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PREFACE 
California’s Climate Change Assessments provide a scientific foundation for understanding 
climate-related vulnerability at the local scale and informing resilience actions. These 
assessments contribute to the advancement of science-based policies, plans, and programs to 
promote effective climate leadership in California. In 2006, California released its First Climate 
Change Assessment, which shed light on the impacts of climate change on specific sectors in 
California and was instrumental in supporting the passage of the landmark legislation 
Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), California’s Global Warming Solutions 
Act. The Second Assessment concluded that adaptation is a crucial complement to reducing 
greenhouse gas emissions (2009), given that some changes to the climate are ongoing and 
inevitable, motivating and informing California’s first Climate Adaptation Strategy released the 
same year. In 2012, California’s Third Climate Change Assessment made substantial progress in 
projecting local impacts of climate change, investigating consequences to human and natural 
systems, and exploring barriers to adaptation.  

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 
managed and supported California’s Fourth Climate Change Assessment: California’s Natural 
Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 
California Energy Commission (Energy Commission). The Climate Action Team Research 
Working Group, through which more than 20 state agencies coordinate climate-related 
research, served as the steering committee, providing input for a multi-sector call for proposals, 
participating in selection of research teams, and offering technical guidance throughout the 
process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 
science that serves the growing needs of state and local-level decision-makers from a variety of 
sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 
scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 
California; datasets and tools that improve integration of observed and projected knowledge 
about climate change into decision-making; and recommendations and information to directly 
inform vulnerability assessments and adaptation strategies for California’s energy sector, water 
resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 
habitat, and public health.  

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 
understanding climate-related risks and resilience options, nine regional reports plus an oceans 
and coast report to outline climate risks and adaptation options, reports on tribal and 
indigenous issues as well as climate justice, and a comprehensive statewide summary report. 
All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 
and relevance to practitioners and stakeholders.  

For the full suite of Fourth Assessment research products, please visit 
www.climateassessment.ca.gov. This report contributes to energy and infrastructure resilience 
by providing projected changes in extreme precipitation events in California. 

http://www.climateassessment.ca.gov/
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ABSTRACT 
Traditionally, infrastructure design and rainfall-triggered landslide models rely on the 
notion of stationarity, which assumes that the statistics of hydroclimatic extremes (e.g., 
rainfall, streamflow, etc.) do not change significantly over time. However, during the last 
century, we have observed a warming climate with more intense precipitation extremes in 
some regions, likely due to increases in the water holding capacity of the atmosphere. 
Consequently, infrastructure and natural slopes will likely face more severe climatic 
conditions, with potential human and socioeconomic consequences. Here, we outline a 
framework for quantifying climate change impacts on natural and man-made 
infrastructure using bias-corrected multi-model simulations of historical and projected 
precipitation extremes. The approach evaluates changes in rainfall intensity-duration-
frequency (IDF) curves and their uncertainty bounds using a non-stationary model based 
on Bayesian inference. We show that highly populated areas across California may 
experience extreme precipitation that is more intense and twice as frequent, relative to 
historical records, despite the expectation of unchanged annual mean precipitation. Since 
IDF curves are widely used for infrastructure design and risk assessment, the proposed 
framework offers an avenue for assessing infrastructure resilience and landslide hazard in 
a warming climate. 
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HIGHLIGHTS 
• The report presents intensity-duration-frequency curves for various locations in 

California based on multi-model future climate model simulations (2050-2099 relative to 
1950-1999). Intensity-Duration-Frequency curves are widely used in infrastructure design 
and risk assessment, and the curves presented here have potential application in adapting 
infrastructure design and risk assessment to incorporate projected changes in extreme 
precipitation.  

• Increase in intensity, duration, and frequency of extreme precipitation can adversely 
impact the integrity of infrastructure, particularly natural and engineered slopes. Indeed, 
severe rainfall causes flooding, landslides, soil erosion and jeopardizes functionality or 
integrity of infrastructure systems such as natural gas pipelines.  

• The report presents a new way of investigating and communicating the risk of hazardous 
climatic conditions by calculating the expected future return period of historical events, a 
useful metric for planning and decision making. 

• Extreme precipitation is expected to increase across most cities in California based on the 
current multi-model climate simulations presented in this report.  

• Climate model simulations under the RCP8.5 project that in the future, the frequency of 
what is currently a 50-year event could double in both Southern California (i.e., San Diego, 
and Santa Barbara) and Northern California (i.e., San Jose and San Francisco). This means 
that highly populated areas across California may experience extreme precipitation that 
is more intense and twice as frequent, relative to historical records, despite the expectation 
that, on average, annual mean precipitation will not change substantially. 
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1: Introduction  
Over the past decades, the observed increase in temperatures (e.g. Barnett et al., 1999; Melillo et 
al., 2014; Diffenbaugh et al., 2015; Fischer and Knutti, 2015), mainly driven by anthropogenic 
activities (Melillo et al., 2014), has altered the hydrological cycle leading to more intense rainfall 
events (Zhang et al., 2007; Min et al., 2011; Marvel and Bonfils, 2013; Westra et al., 2013; Cheng 
and AghaKouchak, 2014; Fischer and Knutti, 2016). This in turn, can potentially increase the risk 
of fluvial and pluvial flooding (Melillo et al., 2014; Pachauri et al., 2014, Moftakhari et al., 2017). 
In addition, recent studies have shown that, given the expected increase in future precipitation, 
there is a high chance of substantial impact on landslide activity in natural slopes (Robinson et 
al., 2017) and on the performance of man-made earthen structures (Vahedifard et al., 2017; Jasim 
et al., 2017), calling into question the current procedure for infrastructure design and risk 
assessment. 

Design and risk assessment procedures for infrastructure (e.g. levees, dams, roads, sewer and 
storm water drainage systems) often rely on rainfall Intensity-Duration-Frequency (IDF) curves 
for estimating the design storm intensity and the corresponding flow. Rainfall IDF curves 
indicate the magnitude of an extreme event with a certain duration and expected recurrence 
interval based on historical observations.  

The process of estimating IDF curves requires fitting a representative distribution function to 
the observed rainfall data (Bonnin et al., 2006). Traditionally, the parameters of the distribution 
function are estimated under the so-called stationary assumption (i.e., time invariant 
parameters), meaning that no significant changes are expected in the characteristics (e.g., 
magnitude and frequency) of rainfall extremes over time. However, in a warming climate, the 
assumption of stationarity may not necessarily be sufficient (Milly et al., 2008). 

Several studies have proposed models to address non-stationarity in extreme value analysis 
(e.g. Katz et al., 2002; Sankarasubramanian and Lall, 2003; Mailhot et al., 2007; Cooley et al., 
2007; Huard et al., 2009; Villarini et al., 2009, 2010; Vogel et al., 2011; Zhu et al., 2012; Willems et 
al., 2012; Katz, 2013; Obeysekera and Salas, 2013; Salas and Obeysekera, 2013; Yilmaz and 
Perera, 2014; Mirhosseini et al., 2014; Rosner et al., 2014; Cheng and AghaKouchak, 2014; Volpi 
et al., 2015; Read and Vogel, 2015; Sadegh et al., 2015; Krishnaswamy et al., 2015; Mirhosseini et 
al., 2015; Mondal and Mujumdar, 2015; Lima et al., 2016; Sarhadi and Soulis, 2017). Most 
methodologies proposed for evaluating non-stationary IDF curves are largely based on 
observed historical data assuming no change in statistics of future extreme events (e.g., Cheng 
and AghaKouchak, 2014). To overcome this limitation, we outline a framework for deriving IDF 
curves using multi-model climate simulations of the future. Here, we have used the downscaled 
climate model simulations recommended for California’s Fourth Climate Change Assessment. 
Although climate models exhibit high uncertainty, they offer plausible future scenarios that can 
be used for estimating changes in IDF curves. When a statistically significant trend is observed 
in the future projections, the framework estimates IDF curves based on a non-stationary 
statistical model to account for changes in the statistics of extremes. However, in the case where 
future projections do not exhibit a significant trend, the proposed framework estimates IDF 
curves based on the commonly used stationary models. 

In this report, we have applied the proposed framework to time series of annual maxima 
precipitation intensity in a number of urban areas across California. We present updated IDF 
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curves and quantify the expected changes in frequency of future extreme events (e.g. a 50-yr 
storm) relative to the past (e.g. baseline events). 

 

2: Data  
The report focuses on deriving Intensity-Duration-Frequency (IDF) curves in fourteen urban 
areas in California (Figure 1). Following the Fourth Assessment guidelines, we use downscaled 
(LOCA) daily precipitation simulations with a 1/16 degree spatial resolution from the following 
CMIP5 (Coupled Model Intercomparison Project Phase 5) Global Climate Models (GCMs): 

• HadGEM2-ES (warm/dry); 

• CNRM-CM5 (cool/wet); 

• CanESM2 (middle); 

• MICROC5 (complement/cover range of outputs) 

The simulations include Representative Concentration Pathways (RCP) 4.5 and 8.5. We consider 
daily precipitation estimates for 1950-1999 and 2050-2099 to be representative of the historical 
and future climate, respectively. Given that the focus of this report is on frequency analysis, we 
have chosen a 50-year baseline to be consistent with the typical length of record used in the 
current historical IDF curves. Also, we have chosen a 50-year projection period to ensure 
consistency of sample sizes in the baseline and projection periods.  

For each location, we independently analyze daily precipitation products of each GCM to 
retrieve time series of annual maxima intensity in a water year (October through September, as 
defined by the United States Geological Survey) for events of 1-day to 7-day duration. It is 
worth noting that any storm duration can be investigated. Here, we focus on daily duration 
because the downscaled GCM simulations provided for the Fourth Assessment are daily. A 
time series of annual maxima is obtained as follows. Let’s consider the time series of daily 
precipitation of the jth water year, 𝑃𝑃𝑗𝑗 = �𝑝𝑝𝑖𝑖

𝑗𝑗 , … , 𝑝𝑝𝑛𝑛𝑗𝑗
𝑗𝑗 �, where nj is the number of days in the jth 

water year. The annual precipitation intensity of a d-day event for the jth water year is: 

 

𝑃𝑃𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 �∑ 𝑝𝑝𝑡𝑡

𝑗𝑗𝑑𝑑
𝑡𝑡=1
𝑑𝑑

, … , ∑ 𝑝𝑝𝑡𝑡
𝑗𝑗𝑖𝑖+𝑑𝑑−1

𝑡𝑡=𝑖𝑖
𝑑𝑑

, … ,
∑ 𝑝𝑝𝑡𝑡

𝑗𝑗𝑛𝑛𝑗𝑗
𝑡𝑡=𝑛𝑛𝑗𝑗−𝑑𝑑+1

𝑑𝑑
�    (1) 

 

The time series of annual maxima is then 𝑃𝑃𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑃𝑃𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚
1 , … ,𝑃𝑃𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚

𝑛𝑛𝑛𝑛 �, where ny is the total 
number of water years (49 in this study). For each model, we process the historical simulations 
and the future projections independently. 
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Location  Lat. Long. 
 N W 

Eureka 40.81 124.17 
Redding 40.59 122.39 

Sacramento 38.57 121.49 
San Francisco 37.78 122.42 

San Jose 37.34 121.89 
Fresno 36.74 119.78 

Monterey 36.59 121.90 
Santa Barbara 34.42 119.70 

Ventura 34.28 119.22 
Los Angeles 34.04 118.22 

Riverside 33.95 117.39 
Palm Springs 33.84 116.53 

Irvine 33.67 117.79 
Temecula 33.49 117.15 
Escondido 33.12 117.09 
San Diego  32.71  117.16 

 

Figure 1: Location of cities in the State of California where changes in precipitation IDF curves are 
investigated. 

 

3: Method  
Precipitation Intensity-Duration-Frequency (IDF) curves available from the National Oceanic 
and Atmospheric Administration (NOAA) involve fitting a representative distribution function 
to observed (historical) extreme precipitation. Two main underlying assumptions have been 
considered: (i) annual precipitation maxima follow a Generalized Extreme Value (GEV) 
distribution (see Appendix A.); (ii) the statistics of the distribution are time-invariant 
(stationarity assumption). The assumption (ii) refers to the expectation of a climate in which 
precipitation characteristics do not change over time. However, for a more realistic 
representation of the time series behavior (Cheng and AghaKouchak, 2014) we need to account 
for changes in the statistics of the extremes if they are significant (Katz, 2013).  

Based on the above considerations, we employed time series of annual maxima precipitation 
intensity explained in Section 2 to retrieve historical and projected IDF curves based on Ragno 
et al. (2018).  

We retrieved historical IDF curves using historical simulations and a stationary GEV 
distribution to reproduce NOAA IDF curves. Additionally, we retrieved future IDF curves 
using future projections and a GEV distribution with parameters that change over time 
(hereafter, non-stationary GEV), to incorporate trends in the data when observed. Indeed, the 
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non-stationary GEV was used when the Mann-Kendall trend test result detected a statistically 
significant trend in precipitation (i.e. null-hypothesis of no trend is rejected at a 0.05 level of 
significance).  

 

 

 

Figure 2. Flow chart indicating the steps for estimating non-stationary Intensity-Duration-
Frequency curves.  

 
Figure 2 outlines the procedure for estimating IDF curves. For each duration, a statistical model 
(stationary/non-stationary) is fitted to the precipitation time series, and the intensities 
associated with 25-, 50-, 100-yr events are estimated. Afterwards, precipitation intensities are 
grouped based on their associated return period, and they are plotted as a function of storm 
duration (1- to 7-day duration) to obtain IDF curves. 

We employ the Non-Stationary Extreme Value Analysis (NEVA; Cheng et al., 2014) toolbox to 
estimate the parameters of the GEV distribution in the case of both stationary and non-
stationary analysis (see Appendix A for details). The advantages that NEVA offers include i) 
flexibility of including the time component to model observed/expected changes, ii) ability of 
quantifying the uncertainty involved in the estimation procedure using Bayesian inference and 
the Differential Evolution Markov Chain (DE-MC) approach (see Appendix A for details). The 
latter becomes even more important in dealing with extreme events, under which it is 
important to characterize the variability of the estimate through uncertainty analysis. 

We first independently calculate the IDF curves for each climate model and then merge them to 
generate the multi-model ensemble of IDF curves. Finally, for each location and each RCP 
scenario we obtain the expected IDF curve along with its uncertainty bounds (Figure 3).  
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Figure 3. Flow chart indicating the steps to retrieve multi-model ensemble Intensity – Duration – 
Frequency (IDF) curves for a specific location (i.e. Station X). Precipitation from each climatic 
model is processed independently. The results are then combined to provide a multi-model 

ensemble of IDF curves. IDF curves are generated following the method explained in Figure 2. 

 

This uncertainty encompasses information about both the inter- (e.g. due to parameter 
estimation) and intra-model variability (e.g. diversity of GCM simulations). Typically, a bias 
between the median of historical IDF curves and NOAA IDF curves is expected. This bias stems 
from the fact that GCMs provide gridded average precipitation, while the current NOAA IDF 
curves are mainly based on point observations. Gridded area-averaged observations are 
typically smoother compared to point observations. For this reason, we bias corrected the 
historical and future IDF curves to make them comparable to the NOAA curves. The bias 
correction is performed such that the median of the historical IDF curves match the current 
NOAA IDF curve for a given recurrence interval (Ragno et al., 2018).  

Finally, we are interested in quantifying the changes in frequency (i.e., return period) of events 
in the future relative to the past. From the current NOAA precipitation frequency estimates for 
a given location, we extract IT, the intensity of an event with 1-day duration and return period 
T. IT is the event that, based on historical data, is considered to occur on average once every T-
years. To assess whether the recurrence of an event with intensity equal to IT is expected to 
change under future climate scenarios, we extract all return periods with intensity IT from the 
ensemble of future return level curves (Figure 4). We then define the expected future return 
period of the event IT to be equal to the median of the return periods (Ti ) extracted from the IDF 
curves based on future climate projections. To be conservative, if the expected future return 
period is higher than the historical one, the latter is taken as the future return period. We 
evaluate the upper and the lower bounds of the estimated return period to be the 95th and the 
5th ensemble quantiles, respectively. 
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Figure 4: Conceptual explanation of the methodology adopted to quantify changes in the 
occurrences of historical events under future climate projections (after Ragno et al., 2018). The 

dotted lines represent the ensemble of solutions from the climate model simulations. The red line 
represents the ensemble median.  

 

4: Results and Discussion  
Under the chosen future scenarios, our results show an overall upward shift of the Intensity-
Duration-Frequency (IDF) curves, indicating that more severe events are expected to occur. 
Figures 5 - 7 and Figures 8 - 10 show IDF curves based on RCP4.5 and RCP8.5 scenarios, 
respectively. In the presented IDF curves, the proposed non-stationary method is only used 
when a statistically significant trend is detected in precipitation time series. Interested readers 
can find the numerical values of the expected IDF curves in Appendix B. 

An overall pattern towards more intense precipitation is observable under both RCPs for events 
with 25-, 50-, and 100-year return periods. In southern California (i.e., Irvine, Riverside, and 
Escondido) we can observe that, under the RCP4.5, changes in extreme precipitation intensity 
across different storm durations are smaller in southern California (e.g. Irvine, San Diego) 
relative to northern California (e.g. Sacramento, San Francisco) – see Figures 5 – 7. The RCP8.5 
scenario shows an overall increase in the intensity of extreme events across the state of 
California. The changes in the intensity of extreme precipitation under the RCP8.5 are more 
pronounced compared to the RCP4.5.  

It is worth noting that precipitation is highly dependent on local climate and so high variability 
across space is not surprising. Moreover, high uncertainty bounds are mainly associated with 
the intermodal variability in climate models and the fact that models are subject to biases and 
uncertainties.  
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Figure 5: Comparison between the current (grey lines) and future climate (orange lines) 25-yr 
Intensity-Duration-Frequency (IDF) curves (RCP4.5), along with 90% confidence intervals (after 

Ragno et al., 2018). 
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Figure 6: Comparison between the current (grey lines) and future climate (orange lines) 50-yr 
Intensity-Duration-Frequency (IDF) curves (RCP4.5), along with 90% confidence intervals (after 

Ragno et al., 2018). 
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Figure 7: Comparison between the current (grey lines) and future climate (orange lines) 100-yr 
Intensity-Duration-Frequency (IDF) curves (RCP4.5), along with 90% confidence intervals (after 

Ragno et al., 2018). 
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Figure 8: Comparison between the current (grey lines) and future climate (red lines) 25-yr 
Intensity-Duration-Frequency (IDF) curves (RCP8.5), along with 90% confidence intervals (after 

Ragno et al., 2018). 
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Figure 9: Comparison between the current (grey lines) and future climate (red lines) 50-yr 
Intensity-Duration-Frequency (IDF) curves (RCP8.5), along with 90% confidence intervals (after 

Ragno et al., 2018). 
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Figure 10: Comparison between the current (grey lines) and future climate (red lines) 100-yr 
Intensity-Duration-Frequency (IDF) curves (RCP8.5), along with 90% confidence intervals (after 

Ragno et al., 2018). 
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After investigating the change in extreme event intensity for a fixed return period, we now 
explore the changes in frequency of extreme events with 1-day duration for a given event 
magnitude. Specifically, we choose the intensity of three baseline events corresponding to 25-, 
50- and 100-year events (retrieved from current NOAA IDF curves) to estimate their expected 
recurrence intervals in the future, along with their confidence intervals. Figure 8 illustrates the 
return periods expected in the future of the baseline events (dots), along with their 90% 
confidence intervals (gray lines). The results show that extreme events that are expected to 
occur every 50 or 100 years will likely become more frequent. For example, climate model 
simulations project that the frequency of a 50-year event in the future will double in San Diego, 
and Santa Barbara under RCP8.5. The same behavior can be observed in northern California, in 
San Jose and San Francisco (Figure 11). The high uncertainties in the estimated values reflect the 
intermodal variability in climate model projections (here, four different climate models) and 
parameter fitting uncertainties.  
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Figure 11: The procedure to obtain 
expected future return period is 
explained in Figure 1 (after Ragno et 
al., 2018). Return periods of future 
events (orange and red dots), 
historically associated with return 
periods of 25-, 50-, and 100-years in 
California (green lines). Panels a, b, 
and c show the projected return 
periods considering two future 
scenarios: RCP4.5 (orange dots) and 
RCP8.5 (red dots) along with their 
90% confidence interval (gray lines).  
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5: Conclusions 
In this report, we have shown the potential impacts of a warming climate on extreme 
precipitation intensity and recurrence intervals in California (2050-2099 relative to 1950-1999). 
The results show that in most cities, extreme precipitation events are projected to intensify. 
Urban areas in California may struggle against increases in severity and frequency of 
historically rare events. Increase in intensity, duration, and frequency of extreme precipitation 
can adversely impact the integrity of infrastructure and natural and engineered slopes. Severe 
rainfall causes flooding, landslides, and soil erosion and jeopardizes functionality or integrity of 
infrastructure systems. Infrastructure built with soil (such as earthen dams, levees, or 
embankments), or the ones that interface with soil (for example roads, bridge, pipelines, and 
foundations) are often more vulnerable. Recent studies have shown the applicability of the 
methodology proposed here for assessing the resilience of levees (Jasim et al., 2017) and 
mechanically stabilized earth (MSE) walls with marginal backfill (Vahedifard et al., 2017) under 
a changing climate. The IDF curves presented in this report can be used to evaluate the risk of 
existing infrastructure systems in a changing climate.  
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APPENDIX A: Detailed Methodology 
The cumulative distribution function of the GEV distribution is (Cheng et al., 2014): 

Ψ(𝑚𝑚) = exp�−�1 + 𝜉𝜉 �
𝑚𝑚 − 𝜇𝜇
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where, µ, σ, and ξ are the location parameter representing the center of the distribution, the 
scale parameter describing the distribution of the data around the center, and the shape 
parameter that defines the tail behavior of the distribution, respectively. 

We employ the Non-Stationary Extreme Value Analysis (NEVA; Cheng et al., 2014) toolbox to 
estimate the parameters of the GEV distribution in the case of both stationary and non-
stationary analysis. The NEVA framework has two main advantages: (i) it is versatile enough to 
deal with temporal stationary and non-stationary extremes (including annual maxima and 
extremes over a particular threshold); (ii) it estimates Return Level curves along with their 
uncertainty bounds through Bayesian inference and the Differential Evolution Markov Chain 
(DE-MC) approach (Cheng et al., 2014). Indeed, a Bayesian approach allows for uncertainty 
quantification, which is crucial especially when dealing with small sample size and rare events. 

In this study, non-stationarity is characterized by a time-dependent location parameter µ(t), µ(t) 
=µ1 · t + µ0, where the regression parameters µ1 and µ0 are calibrated. A longer data set is 
required to reliably model the σ and ξ variability over time (Coles, 2001; Papalexiou and 
Koutsoyiannis, 2013), so we assume the scale and shape parameters to be time-invariant, as 
suggested by Cheng et al., 2014. 

We use NEVA to process the historical and future time series of annual maxima and obtain IDF 
curves of 25-, 50-, and 100-year return periods along with their associated uncertainties. The 
return period is defined as 1/(1-p) where p is the non-exceedance probability of a given event. 
The intensity of the p-year event is given by: 

𝑞𝑞𝑝𝑝 =  ��−
1
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where the location parameter �̂�𝜇 = median(µ(t)) if the null-hypothesis of no monotonic trend is 
rejected, and �̂�𝜇 = µ elsewhere. 

Generally, for the ith-set of GEV parameters, the expected return period Ti is given by 1
1−𝜓𝜓(𝐼𝐼𝑇𝑇)

 
where 𝜓𝜓(𝐼𝐼𝑇𝑇) is estimated as: 
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APPENDIX B: Tables of Precipitation Intensity-
Duration-Frequency  

Table B-1. 25-yr Return Period Intensity-Duration-Frequency curves based on historical records 
(NOAA) and future climate (RCP4.5 and RCP8.5). The values in the table correspond to the solid 
lines in Figures 5 and 8. The storm durations indicated are the ones for which NOAA provide the 

estimates.  

25-year Return Period 

LOCATION  1-day 
mm/day 

2-day 
mm/day 

3-day 
mm/day 

4-day 
mm/day 

7-day 
mm/day 

Eureka 
NOAA 124.36 81.08 61.57 51.21 37.80 
RCP 4.5 153.14 104.77 80.04 67.14 49.31 
RCP 8.5 164.06 119.08 88.22 73.33 52.70 

Redding 
NOAA 166.42 110.95 85.95 71.93 49.99 
RCP 4.5 179.33 121.94 93.28 79.84 56.63 
RCP 8.5 185.35 127.83 100.41 84.32 64.01 

Sacramento 
NOAA 106.07 65.23 48.77 39.62 27.43 
RCP 4.5 122.13 82.08 61.39 50.45 34.31 
RCP 8.5 130.90 85.62 66.48 54.92 39.98 

San Francisco 
NOAA 107.90 65.23 48.16 40.23 28.65 
RCP 4.5 120.97 77.45 59.38 48.69 33.71 
RCP 8.5 129.05 75.45 58.05 49.61 35.99 

San Jose 
NOAA 77.42 49.38 37.19 30.48 21.34 
RCP 4.5 80.33 52.45 40.84 32.91 24.18 
RCP 8.5 91.47 61.91 47.35 41.19 30.30 

Fresno 
NOAA 65.23 39.62 29.26 23.77 16.46 
RCP 4.5 69.97 44.66 33.75 26.78 18.02 
RCP 8.5 72.60 48.42 36.58 30.24 21.59 

Monterey 
NOAA 90.83 58.52 45.11 37.80 26.21 
RCP 4.5 97.80 63.01 48.69 41.27 28.83 
RCP 8.5 102.52 66.83 50.44 43.19 32.65 

Santa Barbara 
NOAA 156.67 99.97 76.20 62.79 42.06 
RCP 4.5 166.95 110.57 86.21 74.32 51.17 
RCP 8.5 190.19 122.94 98.64 87.44 60.51 

Ventura 
NOAA 148.74 97.54 75.59 62.79 42.06 
RCP 4.5 155.93 99.02 79.64 67.98 46.02 
RCP 8.5 167.73 108.96 89.99 75.19 55.06 

Los Angeles 
NOAA 137.77 89.00 69.49 57.30 39.01 
RCP 4.5 144.52 97.65 79.31 67.84 43.93 
RCP 8.5 146.43 102.12 84.48 72.10 53.67 

Riverside NOAA 90.83 58.52 43.89 35.97 23.77 
RCP 4.5 90.78 61.28 46.13 38.82 24.49 
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RCP 8.5 94.75 63.12 48.28 39.97 26.57 

Palm Springs 
NOAA 96.93 58.52 42.67 33.53 21.34 
RCP 4.5 106.08 63.82 47.65 38.67 23.43 
RCP 8.5 113.01 69.70 53.12 42.93 27.96 

Irvine 
NOAA 104.85 67.06 50.60 41.45 27.43 
RCP 4.5 98.43 65.77 50.91 45.33 28.40 
RCP 8.5 113.29 72.69 57.90 49.96 34.58 

Temecula 
NOAA 145.08 91.44 67.06 57.30 39.01 
RCP 4.5 161.32 102.76 78.84 67.44 43.31 
RCP 8.5 165.76 110.86 83.87 74.25 51.82 

Escondido 
NOAA 110.95 70.71 54.86 45.72 30.48 
RCP 4.5 118.78 76.77 58.87 48.72 32.33 
RCP 8.5 122.49 81.44 65.01 53.99 38.13 

San Diego 
NOAA 79.86 48.77 37.19 30.48 20.73 
RCP 4.5 84.20 56.16 42.81 34.88 22.61 
RCP 8.5 95.25 62.92 47.19 37.55 26.53 
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Table B-2. 50-yr Return Period Intensity-Duration-Frequency curves based on historical records 
(NOAA) and future climate (RCP 4.5 and RCP 8.5). The values in the table correspond to the solid 
lines in Figures 6 and 9. The storm durations indicated are the ones for which NOAA provide the 

estimates.  

50-year Return Period 

LOCATION  1-day 
mm/day 

2-day 
mm/day 

3-day 
mm/day 

4-day 
mm/day 

7-day 
mm/day 

Eureka 
NOAA 140.21 91.44 68.88 57.30 42.06 
RCP 4.5 172.97 118.04 88.67 75.36 55.58 
RCP 8.5 189.50 140.80 103.22 85.40 61.09 

Redding 
NOAA 185.32 123.75 95.71 80.47 55.47 
RCP 4.5 198.84 136.41 104.23 90.39 62.60 
RCP 8.5 207.40 141.53 110.81 93.78 71.22 

Sacramento 
NOAA 121.31 73.76 54.86 44.50 31.09 
RCP 4.5 141.37 95.58 70.00 58.27 39.41 
RCP 8.5 148.79 95.99 74.68 61.00 45.10 

San Francisco 
NOAA 124.36 74.98 55.47 45.72 32.31 
RCP 4.5 141.70 90.23 68.35 56.21 37.98 
RCP 8.5 147.84 83.90 64.70 54.67 39.35 

San Jose 
NOAA 89.61 56.69 42.67 34.75 24.38 
RCP 4.5 91.41 59.10 46.52 37.42 28.04 
RCP 8.5 105.26 70.34 53.57 46.85 34.60 

Fresno 
NOAA 74.98 45.72 32.92 27.43 18.90 
RCP 4.5 81.34 52.31 38.61 31.41 20.94 
RCP 8.5 84.31 56.04 41.80 35.09 25.31 

Monterey 
NOAA 105.46 67.67 52.43 43.28 29.87 
RCP 4.5 114.63 73.74 56.77 46.95 33.06 
RCP 8.5 119.70 76.76 57.75 48.93 36.83 

Santa Barbara 
NOAA 176.17 112.78 86.56 71.93 48.77 
RCP 4.5 188.34 125.40 99.82 88.17 60.70 
RCP 8.5 211.95 135.88 110.89 100.93 69.14 

Ventura 
NOAA 165.20 109.12 84.73 71.32 48.16 
RCP 4.5 169.79 107.70 87.75 76.19 52.34 
RCP 8.5 181.50 120.64 103.41 85.71 64.56 

Los Angeles 
NOAA 157.89 102.41 80.47 67.06 45.11 
RCP 4.5 169.39 115.15 93.96 81.55 51.64 
RCP 8.5 162.22 114.43 96.06 85.21 64.06 

Riverside 
NOAA 105.46 68.28 51.21 41.45 27.43 
RCP 4.5 104.61 69.87 52.93 44.35 27.92 
RCP 8.5 107.55 71.51 54.69 44.48 29.79 

Palm Springs 
NOAA 114.60 70.10 51.21 40.23 25.60 
RCP 4.5 126.22 75.86 56.97 46.38 28.02 
RCP 8.5 132.55 81.91 63.77 51.26 33.82 
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Irvine 
NOAA 120.70 76.81 58.52 48.16 31.70 
RCP 4.5 111.23 74.22 58.01 51.75 32.56 
RCP 8.5 130.08 84.07 67.26 57.25 40.17 

Temecula 
NOAA 166.42 106.68 79.86 68.28 46.94 
RCP 4.5 187.46 121.21 94.22 80.75 52.06 
RCP 8.5 188.48 128.21 98.03 88.31 63.62 

Escondido 
NOAA 126.80 81.08 63.40 53.04 35.36 
RCP 4.5 136.92 88.71 67.56 56.05 37.35 
RCP 8.5 139.90 93.05 74.96 62.04 44.88 

San Diego 
NOAA 90.22 54.86 42.06 34.75 23.77 
RCP 4.5 96.59 65.26 49.95 41.17 26.14 
RCP 8.5 109.12 74.00 54.92 43.63 31.66 
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Table B-3. 100-yr Return Period Intensity-Duration-Frequency curves based on historical records 
(NOAA) and future climate (RCP 4.5 and RCP 8.5). The values in the table correspond to the solid 
lines in Figures 7 and 10. The storm durations indicated are the ones for which NOAA provide the 

estimates.  

100-year Return Period 

LOCATION  1-day 
mm/day 

2-day 
mm/day 

3-day 
mm/day 

4-day 
mm/day 

7-day 
mm/day 

Eureka 
NOAA 156.67 101.80 76.81 63.40 46.33 
RCP 4.5 195.87 132.00 98.25 83.83 62.30 
RCP 8.5 217.38 165.12 119.57 98.39 70.06 

Redding 
NOAA 204.22 135.94 105.46 88.39 61.57 
RCP 4.5 218.00 150.56 115.23 100.52 68.92 
RCP 8.5 228.86 153.77 121.17 101.84 79.06 

Sacramento 
NOAA 136.55 82.30 60.96 49.38 34.14 
RCP 4.5 161.28 110.22 79.24 66.52 44.64 
RCP 8.5 168.65 106.32 82.85 67.39 49.95 

San Francisco 
NOAA 142.04 85.34 62.79 51.82 35.97 
RCP 4.5 164.26 104.17 77.84 64.53 42.50 
RCP 8.5 168.08 92.77 71.76 59.88 42.19 

San Jose 
NOAA 103.63 64.62 48.16 39.62 27.43 
RCP 4.5 104.61 66.00 52.14 42.78 31.96 
RCP 8.5 120.43 79.20 59.61 53.12 38.98 

Fresno 
NOAA 85.34 51.82 37.80 31.09 21.34 
RCP 4.5 92.87 60.19 44.72 36.07 23.96 
RCP 8.5 96.62 64.03 48.47 39.88 29.20 

Monterey 
NOAA 121.92 77.42 59.13 49.38 34.14 
RCP 4.5 133.72 85.13 63.90 53.17 38.11 
RCP 8.5 138.92 87.48 64.43 55.24 41.75 

Santa Barbara 
NOAA 195.68 126.19 97.54 80.47 54.86 
RCP 4.5 210.45 141.20 114.21 101.52 70.38 
RCP 8.5 234.34 149.30 124.80 113.57 76.86 

Ventura 
NOAA 180.44 120.09 93.88 79.25 53.64 
RCP 4.5 181.77 115.17 95.28 83.15 57.15 
RCP 8.5 193.64 131.89 116.90 95.80 73.26 

Los Angeles 
NOAA 179.22 116.43 91.44 76.20 51.82 
RCP 4.5 196.07 132.96 109.11 95.11 60.47 
RCP 8.5 177.50 125.57 107.05 96.81 75.81 

Riverside 
NOAA 120.09 78.03 58.52 47.55 31.70 
RCP 4.5 118.41 78.24 59.46 50.28 31.55 
RCP 8.5 120.00 79.58 60.63 49.37 33.46 

Palm Springs 
NOAA 134.11 82.30 60.35 47.55 30.48 
RCP 4.5 147.65 88.61 66.96 55.06 33.27 
RCP 8.5 153.82 94.73 75.18 60.17 40.63 
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Irvine 
NOAA 137.16 87.78 67.06 54.86 35.97 
RCP 4.5 124.44 83.58 65.75 58.50 36.42 
RCP 8.5 147.25 96.12 77.55 65.17 45.98 

Temecula 
NOAA 188.37 123.14 93.27 80.47 55.47 
RCP 4.5 214.92 140.70 110.63 95.45 62.35 
RCP 8.5 211.41 146.70 113.00 103.39 76.40 

Escondido 
NOAA 143.26 92.66 72.54 60.35 40.84 
RCP 4.5 155.95 101.78 76.82 63.40 43.26 
RCP 8.5 158.02 105.79 85.60 70.38 52.55 

San Diego 
NOAA 99.97 61.57 46.94 38.40 26.21 
RCP 4.5 108.27 75.48 57.76 46.85 29.08 
RCP 8.5 122.84 86.23 63.41 50.17 36.24 
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