Figure 4: Maps of the deployments: (a) Bucks Lake; (b) Grizzly Ridge; (c) Kettle Rock; and (d)  

Humbug 
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3.1.4 Examples of Hydrologic Data 

Figure 5 shows an example of mid-winter sensor data from Grizzly Ridge beginning 15 
January 2017 and ending 1 March 2017. Figure 6 shows a second example from the same 
site spanning from 1 May 2017 to 15 June 2017 (snow melt season). These two timeframes 
are used to exemplify the entire range of hydrologic fluxes and states that were monitored 
during the 2017 water year using wireless sensor networks. Data are freely available at the 
following link: http://frho.us/. 

Accumulation Period: The 2016/2017 snow season at Grizzly Ridge started in mid-
November. Only a shallow snowpack persisted until 1 January (around 30 cm, data not 
shown). As mentioned, Northern California received exceptional snowfall in January and 
February [69, 70]. Due to complex topographic transitions between rainfall and snowfall, 
some of these precipitation events exhibited both an increase in snow depth and massive 
snow melt. An example of this effect is the rain-on-snow event between 6 and 10 February 
(see Section 2.2). 

Figure 5 focuses on three of these large precipitation events. All nodes at the site show 
increasing snow depth (Figure 5a), saturated air (Figure 5c), and decreased solar radiation 
(Figure 5d) during the events. Readings are similar because precipitation occurs over a 
much larger area than the area covered by the nodes. Based on measurements of snow 
depth and air temperature at nodes, these events can be classified as either snowfall (18 
January 2017 to 22 January 2017 and 19 February 2017 to 20 February 2017) or mixed rain 
and snow (3 February 2017 to 9 February 2017). Blending sensor information and co-
located rain gauge data obtained from CDEC shows occurrences of rainfall after 8 
February 2017, when snow depth at nodes started to decrease but the rain gauge recorded 
an increase. These three precipitation events were separated either by periods of possible 
snow melt (30 January 2017 to 31 January 2017, indicated by decreasing snow depth and 
temperatures above 32 °F, or 0 °C) or settling (25 January 2017 to 28 January 2017,  
indicated by decreasing snow depth  and temperatures below 32 °F, or 0 °C). Snow melt 
and settling have  different implications for runoff forecasting in snow-dominated regions. 

Simultaneous soil moisture data (Figure 5e–f) show no significant infiltration during the 
two snowfall events but marked variability of soil moisture between nodes during the 
February rain-on-snow event. These changes in soil moisture may be related to differences 
in moisture conditions across nodes and in precipitation phase (rain vs snow) at local 
scale. While nodes recorded stable winter soil temperature at seasonal scale (between +34 
and 37.5 °F, or +1 and +3 °C), some of them showed either decreasing or increasing soil 
temperature from 7 February 2017 to 10 February 2017, which could be related to local-
scale energy processes during rain-on-snow events like snowpack phase change, soil 
thawing, or rainfall temperature. 

Snow Melt Period: The 2017 snow melt season in Grizzly Ridge started in March. 
Depending on the location, canopy coverage, and peak snow depth of nodes, the end-of-
season date ranged between 13 May 2017 (Node 9) and 6 June 2017 (Node 4). Figure 6 
focuses on this key period of the water year when snowmelt runoff represents an 
important input to the surface and sub-surface hydrologic systems of Californian Alpine 
watersheds. 

All nodes showed a constantly decreasing snow depth during the period considered (Figure 
6a). This decrease is consistent with simultaneous daily cycles in solar radiation (Figure 

http://frho.us/
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6d), relative humidity (Figure 6c), and temperature (Figure 6b), which are all proxies of 
stable atmospheric conditions and absence of precipitation (confirmed by the co-located 
rain gauge). The only period of constant snow depth was recorded between 14 May 2017 
and 17 May 2017 and was marked by simultaneous below-freezing air temperature, 
saturated air, and decreased solar radiation. While these conditions might be indicative of 
precipitation, a cross-check with snow depth readings (which were constant) and co-
located soil moisture readings (which were decreasing at most nodes) can exclude 
significant precipitation events during this time in agreement with the co-located rain 
gauge. 
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Figure 5: Examples of mid-winter raw sensor data from Grizzly Ridge (15 January 2017 to 1 
March 2017). Line colors for panels (e–h) are the same as panel (a). Because measurements of air 

temperature and relative humidity show relatively small variability within nodes, panels (b, c) 
only report maximum-minimum range and mean. Solar radiation is only measured at node 1 

(pillow) and shown in (d). Soil water content in in volumetric fraction. Ranges in customary units 
are as follows: panel (a) 3.29 to 9.84 ft (1000 to 3000 mm); panel (b) 5 to 50 °F (-15 to 10 °C); panel 

(g) 32 to 37.4 °F (0 to 3 °C); panel (h) 32 to 41 °F (0 to 5°C). 
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Figure 6: Examples of spring raw sensor data from Grizzly Ridge (1 May 2017 to 15 June 
2017). Line colors for panels (e–h) are the same as panel (a). Because measurements of air 
temperature and relative humidity show relatively small variability within nodes, panels (b,c) 

only report maximum-minimum range and mean. Solar radiation is only measured at node 1 
(pillow) and shown in (d). Soil water content in in volumetric fraction. Soil water content and 
temperature sensors at 25 cm depth (0.82 ft) malfunctioned at both nodes 6 and 8 during the 

reported periods. These data are therefore missing in panels (e) to (h). Ranges in customary 
units are as follows: panel (a) 0 to 6.65 ft (0 to 2000 mm); panel (b) 14 to 77 °F (- 10 to 25 °C); 

panel (g) 32 to 59 °F (0 to 15 °C); panel (h) 32 to 60 °F (0 to 12.5 °C). 
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The end-of-season date was marked by diurnal soil temperature cycles that were not 
observed during periods of snow on the ground (Figure 6g–h, [35]). Soil moisture showed 
clear differences in daily temporal patterns between nodes (Figure 6e–f); while some nodes 
show recharge-discharge dynamics due to snow melt infiltration into the ground, others 
show constant saturation, which may have impeded infiltration and caused surface runoff. 
After snow disappeared, soil moisture decreased at most nodes due to the absence of 
inputs from the ground surface and concurrent evapotranspiration. 

Comparison with Snow Courses: Figure 7 compares the range of variability of snow 
depth measurements with  data taken by manual monthly snow courses at the same 
locations (no snow courses are done at the Bucks Lake site). Snow courses are 
performed by manually measuring snow depth along transects and averaging 
measurements to provide a representative value for the site. Maximum, average, and 
minimum daily snow depth across all nodes at each network were calculated when eight 
or more different node values are available. For the purposes of comparison, we 
selected the depth recorded by the sensor node placed at the snow pillow.  

The data show similar patterns: accumulation occurs from December to February, peak 
accumulation in March, and snow melt from April to May. Snow courses, however, tend 
to overestimate the mean site snow depth and may even exceed the maximum 
measurement from sensor nodes. Due to their coarse temporal resolution, snow 
courses do not provide important hydrologic statistics such as date of peak snow or 
snow melt-out date. The WSN data reveal that spatial variability increases over time in 
response to differing solar radiation inputs across the nodes. This solar radiation 
variability is due to different vegetation coverages and slope aspects (i.e., the slopes 
face different directions). This considerable variation cannot be captured by a single 
index station. Maximum differences in snow depth are on the order of 5 to 6.5 ft (1.5 to 2 
m), resulting in significantly different end-of-season dates from node to node. Snow melt 
is the primary driver of streamflow during the ablation period, and this timing 
difference may significantly impact runoff forecasting.   
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Figure 7: Comparison between snow depth measurements from wireless sensor networks 
(red and black) and manual measurements taken by monthly snow courses (dotted black) at 
the same locations (water year 2017): Grizzly Ridge (a), Kettle Rock (b) and Bucks Lake (c) 1, 

2, and 3 m correspond to 3.28, 6.56, and 11.5 ft, respectively. 
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3.1.5 Forecasting Value 

These results show that wireless sensor networks provide several important advantages 
when compared with traditional index stations. First, traditional index stations show a 
significant bias in terms of both peak accumulation and snow melt rate. Standard 
instrumentation, especially snow pillows, are typically located in areas that are flat and free 
of vegetation, making them less representative of snow distribution in mountain regions 
like the Sierra Nevada, which is largely covered by forests and characterized by complex 
topography [62]. As a result, snow pillows can track the mean timing of melt but fail to 
capture snow-melt or accumulation variability. Due to their large size and their impervious 
surface, snow pillows also prevent infiltration into the ground from the snow they are 
measuring and insulate snow from thermal exchanges with soil. This disconnection affects 
data such as end-of-season date and snow-melt rate. The end-of-season date is an 
important metric for hydropower and water supply forecasters, as it signals a shift from 
snow melt- dominated runoff towards other processes like groundwater discharge and 
evapotranspiration. 

Blending data from wireless sensor networks and co-located, standard instrumentation 
also allows us to detect precipitation timing and phase, which can be critical in 
determining subsequent streamflow peaks. This feature can compensate for some well-
known problems with traditional sensors. For example, rain gauges provide information 
on precipitation amount, but not phase. They are also prone to underestimating 
precipitation during intense snowfall/rainfall events due to wind effects and plugging. 
Another example is infiltration; most existing networks do not routinely measure soil 
moisture, whereas these systems do. Since overland flow is a much faster process of 
streamflow generation than infiltration, soil moisture information can support short-term 
runoff forecasting at downstream reservoirs and powerhouses. 

Finally, results show that vegetation has a significant impact on snow depth changes, 
creating heterogeneity even across small spatial scales. The variety of data collection 
sites in this project allow data collected under specific features to be generalized to 
ungauged areas with similar conditions. Due to the complex interaction between snow 
melt and topography in mountain watersheds, data collected by traditional 
instruments are nearly impossible to distribute. 

3.2 Hydrologic Data Information System 

3.2.1 Overview of Methods 

The second project objective focuses on developing the ability to combine WSN data 
(Section 3.1.4) with remote sensing, machine learning, and data integration techniques 
to expand the information from point measurements and create spatial maps of conditions 
during the winter (see Section 3.2.2). Because sensor node locations were picked to be 
representative of a range of environmental conditions, we can extrapolate data beyond 
the locations of the nodes or even the clusters themselves. Of particular interest is a 
map of snow water equivalent across the landscape on any given day. In Section 3.2.3, 
we also describe efforts to make the data available to the public, Feather River 
stakeholders, and other researchers to maximize the potential benefits of the project. 

3.2.2 Blending Ground-based and Remote-sensing Data: Snow Maps 

In the Feather River basin, we identify ten stations (CDEC codes BKL, KTL, GRZ, FOR, 
HMB, LLP, PLP, GOL, RTL, and HRK) providing hourly SWE and other hydrologic 
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measurements, including temperature, humidity, or precipitation. NASA's MODIS and 
LANDSAT missions provide us spatial information of snow cover, but not its water 
equivalent. Figure 8 shows the locations of SWE stations and of WSNs, overlaid on a historical 
SWE map for context [20, 37]. 

Estimating SWE distribution across the basin given these sparse observations is not a 
trivial task. However, although SWE has high spatial variability, its spatial patterns are 
somewhat preserved year-to-year [63]. We discuss two methods for potentially real-time 
estimation of SWE across the Feather River Basin. The first approach leverages the 
similarity in snow pattern between different years. It consists of two operational steps that 
need to be executed daily. It also requires a historical SWE product [20, 37], real-time SWE 
observations (like CDEC and WSNs), and, optionally, remotely-sensed fractional snow cover 
(MODIS) [85]. 

First, a prior estimate of the SWE map is computed using a nearest neighbor (NN) 
approach with historical maps [20, 37]. In other words, we find the historical SWE map that 
provides the most similar SWE distribution to that measured at the sensor locations. This 
step constitutes the background SWE map or prior estimate. Observations are also collected 
from CDEC (http://cdec.water.ca.gov/) and the WSNs. 

Second, an Ensemble Optimal Interpolation (EnOI) scheme [14] is used to distribute the 
residuals across the region between the observed locations and the prior estimate. 
Observations for this step include real-time SWE stations aggregated to daily averages 
(including WSN nodes, where SWE is estimated by calculating daily density at the pillow 
node and then assuming daily density to be the same for all nodes at the same site). This 
method depends on the choice of background error statistics and is designed for statistical 
systems. Correlations between SWE at different locations are indirectly estimated from the 
static historical data ensemble used, which includes maps from 2010 to 2016. The ensemble 
is reduced to 100 images using eigenvalue decomposition to reduce simulation time and 
storage requirements. Taken together, these steps are referred to as the NN-EnOI scheme. 
The grid size is 100 x 100 m (328 x 328 ft).  

As an example, Figure 9 shows the estimated SWE map for April 1, 2017, the canonical date in 
snow hydrology for peak SWE accumulation (http://cdec.water.ca.gov/). Figure 10 also 
shows the reconstructed MODIS fractional snow cover map for the same day. These maps 
will be made available on the FRHO website at http://frho.us/. 

To evaluate the performance of this method, we performed a leave-one-out cross 
validation: we sequentially excluded data from the snow pillows at HMB, RTL, PLP, KTL, 
GRZ, and BKL from the algorithm and ran the simulations. In KTL, GRZ, and BKL we also 
removed data from all WSN nodes, even though this step significantly reduced the amount 
of available data for reconstruction. Data from each of these sites can then be used as separate 
evaluation datasets. Figures 11 and 12 show SWE reconstructions compared to the observed 
data at two of these locations, HMB and RTL. Appendix B includes results in PLP, KTL, 
GRZ, and BKL (Figures B-1 to B-4). 

Root mean square errors (RMSE) for HMB, RTL, and PLP (where data from WSN were 
used in reconstruction, a more realistic scenario for future operational procedure) are 3.41 
inches, 2.33 inches, and 11.62 inches, respectively (86.8 mm, 59.1 mm, and 295.1 mm). 
Peak SWE at each of these sites was approximately 51 inches, 31 inches, and 75 inches 
(1300 mm, 800 mm, and 1900 mm), meaning that RSME is about 6.7% of peak SWE for 
HMB, 7.3% for RTL, and about 15.5% for PLP. Importantly, the NN-EnOI method shows 

http://cdec.water.ca.gov/
http://cdec.water.ca.gov/
http://frho.us/
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promise for representing both the snow accumulation and ablation seasons; traditionally, the 
ablation season has been harder to capture due to multiple factors affecting snow melt 
rate. This phenomenon is reflected in the wide variation in melt-out date identified at WSN 
sites (see Section 3.1.4 and Figure 7). RMSEs of less than 10% of peak SWE are promising, with 
results at PLP only being slightly less accurate. Results at WSN locations (Fig. B-2 to B-4) 
confirm these conclusions and show robustness to a significantly smaller amount of data. 
Future steps, which are briefly described below, will aim to introduce further blending 
techniques to improve these results. 

This second method, now under development, consists of assimilating NN-EnOI maps and 
ground-based standard hydrologic data with PRMS, the hydrologic model currently in use 
by PG&E and DWR on the Feather River (see Section 3.3). Model–data assimilation will 
allow us to combine the physical realism of ground-based data, the improved spatial 
reconstruction of snow distribution from NN-EnOI maps and from satellites, and a 
robust mass–energy conservation scheme of a dynamic model. The method we are 
currently developing relies on an ensemble Kalman filter (EnKF) to update model 
predictions at various scales with real-time data of SWE, snow depth, fractional snow 
cover from MODIS, and streamflow [84]. By leveraging a priori uncertainty information 
for both data and model outputs, EnKF will combine data and model simulations 
(potentially in real time) and quantify the uncertainty associated with the target output 
(such as streamflow). The main challenge we are currently addressing is how to 
correctly quantify uncertainty in input data and process-model outputs.  

 

Figure 8: Locations of SWE stations and WSNs, overlaid on a historical SWE map for context 
(April 1st, 2016). 
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Figure 9: NN-EnOI estimation of SWE over the Feather River for April 1, 2017 (NN-EnOI 
stands for Nearest Neighbor - Ensemble Optimal Interpolation scheme). The color bar 

indicates SWE in millimeters. 1000 and 2000 mm correspond to 39 and 78 inches, 
respectively. Both the horizontal and vertical axes have units of 100 m (328 ft). 

 

Figure 10: MODIS reconstructed fractional snow cover map for April 1, 2017. The color bar 
indicates fractional snow cover in percentage. Both the horizontal and vertical axes have 

units of 100 m (328 ft). 
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Figure 11: Humbug (HMB) snow pillow readings compared with NN-EnOI simulation (NN-
EnOI stands for Nearest Neighbor - Ensemble Optimal Interpolation scheme). 500 and 1000 

mm correspond to 19.7 and 39.37 inches, respectively. 

 

Figure 12: Rattlesnake (RTL) snow pillow readings compared with NN-EnOI simulation (NN-
EnOI stands for Nearest Neighbor - Ensemble Optimal Interpolation scheme). 400 and 800 

mm correspond to 15.74 and 31.49 inches, respectively. 
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3.2.3 Website 

The Feather River Hydrologic Observatory website (http://frho.us/) provides a general 
overview of the project and includes access to real-time data. Of particular interest is the 
data section, which is further divided by the three sensor cluster locations. A fourth 
section will be added in the  f uture for the site at Humbug, installed in the summer of 2017. 
Each section features an interactive Google map with sensor node and CDEC snow pillow 
coordinates. A select number of sensor nodes are also available to view on Google street 
view. Each section displays separate interactive graphs that incorporate real-time data 
from the sensor nodes with the following measurements: snow depth, relative humidity, 
soil temperature, and soil moisture. Graphs of CDEC data corresponding to the sensor 
cluster will also be included as a comparison to the sensor node data. The following 
measurements are available from CDEC at the daily and hourly timesteps: snow water 
equivalent and precipitation. The graphs are designed for ease of readability and to be 
easily understood by the public. Raw, unprocessed data may be downloaded by visitors to 
the site under the same data policy of the Critical Zone Observatories 
(http://criticalzone.org/national/data/czo-data-policies/). 

3.2.4 Forecasting Value 

The ability to generate real-time point measurements as well as SWE maps has the 
potential to vastly improve hydrologic modeling reliability. The first and most direct way 
this occurs is through more accurate data inputs to hydrologic models. Though such 
models can usually be run with only daily minimum and maximum temperature and daily 
precipitation, most of them are formulated in a modular framework, meaning additional 
data may be leveraged if it is available. The WSNs open the possibility of using these 
modules, which would mean the model relies on direct measurement rather than 
simplified calculations for these internal states. Use of such modules may also simplify the 
challenge of calibrating the model by reducing the overall number of parameters. 

In addition to direct inputs, we are interested in using the blended SWE maps to make 
runtime changes to internal model variables. This process, known as data assimilation, 
will involve using the SWE maps to update model projections. 

3.3 Hydrologic Modeling Improvements 

3.3.1 Overview of Methods 

The new real-time weather and snow data developed in Sections 3.1 and 3.2 are geared 
towards the improvement of water-related decision-support systems and towards 
overcoming limitations of traditional forecasting tools. On the Feather River, PG&E and 
DWR are currently using the Precipitation Runoff Modeling System (PRMS) model for 
streamflow forecasting (see 
https://wwwbrr.cr.usgs.gov/projects/SW_MoWS/PRMS.html). PRMS was developed by 
the US Geological Survey and primarily funded for operational use by DWR, with support 
from PG&E. The complete set of parameters of this model was calibrated in the mid-1990s 
using a combination of a priori expert knowledge and fit to streamflow data [31]. Now, 
blended hydrologic data from wireless sensor networks and remote sensing represent an 
innovative set of tools to support a comprehensive re-calibration using multi-objective 
validation. The aim of such an approach is to more closely and accurately represent the 
physical world with the model and, importantly, improve the model's capability of 
capturing the spatial distribution of internal model states such as snow melt and 

http://frho.us/
http://criticalzone.org/national/data/czo-data-policies/
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evapotranspiration. Such improvements will help make PRMS more suited to prediction as 
the climate changes. 

PRMS Recalibration Strategy 

Our re-calibration strategy for PRMS is summarized in Figure 13. While the model is 
currently available for all sub-basins upstream of Lake Oroville, our primary focus is on 
the North Fork and particularly the East Branch. As discussed in Section 2.1.1, the East 
Branch’s streamflow-generation mechanisms are largely unknown, leading to high 
uncertainty in streamflow forecasting at the daily, monthly, and seasonal scales. The East 
Branch is also representative of other, mostly ungauged catchments in the rain-snow 
transition zone in the Sierra Nevada, where improving forecasting skills will be critical to 
adequately responding to climate change. 

The first step focuses on using WSN data to perform a two-part analysis of parameter 
sensitivity and model uncertainty in PRMS [34]. The objective is to identify the dominant 
parameters governing snow and streamflow response in this application and the most 
informative data sources and temporal periods to assign optimal parameter values. 
Distributed hydrologic models such as PRMS tend to rely on hundreds or thousands of 
parameter values, the interactions between which are often nonlinear. Sensitivity analyses 
identify which parameters most heavily impact model output, an important step for 
model recalibration. Equally importantly, addressing model’s conceptual uncertainty will 
help identify the most relevant limitations of the model itself, namely, which physical 
processes are not well represented, even with optimal parameters [46].  

Like all hydrologic models, PRMS indeed relies on parameterizations and simplifications 
of the physical processes it simulates. Such simplifications are meant to seek a trade-off 
between input data, computational time, and physical realism [32]; however, this 
approach can lead to issues of overparameterization, where optimal parameters are 
often impossible to estimate [10]. Another common problem is overfitting, where 
parameters are overtuned to past observations but not well calibrated for predictive 
ability. This issue is particularly common when models are calibrated only to one 
output, rather than to multiple metrics and variables [10]. Because PRMS has dozens 
of parameters, many of which are spatially distributed, and because it was originally 
calibrated only on streamflow, it is likely both overparameterized and overfitted. 
Structural uncertainty for this model is still largely unknown and unquantified.  This 
is an issue when applying hydrologic models in forecasting mode [47], especially in view 
of the heavy interaction between these models and subjective choices by forecasters 
[45]. Further details about the methods of this step are reported in Appendix C.  
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Figure 13: Proposed re-calibration strategy for PRMS on the Feather River. 

This focus on parameter and model uncertainty coexists with an a priori knowledge of 
basin properties like vegetation and soil parameters [31], which are assumed the same as 
those assigned during the previous calibration (see the dashed box in Figure 13). PRMS 
reconstructs the spatial variability of the water budget by using Hydrologic Response 
Units (HRU), which can be idealized as portions of the catchment where hydrologic fluxes 
and basin properties are homogeneous. Due to both computational constraints and lack of 
detailed input data, existing HRUs on the Feather River are relatively large and cover 
broad elevation ranges. Within the East Branch, for example, the area of HRUs spans 1,100 
and 13,539 acres (4.4 to 55 km2, [31]). This spatial schema likely introduces substantial 
error into the model, which may in future be improved by reducing the size of each HRU. 
WSN data are particularly well-suited to such improvements, as they measure snow and 
weather variables along an elevation transect and for different canopy features, providing 
a detailed dataset at fine temporal resolution. 

The second step of the re-calibration considers a multi-objective approach to calibrate the 
most meaningful parameters (Appendix C). A multi-objective method allows us to 
improve the physical representativeness of PRMS for intermediate model states (like SWE) 
while preserving performances in terms of streamflow. The ability to accurately model 
internal states is important to maintain an accurate understanding of the overall water 
balance.  

This calibration step also includes assimilation of PRMS predictions with blended maps 
of SWE to achieve a realistic reconstruction of snow water equivalent. Previous 
attempts on the Feather River have shown that assimilating snow-cover patterns in a 
hydrologic model is not a guarantee of better performance of hydrologic models or 
forecasts [52]. This means that model’s calibration and SWE assimilation should be 
conceived in an integrated framework to ensure that snow/soil/runoff parameters 
are physically representative rather than the result of a mere numerical fit. 
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The final step of the re-calibration is model validation. As mentioned, many 
traditional approaches, including the first PRMS calibration on the Feather River, focus 
on streamflow as the primary evaluation metric. Though partly due to limited data 
availability and computational power at the time of the original calibration, this 
approach can be problematic for forecasting because it results in overfitting. Thanks to 
both remote-sensing and ground-based data platforms (including wireless sensor 
networks), new targets of validation include precipitation phase, air temperature, solar 
radiation, SWE patterns across the landscape, annual evapotranspiration [22], soil 
moisture, and, of course, streamflow. Most of these fluxes are either directly measured 
by WSNs at 15-minute temporal resolution or easily derivable from blending WSNs 
with other information (see Section 3.2.2).  

The improved PRMS model for the Feather River will be tested by simulating real-time 
forecasting conditions. Previous experience in California shows that combining traditional 
fore- casting techniques and dynamic models improves forecasting skills compared to the 
standard, statistical method employed by DWR [47]. Currently (May 2018), this step of the 
project is in its early stage. To set the ground for a more extensive sensitivity analysis, we 
have performed an initial review of available WSN data to analyze relevant hydrologic 
processes in the Feather River. The process we most closely focused on, given its 
complexity in modeling and relevance as a streamflow-generation mechanism, was rain-
on-snow events (see Section 2.2). Three important sources of conceptual and calibration 
uncertainty related to modeling and forecasting rain-on-snow events are phase 
partitioning between rainfall and snowfall (when/where is it raining?), snow melt 
generation (when/where is the snowpack melting?), and water infiltration vs. overland 
flow (when/where is runoff generating?) [60]. 

Better understanding these processes using WSNs will support both the identification of 
model uncertainties and plausible ranges for each parameter that we wish to examine 
during the sensitivity analysis. The rain-on-snow work will therefore allow us to define 
these ranges based on real observations rather than making a priori assumptions. Our 
investigation of the data is described in Section 3.3.3. Included in this first assessment are 
additional wireless sensor networks installed in the American and Kings River of 
California. This choice facilitated a comparative approach to contextualize results on the 
Feather River from a broader perspective. More information is available in Appendix A. 

3.3.2 Calibration and Conceptual Uncertainty: The Case of Rain-on-Snow 

The impact of rain-on-snow events on downstream reservoirs depends on complex mass 
and energy processes occurring within (or around) the seasonal snow cover. These 
processes include interception of precipitation and wind-sheltering effects by trees [9], melt 
at the snow surface [60], and water flow in snow [3]. Because the Sierra Nevada is largely 
covered by forests and characterized by complex topography, the spatial response of snow 
during rain-on-snow is highly variable in space. However, this variability is generally 
under-captured by operational hydrologic models and has been never systematically 
quantified [7, 9, 38]. 

Figure 14 quantifies this uncertainty by showing annual Root Mean Square Errors 
(RMSE) for daily streamflow at the outlet of the East Branch (East Branch near Rich 
Bar, data from USGS and PG&E). These statistics were calculated by approximately 
partitioning the water year in three reference periods depending on the predominant 
hydrologic process: snow melt between water-year day 150 and 250 (February 27 and 
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June 7), precipitation between water-year day 350 and 150 (September 15 and February 
27), and evapotranspiration between water-year day 250 and 350. Rain-on-snow 
periods were selected as days for which three-day cumulative rainfall was greater than 
0.78 inches (20 mm) and average three-day snow depth was greater than 9.84 inches (25 
cm). We used the standard calibration set by [31]. 

Results show that periods of rain-on-snow generally return higher RMSE (namely, 
worse performance) compared to the rest of the year. Overall, the RMSE for 
precipitation, snow melt, and evapotranspiration periods is equal to 1200 ft3/s (34 
m3/s), 1270 ft3/s (36 m3/s), and 212 ft3/s (6 m3/s), respectively. RMSEs for periods of 
rain-on-snow is equal to 5226 ft3/s (148 m3/s). Rain-on-snow events also convey much 
more streamflow than any other period of the year: average flow during such events 
is equal to 7910 ft3/s (224 m3/s), whereas average streamflow for precipitation, snow 
melt, and evapotranspiration reads 741 ft3/s (21 m3/s), 1700 ft3/s (48 m3/s), and 204 
ft3/s (5.8 m3/s), respectively. 

Detecting rain-on-snow. The PRMS models uses daily minimum and maximum 
temperature to classify precipitation as rain or snow. As discussed in Section 3.1.4, 
however, WSNs can discriminate between phases by blending snow-depth and 
precipitation data [62]. Figure 15 compares the proportion of snowfall over total 
precipitation for simultaneous surface air temperatures as obtained from this blending 
procedure over the three basins of the Feather, American, and Kings Rivers (see Appendix 
A for details about the partitioning method). With data primarily collected in the rain-
snow transition zone, no site converges to 100% (0%) snow even at cold (warm) 
temperatures. These observations could be the result of fast-moving microclimates, which 
can cause phase shifts on shorter timescales than air temperature changes. 

Figure 16 compares hourly phase partitioning using snow-depth and rain-gauge data 
to the temperature partitioning thresholds used by the PRMS. PRMS compares these 
thresholds to daily minimum and maximum temperature values to classify 
precipitation. Although the observations used in this plot were hourly, Figure 16 
qualitatively demonstrates that the current calibration of PRMS on the Feather River is 
biased towards snow events. The majority of observed mixed events would indeed be 
classified as snow by the model.  

Impact of rain-on-snow on snowpack. We used the multi-layer physics-based snow 
model SNOWPACK to solve the detailed energy-mass balance of snowpack during rain-
on-snow events at all the available WSNs (see Appendix A) and to identify the dominant 
snow melt patterns and their variability in space. Contrary to the snow module of PRMS, 
SNOWPACK (https://models.slf.ch/) simulates properties like density or grain size for 
every layer of snow, it predicts water flow through snow using Richards Equation [58], 
and includes a two-layer canopy module that reconstructs radiative and turbulent energy 
fluxes as a function of canopy parameters that are variable from tree to tree (leaf area 
index, fraction of throughfall, canopy height, stand basal area). These features make 
SNOWPACK a more detailed and realistic modeling tool to characterize rain-on-snow 
properties throughout the Sierras. A direct comparison between SNOWPACK and PRMS 
simulations will help identify major sources of modeling uncertainty in PRMS and will be 
the target of future research.

https://models.slf.ch/
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Figure 14: Annual Root Mean Square Errors (RMSE) for daily streamflow at the outlet of the 
East Branch for three reference periods (depending on the predominant hydrologic process, 
namely, precipitation, evapotranspiration, and snow melt) and rain-on-snow events (ROS). In 

terms of customary units, 0.1 m3/s corresponds to 3.53 ft3/s, 1 m3/s corresponds to 35 ft3/s, 

100 m3/s corresponds to 353 ft3/s. 

 

 

Figure 15: Proportion of precipitation that falls as snow binned by surface air 
temperature. -8 to 6 °C corresponds to 17.6 to 43 °F. 
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At all sites, rain-on-snow events are defined as any event in which, at some point during 
the event, at least 0.78 inches of rain (20 mm) falls within 24 hours on at least 9.85 inches 
(25 cm) of snow (this definition is similar to that used in Figure 14 but downscaled at 
hourly resolution). Technical details about SNOWPACK setup are reported in Appendix 
A at the end of this report. While these simulations may suffer from some uncertainties 
(including parameter estimation and input data availability; see Appendix A), they 
provide an initial framework for assessing rain-on-snow impacts on snowpack and a useful 
benchmark for the PRMS snow module. 

Figure 17 shows an example of a rain-on-snow event that occurred at Grizzly Ridge during 
the Oroville incident in February 2017. As all events considered from here on, it was 
characterized by at least 75% of rain, average air temperature during periods of rain above 
23 °F (-5 °C), and relative humidity above 80% (rain-snow partitioning performed 
following the same approach used in the previous paragraph). Snow depth decreased at 
all nodes (measured), whereas bulk snow density increased (both measured and 
simulated). Simulated runoff onset across the site showed marked differences, with nodes 
in open areas showing an earlier response than vegetated nodes. This pattern agrees with 
simulated time-series of volumetric bulk liquid water content in snow. The simulated lag 
time between the first and the last node contributing to snow melt runoff at this site was in 
the order of 24 to 36 hours. This difference may be attributable to differences in initial snow 
depth and liquid water content between nodes, which in turn depend on canopy and 
topography. 

Figure 18 expands on this example by comparing the mean difference in snow depth and 
density during rain-on-snow events with the minimum - maximum difference at the same 
site and for the same event (results cover all the three river basins). Even though we only 
considered events with at least 75% of rain, about 65 (60)% of them show increasing snow 
depth (decreasing density), likely due to phase shifts during the storm (i.e., effect of 
snowfall). The variability between minimum and maximum change in snow depth and 
density across the same site increases in cases of overall increasing mean snow depth (or 
decreasing mean density), likely due to canopy interception of falling snow. Overall, the 
mean differences between minimum and maximum change in snow depth and density, 
lag time, and cumulative runoff during a rain-on-snow event at the same site are equal to 
7 inches (18 cm), 62 kg/m3 (3.9 lb/ft3), 8.5 h, and 1.6 inches (40 mm), respectively. The 
spatial response of snow to rain-on-snow in the transition zone of the Sierra Nevada may 
therefore depend on both storm phase and canopy coverage. 

Figure 19 correlates the mean incoming energy for each site and rain-on-snow event with 
mean net shortwave radiation, net longwave radiation, latent heat, and sensible heat at the 
same site (unit is mm of melt equivalent for pure ice, following [60]). These represent the 
most relevant energy fluxes during rain-on-snow events. Overall, (simulated) mean net 
longwave radiation was negative for all events, whereas other fluxes were comparable in 
magnitude and positive (meaning that they represented a net gain of energy for the 
snowpack). The values of these fluxes suggest that radiative and turbulent energy fluxes 
may provide a comparable, overall contribution to melt during rain-on-snow in vegetated 
areas like the Sierra Nevada. This result highlights the importance of both canopy-snow 
interactions and wind-sheltering effects in hydrologic models. However, total incoming 
energy was highly correlated with both latent and sensible fluxes (coefficient of 
determination r2 = 0.83 and 0.89, respectively), whereas r2 = 0 for both net shortwave and 
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longwave radiation. These results agree with previous findings by [60] and suggest that 
wind could be an important driver of melt during greater rain-on-snow events (especially 
on the Feather River and water year 2017). Currently, wind speed is not used as an input 
data of PRMS; future development steps could consider including this addition to try to 
improve its performance during intense rain- on-snow events. 

 

Figure 16: Temperature of precipitation hours as observed on the three sites on the 
Feather River vs. temperature partitioning thresholds used by the PRMS. -15 to 40 °C 

corresponds to 5 to 104 °F. 

 

Impact of rain-on-snow on soil-water storage: Figure 20 compares soil-water storage 
response to rain-on-snow events (red highlights) at sites in the Feather (left-hand panel) 
and Kings River basins (right-hand panel, see Appendix A for the technical details 
about how water storage was estimated). In the 2008-2016 record at Kings River sites, 
deeper snow reduces soil-water storage variability during rain-on-snow events. In 
contrast, during the extreme precipitation events in the Feather River basin during 
2017, there is greater soil-water storage variability irrespective of snow depth. These 
deviations translate into large scatter in the first derivative of soil-water content for 
any snow depth (Figure 21, right panel), as opposed to the Kings River. No detailed 
information about snow and/or soil properties is available at these sites to potentially 
relate this difference to geology or snow properties. One hypothesis is that the greater 
soil-water storage variability in the Feather may be due to increased grain size and/or 
preferential channels due to larger precipitation events, making the snowpack prone to 
deeper percolation of water irrespective of snow depth [4]. This discrepancy could 
also be related to differing predominant geological properties between the two basins, 
as the Feather River straddles the transition between the granitic Sierra Nevada and 
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the volcanic southern Cascade Range while Kings River geology is purely granitic. In 
any case, snow depth, snow stratigraphy, and precipitation regime affect soil-water 
storage during rain on snow. Soil moisture sensors can potentially assist forecasters 
with timely insight into the fate of precipitation and snow melt at local scale. 

Key findings and lessons learned: The key findings of this focus on rain-on-snow on the 
Feather River are that: 

1. Models that rely on temperature indexing for phase partitioning should use a 
wider temperature range for mixed rain-snow events. In particular, the 
temperature threshold where all precipitation is classified as snow should be 
lower (Figure 16). 

2. Wireless sensor networks, in contrast to single, point stations, can capture significant 
variability in mass and energy fluxes of snow during rain-on-snow events at the 
WSN scale (Figures 17 and 18). 

3. Radiative and turbulent energy fluxes seem comparable for most events due to 
possible sheltering effect of canopy. The total energy input seems highly correlated 
with turbulent fluxes, which in turn depend on wind speed and air temperature 
(Figure    19). 

4. Snow depth, snow stratigraphy, and precipitation regime affect soil-water 
storage during rain on snow. Models are needed which can accurately model 
preferential flow of water through snow to adequately simulate mid-winter 
storage changes (Figure 20). 

Public authorities, utility companies, and water agencies, including DWR and PG&E, 
forecast streamflow and water incoming volume at reservoirs for different temporal 
scales, from seasonal to daily. The streamflow response of rain-on-snow events occurs at a 
relatively short temporal scale (say, up to a few days). However, this time scale 
dramatically depends on infiltration vs. surface-runoff patterns for different slopes and 
subbasins. Also, the spatial distribution of snow cover and SWE after rain-on-snow events 
can affect bulk SWE and snow depth, which are routinely used by forecasters in statistical 
relationships with precipitation and seasonal water volume [47]. Better capturing the 
phase of precipitation and the response of snow and soil during rain-on-snow events will 
allow forecasters to (1) improve delineation of basin areas where rain (snow) is occurring, 
namely, where runoff response is expected to be fast (slow), (2) estimate the difference in 
SWE between standard, index stations and areas with different canopy/slope (so-called 
depletion rate). These results will, therefore, provide the basis for better modeling and 
forecasting at basin scale. 
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Figure 17: Snow response to the February 2017 rain-on-snow event in Grizzly Ridge (Feather 
River, same period of the Oroville incident). In panel (d) and (e), different colors are different 

nodes across the site (both results are outputs of the SNOWPACK model). Ranges in 
customary units are as follows: 0 to 4 mm corresponds to 0 to 0.15 inches (a), 150 and 

250 cm corresponds to 60 to 98 inches (b), 1 to 7 mm/h corresponds to 0.04 to 0.27 
inches/hour (e). 
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Figure 18: Change in snow depth and density during rain-on-snow events. Each bar 
represents a different event and site.  - 40 to 80 cm corresponds to -15.7 to 31.5 inches on 

the first subplot; -300 to 200 kg/m3 corresponds to -18.7 to 12.5 lb/ft3 on the second subplot. 

 

Figure 19: Mean incoming energy for each site and rain-on-snow event vs. mean net shortwave 
radiation, net longwave radiation, latent heat, and sensible heat for the same site and event 

(unit is mm of melt equivalent for pure ice). - 30 to 60 mm corresponds to -1.18 to 2.36 
inches. 
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Figure 20: Soil-water storage response to rain-on-snow events (red highlights) at sites in the Kings (left-hand 
panel) and Feather River basins (right-hand panel). 350 and 25 cm correspond to 138 and 10 inches, 

respectively. 

 

 

 

Figure 21: Change in soil storage by snow depth in the Kings and Feather River basins. The Kings River 
shows a clear threshold of snow depth above which soil storage is not affected. This is not true on the 

Feather.  0 to 300 cm corresponds to 0 to 188   inches. 
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4: Conclusion and Future Directions 

4.1 Objectives and Current Progress 

The objectives of the Feather River Hydrologic Observatory (FRHO) are to: 

1. Create an intelligent water-information system to optimize real-time knowledge of 
hydrology across the landscape. 

2. Use this system to provide more detailed water-basin storage information. 

3. Leverage this advanced monitoring capability to improve current runoff 
predictions and forecasting on the North Fork of the Feather River. 

4. Demonstrate the actual cost savings from using this decision-support chain for 
Feather River stakeholders, including utility companies and water agencies. 

5. Ultimately, contribute to reducing the effects of climate change on California 
hydropower generation. 

The project team has installed four wireless sensor networks (WSNs) that collectively 
comprise a state-of-the-art water information system. This system will help improve 
understanding of the hydrologic processes that govern streamflow generation 
(objective 1), including precipitation phase, snow water equivalent (SWE) distribution, 
and soil moisture patterns under a variety of landscape features and events such as rain-
on-snow. An examination of the first year of available data on the Feather River (water 
year 2017) has shed light on these processes and the limitations of current modeling 
tools (objective 2). In addition, maps are being created to show the distribution of SWE 
across the landscape. The project team has begun work for a sensitivity analysis of the 
Precipitation Runoff Modeling System (PRMS), which is the first step toward a 
recalibration of the model in hopes of improving streamflow predictions (objective 3). 
Objectives 4 and 5 will be addressed in the coming months. 

The findings from the first year of data collection and analysis have yielded several 
promising results. Firstly, the WSNs have demonstrated value as resilient and consistent 
tools for data collection even in harsh montane conditions. Despite the 2017 water year 
being one of the wettest on record in the northern Sierra Nevada, the networks remained 
largely functional and were able to consistently deliver real-time data [36]. This represents 
a promising result in terms of network reliability for the next years of the project and 
future deployments in other locations. 

A review of the data from the 2017 water year confirmed expectations that traditional 
sensing stations, such as snow pillows, generally give biased pictures of snowpack 
conditions in mountains. When compared with the mean of the WSN readings, manual 
snow courses and snow-pillow locations generally show greater snow depth and a later 
melt-out date. These differences are likely due to traditional stations’ locations in flat, open 
meadows, which do not capture varying conditions under canopy and on slopes as the 
WSNs do. Moreover, additional measurements taken by the WSNs, such as relative 
humidity, solar radiation, and soil moisture, allow more components of the water balance 
and additional hydrologic processes to be examined. Blending point data from snow 
pillows and WSNs with remote-sensing products can successfully provide daily maps of 
SWE for the whole Feather River. Initial results show promise in being able to replicate 
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snow accumulation and ablation patterns, which can greatly increase forecasting abilities, 
particularly during the snow melt season. Accurate blended maps will also facilitate a re-
calibration of PRMS, where SWE estimates can be assimilated into the model to correct 
internal state variables. 

An initial data review, focusing particularly on rain-on-snow events, revealed possible 
limitations of the PRMS model and gave an indication of appropriate parameter 
ranges to explore during the planned sensitivity analysis. In particular, a rain-snow 
partitioning method based on blending WSN data with existing rain gauges 
demonstrated that the partitioning system used by PRMS, which is based on daily 
minimum and maximum temperature, is likely overestimating the proportion of 
precipitation that falls as snow. Since rain generates streamflow on far different time 
scales than snow, this distinction is important. 

Furthermore, the data review revealed an inconsistent response of snowpack properties to 
rain-on-snow events. For example, on average, some rain-on-snow events decreased snow 
depth across the site, while others increased snow depth due to mixed precipitation types 
during the storm. Events that increased snow depth generally showed greater spatial 
variability across the sites since canopy interception affects snow distribution more than 
rain. Using the one-dimensional point model SNOWPACK with WSN data as inputs also 
suggests a significant variability in runoff generation across nodes. 

Finally, the rain-on-snow events showed mostly consistent response to soil moisture, 
where higher snow depths were correlated with little-to-no change in soil moisture. The 
exception was the Bucks Lake site on the Feather River during the 2017 water year, where 
storms had a significant impact on soil storage irrespective of snow depth. This finding 
suggests the need for improved modeling tools that can jointly simulate water movement 
through snow and soil. 

4.2 Future Directions 

The next major step will be a recalibration of PRMS beginning with a generalized 
sensitivity analysis. This step aims to identify the optimal baseline parameters for the 
model while simultaneously diagnosing sources of model bias. This work will help 
quantify the different sources of uncertainty inherent in a model, such as parameter 
identification or structural model bias. As part of the recalibration, the team will 
investigate the use of the blended SWE maps that are being finalized. The goal is to 
assimilate the SWE maps into the PRMS model as it runs, allowing internal model states to 
be updated based on simultaneous observations. As noted in Section 3.3.2, assimilation  
must be performed jointly with recalibration to maximize the chances of improving 
hydrologic forecasts. 

As part of this work, the data from the wireless sensor networks will be incorporated into 
existing decision-support systems for forecasting on the Feather River. The outputs of this 
project—that is, real-time temperature, snow, and soil-water storage data from wireless 
sensor networks, blended SWE maps at basin scale, and improved streamflow predictions 
from PRMS – will allow forecasters to perform continuous reality checks between 
forecasting tools and ground-based/remote-sensing data. This system will pave the way to 
more adaptive decision-support tools (particularly helpful in light of a changing climate) 
while allowing users to make quick, manual changes to the most important parameters 
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when forecasting. In this way, forecasting tools will leverage expert knowledge and state-
of-the-art data collection to address specific situations. 

The final major step will be an economic assessment of this updated PRMS tool to 
determine the cost savings achieved by improved forecasting. A cost-benefit analysis will 
then be performed to determine the net impact of the wireless sensor networks. 

4.3 Relevance for Climate Change-Related Policy and Decision 
Makers 

From a hydroelectricity standpoint, the potential impacts of this project reach beyond 
PG&E and even California. In the context of climate change, improving streamflow 
forecasting will be particularly important for reducing risks for utilities and controlling 
prices for ratepayers. The first and most direct reason is that climate change is projected to 
alter precipitation patterns across the Sierra Nevada. A greater proportion of precipitation 
is projected to fall as rain rather than snow, which will reduce snowpack and change the 
timing of seasonal flow. Recent evaluations of water-supply forecasts in California show 
that forecast skills increase with the average elevation of the target basin [75], reflecting 
increased uncertainty in rain-dominated catchments at lower elevations compared to 
snow-dominated regions. A climate-change-induced transition from snow to rain could 
therefore result in more uncertain seasonal forecasts at downstream powerhouses [51]. 
Since many powerhouses in California, including most on the Feather River, do not have 
substantial storage facilities, streamflow predictions are crucial to making informed 
operational decisions. 

A more indirect effect, related to energy prices on the open market, is already being felt by 
utility companies. California, like many other states, has ambitious goals for the 
integration of variable generation such as wind and solar into the electric grid. Renewable 
Portfolio Standards (RPS) have contributed to a growing mismatch at certain hours of the 
day between available energy and demand. During the afternoons, abundance of solar 
and wind energy may contribute excess energy to the grid, lowering the prices for all 
energy sources. If prices fall below the cost of production, hydropower (or any other 
energy source) becomes a net profit loser, posing difficulties for utility companies. Accurate 
streamflow forecasts may help keep hydropower plants economical even with greater 
changes in energy markets and climate. 

Despite the focus on streamflow forecasting for hydroelectricity production, the project also 
has broader implications related to water resources and flood control. As the spillway 
damage at Oroville Dam demonstrated in February 2017, the impacts of certain types of 
events, like rain-on-snow, on California’s water system are not well understood or 
predictable. Because Lake Oroville is the primary supply of water for the State Water 
Project, which delivers water to many major cities of Southern California, the incident 
affected water supply and flood control. WSNs have the potential to improve forecasting 
for both by better informing our understanding of such hydrologic processes. If rain-on-
snow events become more common due to climate change, these forecasts will be all the 
more important. 

The ability to improve forecasting may help with water supply management both in 
California and across the United States. The effect of climate change on total precipitation 
rates in California is uncertain [24], but whether they increase or decrease, careful 
management of water systems to maximize water availability or minimize flood risk will 
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be necessary. Improved forecasting tools will help water utilities make operational 
decisions under such circumstances. 

A final point should be made concerning the value of this cross-disciplinary project. 
Bringing together public agencies (such as the Energy Commission and DWR), 
California’s largest energy utility (PG&E), and multiple campuses of California’s public 
university system (Berkeley and Merced), the project shows the value of collaboration 
among multiple entities. It also demonstrates the direct applicability of hydrologic and 
sensors research to address practical problems and helps to bridge the gap between 
theoretical research and the on-the-ground challenges that utility operators, at PG&E and 
across the state, face on a daily basis. 
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APPENDIX A: Rain-on-Snow Study Methods 

WSNs used in rain-on-snow analysis Figure A-1 shows the location of the considered WSNs 
over a satellite map of California. The outline of the three watersheds (Feather, American, 
and Kings) is included for context. Data was available for water years 2008-2016 in the 
Kings River; 2014-15 in the American; and 2017 in the Feather River. 

Detecting rain-on-snow Rain-on-snow events were defined as any event in which, at some 
point during the event, at least 20mm of rain (0.78 inches) falls within 24 hours on at least 
25cm of snow (9.84 inches). Partitioning between rain and snow was done using hourly 
data from co-located heated rain gauges and snow depth sensors. Rain gauges were 
assumed to measure total precipitation while snow depth sensors measure snowfall. 
Averages and ranges across sites and basins were calculated based on precipitation and 
snowfall data that were smoothed using a 24-hour moving average window. Snowfall 
events of intensity <5mm/hr (0.2 inches/hr) were discarded, as were temperatures at 
which the total recorded precipitation was less than 1% of total precipitation. Snow depth 
was converted to density using the method developed by [1]. 

Impact on rain-on-snow on snowpack SNOWPACK simulations at all sites in Figure A-1 
were performed by enforcing snow depth to observed values (conditional assimilation in 
case of model underestimation based on simultaneous weather conditions, [6]). A canopy 
module was used to simulate different canopy features [23]. Canopy and soil parameters 
were estimated basing on satellite datasets, USDA SSURGO soil surveys, or literature 
values for sandy soils [57]. Leaf Area Index was adjusted node by node basing on satellite 
estimates (year 2017, see https://modis.gsfc.nasa.gov/data/dataprod/mod15.php) and 
observed snow depth during the year of maximum snow depth at each site. Liquid water 
flow in snow was simulated using Richards Equation [58], but a bucket-type approach 
was used in the Kings River as an approximation due to numerical instabilities in case of 
extremely dry soils [6]. 

Input data to the model include air temperature, relative humidity, wind speed, short- 
and long-wave radiation, and precipitation. Incoming long-wave radiation was 
internally estimated by the model. Solid precipitation was estimated from snow-depth 
sensors, whereas liquid precipitation was based on rain-gauge data, assuming a linear 
increase of rain proportion between 273.35 and 275.35 K. 

Bucks Lake was excluded from simulations due to numerical instabilities, whereas 
Humbug data are not available for water year 2017. Data not available from wireless 
sensor networks were taken either from co-located weather stations or representative 
stations at similar elevation in the same basin (http://cdec.water.ca.gov/). Gaps in 
incoming shortwave radiation and wind speed were filled with the North American Land 
Data Assimilation System (NLDAS) datasets. 

Impact of rain-on-snow on soil-water storage Soil-water storage is computed by depth- 
integrating measurements up to 60-cm depth at each site (1.96 ft). Rain-on-snow results 
include only events with at least 75% rain and average air temperature/relative humidity 
during periods of rain above -5 °C, and 80% respectively. The Feather River basin uses 
data from 36 sensor nodes, the Kings River basin uses data from 27 nodes. 

 

https://modis.gsfc.nasa.gov/data/dataprod/mod15.php
http://cdec.water.ca.gov/)
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Figure A-1: Location of available wireless sensor networks across the Sierra Nevada and 
three different watersheds: Feather, American, and Kings River. 250 km corresponds to 155 

miles. 
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APPENDIX B: Blended SWE Map Results 

 

 

Figure B-1: Pilots Peak (PLP) snow pillow readings compared with NN-EnOI simulation. 1000 

and 2000 mm correspond to 39.37 and 78.74 inches, respectively. 
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Figure B-2: Kettle Rock (KTL) snow pillow readings compared with NN-EnOI simulation (NN-
EnOI stands for Nearest Neighbor - Ensemble Optimal Interpolation scheme). 600 and 1200 

mm correspond to 23.6 and 47.24 inches, respectively. 

 

 

Figure B-3: Grizzly Ridge (GRZ) snow pillow readings compared with NN-EnOI simulation (NN-
EnOI stands for Nearest Neighbor - Ensemble Optimal Interpolation scheme). 600 and 1200 mm 
correspond to 23.6 and 47.24 inches, respectively.
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Figure B-4: Bucks Lake (BKL) snow pillow readings compared with NN-EnOI simulation (NN-
EnOI stands for Nearest Neighbor - Ensemble Optimal Interpolation scheme). 750 and 1500 

mm correspond to 29.53 and 59.05 inches, respectively. 
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APPENDIX C: Model Assessment and Recalibration 
Methods 

Recalibration of the PRMS model is a multi-stage process. The first two steps (parameter 
sensitivity analysis and model uncertainty assessment) are being performed simultaneously. 
The most significant challenge with respect to the first step, parameter sensitivity, are the large 
(5000+) parameter spaces inherent to a distributed hydrologic model like PRMS as well as the 
nonlinearities present in such models. To address all parameters and avoid a priori 
assumptions about the relative importance of different parameters, we will start by using a 
grouped parameters method to reduce the number of parameters to a set that is independent 
and computationally feasible to analyze. Noninfluential parameters are then fixed to nominal 
values, while the most influential parameters will then be subjected to more rigorous 
sensitivity tests. We will perform our analysis using both variance- and density-based 
sensitivity methods to provide a robust parameter ranking before proceeding to model 
calibration. Both of these types of methods account for high-order parameter interactions, with 
density-based methods having the possible advantage of being moment independent, meaning 
they will characterize the entire parameter distribution better than variance-based methods in 
the case of highly skewed parameter sets [82]. 

The second of the first two steps, model uncertainty assessments, quantifies how well a model 
simulates a given process over a given period (and through which parameter values). Certain 
processes may be highly simplified in hydrologic models; for example, the Feather River 
PRMS model considers a two-layer snow module, where the profile of snow properties in 
not simulated [39]. Canopy-snow interactions are simulated with global, average 
parameters for both short-wave transmission through vegetation and canopy long-wave 
emission. Precipitation partitioning between rain and snow, meanwhile, is based on two 
static temperature thresholds, while soil-water storage dynamics rely on a conceptual 
separation between recharge zone, deeper soil moisture, and a subsurface reservoir [39]. 
Conversely, other processes may be well simulated by the model. By means of repeated 
performance evaluations with (stochastically) varying parameter values, uncertainty 
assessments distinguish time periods and/or processes that the model can simulate well, 
as opposed to those that cannot be properly simulated with any parameter combination 
[83]. This approach identifies the parameters (and assumptions) that are inadequate to 
simulate the process(es) they intend to and, by extension, the main source of predictive 
uncertainty in the model. Together with parameter sensitivity, this information is highly 
useful for model recalibration.  

The USGS PRMS team recently performed a global sensitivity analysis for this model over 
the conterminous United States [80]. This analysis compared outcomes on a regional scale 
(for example, the Sierra Nevada versus the Appalachian Mountains versus the Great 
Plains), meaning that the range of processes involved was much broader than the 
dominant mechanisms driving streamflow on the Feather River. The 110,000 independent 
HRUs used by the USGS team were also much larger (between 5,400 ft2 and 5,400 mi2 or 
500 m2 and 14,000 km2) than those used on the Feather River PRMS. However, the 
outcomes and methodological choices of this nation-wide assessment provide some useful 
guidelines for our work, for example regarding the parameters we may expect to emerge 
in first step of the sensitivity analysis. 
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Among the potential 108 parameter that PRMS uses (most of which potentially have 
different values for each HRU), the USGS PRMS team chose 35 parameters as an initial 
sensitivity pool. These parameters span all processes, from temperature and precipitation 
distribution to groundwater and runoff. The most sensitive parameters regarding snow 
melt (a key process on the Feather River), for example, resulted in being associated with 
precipitation distribution, radiation, and of course the snow module. Examples include 
tmax_allsnow, tmax_allrain (phase partitioning), radmax (radiation), jh_coef 
(evapotranspiration), and freeh2o_cap (liquid-water drainage threshold within the snow 
module [39]). While the USGS PRMS team did not consider temperature-distribution 
parameters, we expect temperature lapse rates to also play an important role in our 
recalibration on the Feather River. 

The third step based on the results of the sensitivity analysis and model uncertainty is a global 
recalibration of the PRMS model. Model recalibration, even if undertaken with a reduced 
parameter set and across time periods that are optimal for parameter calibration, may still face 
challenges due to the nonlinear, nonconvex parameter spaces that are common in hydrologic 
models. Recalibration algorithms must be able to cover large areas of the parameter space, 
since parameter behavior may vary widely in different regions, and be robust to poor local 
minima.  The chosen method for this step relies on existing USGS tools like LUCA [27], 
which uses a Shuffled Complex Evolution (SCE) algorithm [26]. SCE is a population-
evolution algorithm, meaning it groups several potential solutions and evolves (i.e., 
moves) these groups towards local minima simultaneously. This grouping greatly 
improves the efficiency of the algorithm and allows it to search a large parameter space in 
a reasonable amount of time. Periodically, the evolution is paused and the potential 
solutions are shuffled and redistributed into new groups. This step allows information to be 
shared across groups and reduces the likelihood that a group of solutions will become 
trapped in poor local minima [18, 19] 

The final step of the process is model validation (see Section 3.3.2). We plan to use a split-
sample cross-validation technique, allowing us to leverage the WSN data for both 
model calibration and validation. 

 


