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• Boosted regression tree model pro-
duced 3D map of nitrate concentration.

• Hybrid multi-modeling approach used
numerical model outputs as predictors.

• Redox characteristics and field scale un-
saturated zone N flux were most impor-
tant.

• Nitrate concentrations b2 mg/L NO3-N
generally conformed to basin subre-
gion.

• Nitrate concentrations N10 mg/L NO3-N
most common in eastern alluvial fans
subregion
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Intense demand forwater in the Central Valley of California and related increases in groundwater nitrate concen-
tration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we
developed a hybrid, non-linear, machine learningmodelwithin a statistical learning framework to predict nitrate
contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 pre-
dictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass
balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil charac-
teristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public sup-
ply wells measured previously for nitrate and located throughout the study area. The boosted regression tree
(BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic
and public well supplies. The novel approach included as predictor variables outputs from existing physically
based models of the Central Valley. The top five most important predictor variables included two oxidation/
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reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxy-
gen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time
period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992
total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed ni-
trate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential
evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing
1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative
impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the
probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increas-
ing groundwater age.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Machine learning
Modeling
1. Introduction

Nitrate contamination of groundwater is a problem that many agri-
cultural regions around the world share. Nitrate is a naturally occurring
form of nitrogen necessary for plant growth, however, decades of farm-
ing in agricultural regions underlain by alluvial aquifers has resulted in
leaching of excess nitrate to groundwater from nitrogen sources such
as animal manure and synthetic fertilizers. Septic tanks in rural, unin-
corporated areas can also contribute nitrate and atmospheric deposition
(from the combustion of fossil fuels) or natural organic matter can con-
tribute relatively minor amounts (Canter, 1996). Nitrate in drinking
water above the U.S. Environmental Protection Agency maximum con-
taminant level (MCL) of 10 mg/L as N has been linked to low infant
blood oxygen levels, a condition known as methemoglobinemia. More
recently, health effects including cancers and adverse reproductive out-
comes have been associated with drinkingwater nitrate concentrations
less than the MCL (Ward et al., 2005). Many factors influence the
amount of nitrate that reaches groundwater including current and his-
torical land use, current and historical nitrogen applications/deposition,
soil type, depth to groundwater and groundwater recharge rate. Any of
these variables can interact in complicated ways to affect the amount of
nitrogen that leaches to groundwater.

In the Central Valley of California, nitrate contamination of drinking
waterwells is of increasing concern due to decadal increases in nitrogen
fertilizer, manure, and population, and observed groundwater nitrate
trends. In a study of the Central Valley aquifer, Burow et al. (2013) ob-
served increasing trends in the proportion of the aquifer with nitrate
concentration N5 mg/L in both shallow and deep zones of the eastern
fans subregion from the 1950s through the 2000s (Burow et al., 2013).
They separated well nitrate concentration data into shallow and deep
zones based on the depths of domestic and public-supply wells, and
the increases were approximately four-fold in the shallow aquifer and
two-fold in the deep aquifer. However, variability of nitrogen sources
hampered interpretation of aquifer proportion trends in the western
fans subregion.

Two previous studies of private wells in the Central Valley found be-
tween 40 and 50% of wells sampled for nitrate exceeded the drinking
water MCL (Lockhart et al., 2013; CSWRCB, 2010). Both of the afore-
mentioned studies were focused in the Central Valley and relatively
small (approximately 200 wells each). However, many private wells
are in use within the Central Valley; one study has estimated that ap-
proximately 92,000 private wells exist in the Central Valley (Johnson
and Belitz, 2015); and given that private wells are not regulated in Cal-
ifornia, relatively few of these wells have been tested. Public supply
wells are required to test for nitrate, and over 400 public supply wells
throughout California have hadnitrate exceeding theMCL,which affects
over 600,000 people according to an equivalent-population based met-
ric (Belitz et al., 2015). The highest numbers of high-nitrate wells and
equivalent populations relying on such wells occurred in the San
Joaquin Valley (the southern two-thirds of the Central Valley) and the
Transverse and Selected Peninsular Ranges (the latter province is
south of the Central Valley and includes Los Angeles). Among the nine
hydrogeologic provinces in California, the San Joaquin Valley had the
largest area affected by high groundwater nitrate (Belitz et al., 2015).

Because private wells are not regulated in California, it is important
to determine high risk and high priority areas in order to focusmonitor-
ing resources aswell as future outreach and educational efforts aimed at
private well owners. Public supply wells also are at risk, and the cost of
treating contaminated groundwater or relocating suchwells is high, es-
pecially for low-income or disadvantaged communities (Honeycutt et
al., 2012). We used boosted regression trees (BRT), a machine learning
method, to model groundwater nitrate concentration in response to
predictor variables representing land use, climate, soil, and
hydrogeologic factors. The algorithm learns the relationship between
the response and the predictor variables and does not rely on hypothe-
sis testing assumptions about the data as do more traditional statistical
methods (Elith et al., 2008). BRT results thenwere extended throughout
theCentral Valley and to all depths of drinkingwater supplies to provide
a three-dimensional (3D) map of nitrate in groundwater at the depths
typically tapped by domestic and public-supply wells.

BRT makes use of two algorithms: regression or classification trees
and boosting (Elith et al., 2008). Classification and regression tree
(CART) methods subdivide the data with multiple nested binary splits,
a procedure known as binary recursive partitioning (Hastie et al.,
2009; Kuhn and Johnson, 2013). The procedure determines which var-
iable explains most of the variance in the dependent variable and then
determines a split point for that variable that most reduces the overall
sum of squared errors. These steps are repeated with each branch
until some stopping criterion takes effect. The output of the CART algo-
rithm is a decision tree structure (Hastie et al., 2009). Boosting com-
bines a set of predictions from a “weak classifier”, a simple model such
as a single split classification tree, in order to form a stronger classifier
and improve prediction accuracy (De'ath, 2007; Hastie et al., 2009).

In the case of BRT, an ensemble of smaller decision trees (weak
learners) is built and with each successive tree trained on the residuals
from the previous tree (De'ath, 2007). The fitted value for each observa-
tion is recalculated with the formation of each new tree and the final
model is a stagewise sum of all of the trees (Elith et al., 2008). Stochastic
BRT improves performance by adding randomness into themodel fit by
using subsamples of the training data at each iteration (Friedman,
2002). BRT is able to account for many variables and their interactions,
allows non-linear and non-monotonic responses, and is robust in the
presence of multicollinearity. Interactions among predictor variables
are expected for nitrate because multiple conditions can cause elevated
nitrate in ground water, including 1) a significant source of nitrate, 2)
soil (and aquifer) properties that permit transport, 3) sufficient re-
charge, and 4) existence of oxic conditions; if one or more of these con-
ditions are not met, a different outcomewill occur (Anning et al., 2012).

Machine learning methods have been used to predict nitrate con-
centrations in groundwater in several studies: one for the U.S. Geologi-
cal Survey (USGS) Southwest Principal Aquifers, which includes the
Central Valley, California (Anning et al., 2012), a National Cancer Insti-
tute and USGS model in Iowa (Wheeler et al., 2015), and two Central
Valley, California specific models (Nolan et al., 2014, 2015). For the
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Southwest Principal Aquifersmodel, 58 explanatory variables, including
county-level nitrogen loading, septic/sewer ratio, geology, soil, aquifer,
and geochemical variables were used to develop a Random Forest clas-
sification model. Random Forest classification, like BRT, features many
trees but the response variable is categorical and model fitting is not
stagewise. The authors calculated total landscape nitrogen input from
farm and non-farm fertilizer using county-level nitrogen data (for the
1982–2001 time period) and apportioned it to 3 km grid cells based
on the amount of agricultural, urban, or residential land use within
the cell. Manure nitrogen inputs were similarly estimated based on
county-level livestock population estimates from the Census of Agricul-
ture and apportioned to agricultural land uses likely to receive manure
(such as pasture and hay crops) (Anning et al., 2012; Ruddy et al.,
2006). When analyzed with a validation data set, the model correctly
predicted 48.6% of nitrate categories into the correct class and 80.4% of
nitrate categories into one class above or below (Anning et al., 2012).
Wheeler et al. (2015) developed a Random Forest regression model
from 34,084 nitrate measurements from private wells in Iowa sampled
between 1980 through 2011. The authors compiled nearly 300 predic-
tor variables including agricultural land use, county-level nitrogen fer-
tilizer input, soil type, climatic variables, and aquifer characteristics.
Fertilizer nitrogen input variables were compiled from county level fer-
tilizer sales and assigned to eachwell based on the surrounding amount
of agricultural land use (for seven separate years between 1978 and
2006). Manure nitrogen inputs were derived from county-level Census
of Agriculture animal population data for multiple years between 1982
and 2002 and apportioned to relevant land uses (Mueller and Gronberg,
2013; Ruddy et al., 2006). The final model from Wheeler et al. (2015)
explained 76.86% of log nitrate variation in the training data, and
mean square error (MSE) was 0.97. All MSE units reported in the cur-
rent paper are (ln(mg/L))2. For hold-out data, the model explained
38.27% of the variation in log nitrate and the MSE was 2.39.

Nolan et al. (2014) developed Random Forest regression and classi-
fication models to predict log nitrate for domestic and public supply
wells located in the Central Valley, California. The authors compiled 54
explanatory variables including total farm and non-farm nitrogen in-
puts (compiled from 1992 county-level farm and non-farm fertilizer in-
puts and apportioned to agricultural, residential, and urban land uses),
soil characteristics, well depth, percent coarse soil texture above the
well screen, vertical water flux for the year 1992, and 1990 land use
data. Their final Random Forest regressionmodels selected for mapping
shallow and deep nitrate had training R2 of 0.90 (bothmodels), training
MSE of 0.22 and 0.14, respectively, out-of-bag R2 values of 0.39 and 0.40,
respectively, and out-of-bag MSE values of 1.28 and 0.83, respectively.
Nolan et al. (2015) compared three machine learning techniques: BRT,
artificial neural networks, and a Bayesian network (latter two methods
not discussed in this paper) using the same shallow well data and pre-
dictor variables as Nolan et al. (2014). Using a statistical learning frame-
work, a comparatively simple BRT model was selected as final for
mapping based on hold-out data model evaluation results (Nolan et
al., 2015). This model yielded an R2 of 0.89 and anMSE of 0.26 for train-
ing data, an R2 of 0.26 andMSE of 1.75 for hold-out data, and a cross val-
idation testing R2 of 0.36.

The objectives of the current studywere to (1) characterize ground-
water nitrate concentration at the depths of drinking water supply in
the Central Valley, with emphasis on domestic and public supplies;
and (2) extend modeling results valley-wide and top-to-bottom
throughout the aquifer using 3D interpolation and visualization tech-
niques. In this study, we used a hybridmultimodeling approachwhere-
in outputs of previous models, including numerical and/or physically
based types, were used as inputs to a BRT model. Physically based
models included the Central Valley Hydrologic MODFLOW/MODPATH
Model (CVHM) and the Central Valley Textural Model (CVTM) (Faunt,
2009), and the Groundwater Nitrogen Loading Model (GNLM) devel-
oped for the Central Valley (Viers et al., 2012; Rosenstock et al., 2013).
Additionally, interpolated values from lumped parameter groundwater
agemodels (Jurgens et al., 2016, 2012) and BRT groundwater reduction-
oxidation (redox) models (Rosecrans et al., 2017), were used as predic-
tor variables. CVHM, CVTM, and the BRT redox models describe condi-
tions in 3D for the Central Valley. The use of field-scale, unsaturated
zone nitrogen leaching flux differs from previous nitrate vulnerability
models that used county-level nitrogen data apportioned to agricultural
land use within well buffers asmentioned above (Nolan and Hitt, 2006;
Nolan et al., 2014, 2015). The use of groundwater age and redox vari-
ables also differs from previous aquifer nitrate vulnerability models
that used proxies for groundwater age and redox potential such as
well depth or depth to water (typically available only at sampled
wells) (Rupert, 1998; Warner and Arnold, 2010; Nolan and Hitt, 2006;
Nolan et al., 2014, 2015). We believe that this study represents the
first use of 3D estimates of redox and age in a regional aquifer vulnera-
bility model. Ordinary kriging (OK), universal kriging (UK), and multi-
ple linear regression (MLR) models were also developed for
comparison with BRT.

2. Materials and methods

2.1. Sources of nitrate data

We compiled a large database of groundwater nitrate measure-
ments from private supply and public supply wells (Ransom et al.,
2017b). Nitrate data came from twomain sources, the University of Cal-
ifornia at Davis (UC Davis) and those previously compiled by the USGS
(Burow et al., 2013). Combining the UC Davis and USGS data substan-
tially increased the number of wells available for modeling, compared
with Nolan et al. (2014). Domestic well measurements from UC Davis
(Ransom et al., 2017a) sampled during 2000–2011 were used. The UC
Davis data set included wells from the Groundwater Ambient Monitor-
ing and Assessment domestic well program (GAMA) and the Central
Valley RegionalWater Quality Control Board dairymonitoring program.
The methods described in the paper by Ransom et al. (2017a) for the
years 2000–2011 resulted in 2407 domestic wells for use in the BRT
model. These methods included randomly selecting a single well from
multiple wells with overlapping locations (Ransom et al., 2017a). Well
nitrate measurements with a zero value were replaced with the most
common detection limit of 0.33 mg/L nitrate as nitrogen (NO3-N)
prior to imputation. Additional nitrate data for the years 2000–2010
came from another 4788 wells comprising the following sources: the
California State Water Resources Control Board Division of Drinking
Water (SWRCB-DDW) (4307wells); the USGS NationalWater Informa-
tion System (NWIS) (471wells); and the U.S. Environmental Protection
Agency Storage and Retrieval database (STORET) (10 wells) (Burow et
al., 2013). The SWRCB-DDW and STORET wells were predominantly
used for public supply, and most of the NWIS wells were used for do-
mestic or monitoring purposes. Duplicate wells in the combined data
set were removed and a multiple imputation routine (Lubin et al.,
2004) was used to impute values of censored nitrate data below the
method detection limit (DL). For censored values, the lower bound
was set to missing and the upper boundwas set to the DL, which varied
from 0.05 to 8.9 mg/L depending on the source of the data. Following
imputation, median nitrate concentration was computed for each well
and was natural log transformed prior to BRT modeling. Wells then
were spatially declustered using an equal area grid cell approach
(Belitz et al., 2010) to reduce effects on the modeling of oversampling
in areas of intensive agricultural land use. We randomly sampled do-
mestic and public supply wells in 100 km2 grid cells at up to the same
rate (i.e., themaximumnumber of wells taken per grid cell) tomaintain
the proportions of each well type in the training data set. Wells not se-
lected for training were randomly sampled in the same manner to cre-
ate an independent (hold-out) data set formodel testing. A total of 5170
wells was selected, 3508 of which were used for training and 1662 of
which served as hold-out. All nitrate measurements in the final data-
base were converted to NO3-N. In contrast, a total of 2505 wells were
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used by Nolan et al. (2014), 1255 of which were selected for training
and 1250 of which served as hold-out for model evaluation.

2.2. Predictor variables

A database of 145 predictor variables was compiled from a combina-
tion of well construction data, Geographic Information System (GIS) at-
tributes and outputs of previous models, including well characteristics
(physical and location based), land use, climate, soil properties, aquifer
properties, depth to the water table, and estimates of nitrogen loading
based on field-scale and county-scale data (Supporting Materials (SM)
Table S1). Well characteristics were either provided in each of the well
databases (as was the case for use of water at the well), assigned (e.g.
latitude, longitude, well depth zone), or calculated (e.g. distance to
nearest major river). Wells were assigned to shallow (private well) or
deep (public-supply) zones based on measured depth below ground
surface to the bottom of the well screen. The 75th percentile well
depth was 81.99 m for domestic wells and the 25th percentile depth
was 84.73m for public supply wells; therefore rounding to an interme-
diate value (270 ft), a depth of 82.30 m was used to divide the shallow
and deep aquifer zones. Wells lacking measured well depth were
assigned to shallow or deep zones based on water use, with domestic
and monitoring wells designated shallow and public supply and irriga-
tion wells designated deep. Depth to top and bottom of well screened
interval was estimated by Empirical Bayesian Kriging (EBK) for these
wells based on information from wells with construction data so that
well construction characteristics were available for each well and
could be tested as predictor variables in the BRT model. The predicted
surfaces produced by this approach (Voss and Jurgens, 2017) are spatial
averages of depths to top and bottom of well screens across the Central
Valley. Empirical semivariances were developed from ensembles of 100
semivariograms generated by the restrictedmaximum likelihoodmeth-
od for subsets of the data (ArcGIS, 2016). The power semivariogram
model was used to fit the empirical semivariances. EBK-predicted
screen depths were extracted to all wells based on their assigned
depth zone (shallow or deep). Historical and current land use data are
from the California Augmented Multi-Source Land use (CAML) 50 m
resolution maps based on five time periods at 15-year intervals over
the past 70 years. Land use surrounding wells was classified for each
of the five CAMLmaps each representing a 5-year time period centered
on: 1945, 1960, 1975, 1990, and 2005 (Viers et al., 2012). The CAML land
use categories were reclassified into 13 groups based on similarity in
land use or crop type. Temperature and rainfall data are from the
WorldClim BioClim 1 km resolution layers generated through interpola-
tion of averagemonthly climate data fromweather stations, representa-
tive of 1950–2000 (Hijmans et al., 2005). The BioClim data set contains
19 variables including annual precipitation and precipitation of thewet-
test and driest month. Soil characteristics, hydrologic group, and drain-
age class predictor variables are from the Soil Survey Geographic
database (SSURGO) (U.S. Department of Agriculture, 2014; Wieczorek,
2014). Estimates of nitrogen loading from farm and non-farm fertilizer
were based on county-wide fertilizer expenditures (Gronberg and
Spahr, 2012), and groundwater recharge was derived from base-flow
index and mean annual runoff values (Wolock, 2003).

In addition to the above attributes, model outputs that included esti-
mations of aquifer physical characteristics were used as predictor vari-
ables, as part of the hybrid modeling approach. Model-estimated
physical aquifer properties include, from CVHM at 1 mile resolution,
monthly vertical groundwater flux in the upper active CVHM layer (for
water year 1999–2000), and depth below ground surface to the water
table, and from CVTM, average estimated percent coarse material in the
upper active layer (Faunt, 2009). Additionally, average groundwater age
at the well screen for all wells was calculated based on CVHM/MODPATH
simulations performed for this study (SMS2.0). Three particleswere used
for each well (at the top, middle, and bottom of well screen) and the av-
erage of the three travel timeswas assigned to eachwell (SMS2.0). GNLM
wasused at 50mscale to estimatehistorical and currentfield-scale unsat-
urated zone nitrogen leaching fluxes for five time periods at 15-year in-
tervals (Viers et al., 2012; Rosenstock et al., 2013). From these, we
calculated a normalized field-scale nitrogen mass balance for each of
the time periods where GNLM data were available (SM Eqs. (1) and (2)).

We also used model estimates from previous statistical and
geostatistical models as predictor variables. These include BRT-predict-
ed probability of anoxic groundwater and probability of high ground-
water manganese concentration (“redox” variables indicating
reducing conditions) (Rosecrans et al., 2017), and kriged depth below
ground surface to 60 year old groundwater at thewell, based on lumped
parametermodeling (Jurgens et al., 2012, 2016) (SMTable S1).We used
the redox variable predictions from Rosecrans et al. (2017) for the
45.72 m or 91.44 m depths below ground surface (SM Table S1) for
both redox variables. Wells, designated as shallow or deep, were
assigned the values for the Rosecrans et al. (2017) prediction depth
closest to the midpoints of measured top and bottom of well screen
for domestic and pubic supply wells in this current study, which were
48.77 and 89.92 m, respectively.

All predictor variables were processed in ArcGIS (version 10.3.1), SAS
(version 9.4), or in the R computing environment (R Core Team, 2016) for
assignment to wells by either point extract or by statistics within an ap-
proximate well source area (SM Table S1). A 500 m radius circular well
buffer was used for variables that required an approximate well source
area for attribution. Well buffers are reasonable surrogates for contribut-
ing areas to wells in the Central Valley when the actual contributing area
is unknown, and spatial analysis of land use within a range of buffer sizes
has indicated that a 500m radius buffer size is appropriate for attributing
land use data to wells in the region (Johnson and Belitz, 2009). Missing
predictor variable values at wells were estimated using the R package
caret (Kuhn, 2016) by the “bag impute” method which fits a bagged
treemodel for eachpredictor as a functionof all the others. The gbmpack-
age (Ridgeway et al., 2015) was used to perform BRT modeling.

Predictor variables selected for the final model (Section 3) were
assigned to 1 kmgrids as Arc GIS raster layers. Based on the gridded pre-
dictor variables and final model, nitrate predictions were made using
the R raster package (Hijmans, 2016) for 17 depth zones spaced
throughout the aquifer (at 15.24, 30.48, 45.72, 60.96, 76.20, 91.44,
106.68, 121.92, 152.40, 182.88, 213.36, 243.84, 274.32, 304.80, 365.76,
426.72, and 487.68 m below ground surface) to create input layers for
3D mapping in Oasis Montaj. Redox variables, average groundwater
age at the well screen, use of water at the well, screen length, and
depth to bottom of screened interval variedwith depth zone. Other pre-
dictors, such as soil properties and total N input at the land surface, se-
lected for the final model did not vary with depth. Based on measured
well depths of private and public supply wells before data declustering,
screen length was set to 12.19 m for depth increments b82.30 m (shal-
low) and to 64.01 m for depths N82.30 m (deep). A hypothetical depth
to bottom of screened interval was assumed by centering the average
screen length for each respective depth zone (either shallow or deep)
on the vertical centroid location of each prediction grid depth (SM
Table S2). A groundwater age estimate was made for each of the 17
depth zones based on the hypothetical wells centered on 1 km grid
cells throughout the Central Valley (SM S2.0). To produce the
MODFLOW/MODPATH age estimates used to create the raster layers
used as a part of the nitrate predictions, a particle was placed at the
top, middle, and bottom of well screen for each hypothetical well
(Table S2). Water use was set to H (private) and P (public supply), re-
spectively, for BRT predictions at shallow and deep depths. Two raster
layers were used to represent the redox variables: either a shallow or
deep zone representation for each variable (SM Table S1).

2.3. Machine learning

Prior research used regularization to improve the predictive perfor-
mance of BRT through adjustment of selected parameters such as the
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number of trees in the ensemble (Elith et al., 2008). Along these lines,
we used BRT within a statistical learning framework (Nolan et al.,
2015; Hastie et al., 2009) that systematically adjusts tuning parameters
(Kuhnand Johnson, 2013) referred to here as “metaparameters,” to con-
trol for potential overfit by the BRT models and to maximize prediction
accuracy. Adjustedmetaparameters included the number of trees, inter-
action depth, and shrinkage. The minimum number of observations in
each tree's terminal nodes was held constant at 10. Ten-fold cross vali-
dation tuningwas performed on the training data set with the full list of
145 predictor variables for each combination of a range of each of the
metaparameter values (Table 1) using the R package caret (Kuhn,
2016). The selected ranges for eachmetaparameter yielded900 possible
combinations and the “best” combination of metaparameters was se-
lected based on minimum cross validation (CV) testing root mean
square error (RMSE), which represents the expected testing error. One
standard-error models (Nolan et al., 2015) were tested but performed
less well with hold-out data compared with the minimum CV testing
RMSE model. Cross validation tuning run time was approximately
16 h on an Intel Core I-5 4670 processor with 16 GB of 1600 MHz
DDR3 RAM.

The full BRTmodel consisting of all 145 predictor variables was then
re-fitted with the best CV-tuned metaparameters to all 3508 training
observations. Predictor variables were sorted in descending order by
relative importance score, which is an estimate of predictor variable in-
fluence in the model (Friedman, 2001; Elith et al., 2008). Predictors
were removed from the minimum RMSE model one-at-a-time, in as-
cending order of predictor variable influence beginning with the least
influential variable, until the percent difference in RMSE for hold-out
data, compared to the full model with all 145 predictors, consistently
exceeded about 1%. We further refined themodel to remove redundant
variables (such as atmospheric nitrogen input for 1992, which is includ-
ed in the total landscape nitrogen input for 1992 variable) and to in-
clude others desirable for interpretation purposes, while maintaining
fit to hold-out data. We performed Sobol’ sensitivity analysis on the
final model using the soboljansen function in R package sensitivity
(Pujol et al., 2017) to show the degree of variability of BRTmodel output
for changes in the values of predictor variables. Sobol’ sensitivity analy-
sis apportions the variance of the model predictions to each of the pre-
diction variables (Saltelli et al., 2010).

We obtained BRT prediction intervals by bootstrapping for the pur-
pose of mapping prediction uncertainty at the depths of domestic and
public groundwater supplies. Bootstrapping involved sampling the
training data with replacement and fitting the final model to each of
199 bootstrap samples. Whereas the final metaparameters
(interaction.depth, n.trees, shrinkage) were held constant, the true
model parameters (tree splitting variables, split levels at internal tree
nodes, and predictions at terminal nodes) changed with each bootstrap
sample. We calculated an additive error component by subtracting a
random sample of the model residuals from each bootstrap sample
BRT prediction (~t) for each grid cell in the Central Valley. Subtraction
of themodel residual ensured that any skew in the residuals had an op-
posite effect to skew created by uncertainty in the parameters, which is
appropriate given that the empirical distribution underlying the interval
is based on the difference of predicted and observed concentrations, the
former being uncertain due to sampling error in the estimated parame-
ters and the latter due to themodel residual. For each grid cell we deter-
mined the quantiles for the lower (1 - α/2) and upper (α/2) indices of
Table 1
Summary of boosted regression tree metaparameter ranges used for cross validation tuning (R

Parameter Description

interaction.depth Tree depth, or number of layers in each tree.
n.trees Total number of trees in the additive model.
shrinkage Learning rate; determines the contribution of each new tre
the distribution of the error component. These indices were 10 and
189, respectively, for 199 bootstrap samples. Both the quantiles and
the gridded BRT predictions in log space based on all of the training
data were back transformed by exponentiation, and relative prediction
intervals were computed for each grid cell as (Schwarz et al., 2006):

PIlower ¼
t̂
2

Q~t 1−
α
2

� �

PIupper ¼ t̂
2

Q~t
α
2

� �

where PI is the lower or upper prediction interval, t̂ is the BRT prediction
based on all of the training data for the grid cell in real space (mg/L of
nitrate),Q~t is the quantile of the distribution of themodel error compo-

nent in real space for the grid cell, and α is the significance level (0.10).
We made prediction uncertainty maps by plotting prediction interval
widths, PIupper−PIlower, corresponding to shallow and deep wells for
the Central Valley grid cells.

BRT was compared with traditional geospatial extrapolation
methods consisting of ordinary kriging (OK), universal kriging (UK),
and multiple linear regression (MLR). OK models were cross-validated
with 10 folds to determine the optimal number of nearest neighbor ob-
servations (100) subsequently used in both OK and UK. The latter used
four depth-related variables as regressors in a linear trend component.
Both forward and backward selection methods were used in the fitting
of MLR models, and predictor variables were retained based on the
Akaike Information Criterion. Kriging was performed using the R gstat
package (Pebesma, 2004) andMRL was performed in the R MASS pack-
age (Venables and Ripley, 2002).

2.4. 2D and 3D mapping

The 1 km nitrate prediction grids for each of the 17 depth zones
(Section 2.2) were imported into the Oasis Montaj 9.0.2 mapping envi-
ronment software (Geosoft, Inc., 2016) for 3D interpolation and visual-
ization. Each grid was assigned a vertical thickness of 1 m and linear
interpolation was used between each of the layers at a vertical resolu-
tion of 1 m to produce a complete representation of predicted nitrate
concentration at depth throughout the Central Valley. For visualization
purposes, nitrate predictions were extracted from the interpolated
model at 54.86 m and at 121.92 m deep. These depths correspond to
the median depths of private and public wells for the training wells
(Table 2). Back transformed, BRT-predicted nitrate concentrations
were corrected for bias using a smearing estimator (Helsel and Hirsch,
2002).

CVHM/MODPATH average groundwater age at each of the 17 depth
layers was also imported into Oasis Montaj software and interpolated
according to the methods described above for nitrate predictions. The
resulting 3Dmap of groundwater age indicates the intrinsic susceptibil-
ity of the Central Valley aquifer to contaminants introduced at the land
surface.
MSE, root mean square error).

Range Minimum RMSE model

2–16, by 1 16
500–3000, by 500 1000

e to the model. 0.002–0.02, by 0.002 0.016



Table 2
Summary of groundwater nitrate concentration in sampled wells, water level, and well
depth data for shallow and deep wells used to train the models.

Variable Shallow wells Deep wells

No. of wells 1400 2108
Well nitrate concentration (mg/L NO3-N)

Minimum 0.004 0.007
Maximum 74.7 49.2
Mean 6.96 3.35
Standard deviation 8.86 4.30
Median 3.84 2.03
Interquartile range 8.62 4.00

Median simulated depth to water (m)a 11.74 12.47
Median depth to top of perforated interval (m)b 37.49 70.10
Median depth to bottom of perforated interval (m)b 54.86 121.92

a Based on MODFLOW predicted depth to water (MFDTWSpr2000Faunt).
b Based on all well types classified as shallow or deep that had measured depth data,

before data declustering.
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3. Results and discussion

3.1. Summary statistics for sampled wells

Well nitrate concentrations used for model training ranged from
0.004 mg/L to 74.7 mg/L, over seven times the MCL (Table 2). Shallow
training wells tended to have greater nitrate concentrations and more
MCL exceedances than deep trainingwells (Table 2 and Fig. 1). Training
well MCL exceedances were concentrated in the central and in the
southeastern part of the Central Valley (within the San Joaquin Valley),
particularly in the eastern alluvial fans (Fig. 1). Well nitrate concentra-
tions below 2 mg/L NO3-N were concentrated in the northern third of
the Central Valley (the Sacramento Valley) and in the basin subregion
throughout the Central Valley (Fig. 1). Training and hold-out wells
had near identical distributions of nitrate measurements (SM Fig. S1).

3.2. Modeling results

3.2.1. Model training and testing
Best CV-tuned metaparameters according to the minimum RMSE

criterion were 16, 1000, and 0.016 for interaction depth, number of
trees, and shrinkage, respectively (Table 3). The final BRT model com-
prised these metaparameters and 25 predictor variables remaining
after the variable reduction described above (Fig. 3). Variables selected
for thefinalmodel included redox indicators, unsaturated zonenitrogen
leaching flux, total landscape nitrogen input, groundwater age, well
characteristics, soil variables, groundwater depth, groundwater re-
charge/flux, and climatic variables (Fig. 3, SM Table S1). Based on rela-
tive importance score (Friedman, 2001; Elith et al., 2008) for the final
model, the top five predictor variables were two redox variables (prob-
ability of manganese (Mn) concentration to exceed 50 ppb and proba-
bility of dissolved oxygen concentration to be below 0.5 ppm), field-
scale adjusted unsaturated zone nitrogen leaching flux value for the
1975 time period, difference between average precipitation and evapo-
transpiration between 1971 and 2000, and 1992 total landscape nitro-
gen input amount (Fig. 3, SM Table S1). Predictor variables used in the
final model were mapped for visualization and discussion purposes
and appear in order of variable importance (SM Figs. S2-S23). Predictor
variables which remained constant within aquifer depth zones (depth
to bottom of well screen, use of water at well, and screen length)
were not mapped.

The final BRT model had R2 = 0.83 and RMSE = 0.002 for training
data, and had the highest hold-out R2 (0.44) and lowest hold-out
RMSE (1.13) among all of themodels tested (Table 3). (All RMSE values
are reported as ln(mg/L NO3-N). Model estimated versus observed log
nitrate values (training data set) mostly plotted along a one-to-one
line while plotted model predicted versus observed log nitrate values
(hold-out data set) were slightly more dispersed, as would be expected
for independent data (Fig. 2). Among traditional modeling approaches,
OK (hold-out R2= 0.42 and hold-out RMSE= 1.16) wasmore compet-
itive with BRT than UK or MLR. MLR used a stepwise procedure with all
of the same predictor variables as BRT and explained less than half the
variation in the training data (training R2 = 0.42) and had R2 = 0.31
and RMSE=1.27 for hold-out data. UK used the probability thatMn ex-
ceeds 50 μg/L in groundwater (ProbMn50ppb), the probability that
groundwater dissolved oxygen is b0.5 mg/L (ProbDOpt5ppm), the
depth to 60 year old groundwater (DTW60YrJurgens), and average
age of groundwater at the well screen (Age_yrs) as regressors in the
trend component (all predictor variables are defined in SM Table S1).
The regressors were natural log transformed to address non-linear rela-
tions with groundwater nitrate, and the resulting UK model had R2 =
0.39 and RMSE = 1.19 for hold-out data. The superior performance of
BRT with independent data is consistent with prior studies that in-
volved comparisons of machine learning and linear regression, linear
classifiers, generalized additive models, OK, and/or UK (Ayotte et al.,
2016; Nolan et al., 2015; Wheeler et al., 2015). BRT model residuals
were mapped for the training wells in each of the shallow and deep
aquifer zones (Section 2.2) separately and no spatial patterns were ap-
parent (SM Fig. S24).

3.2.2. Predictor variable influence
Partial dependence plots of predictor variables in the final model

show the behavior of each predictor within themodel, after accounting
for the average effect of each of the other predictors (Elith et al., 2008).
Partial plots were highly useful in gaining insights in the relationship
between predictor variables and well nitrate concentrations (SM Fig.
S25), and show how the BRT model integrates the effects of low redox
conditions, older groundwater, and upward groundwater fluxes associ-
ated with groundwater discharge areas. According to partial depen-
dence plots, predicted well nitrate concentrations tended to decrease
as the probability of anoxic conditions in wells increased (first two
plots in SM Fig. S25). The partial plots for the probability of manganese
concentration to exceed 50 ppb and dissolved oxygen concentration to
be below 0.5 ppm suggested the presence of a threshold probability
value near 0.6. Anoxic conditions have been linked to lower well nitrate
concentrations: a study focused in the San Joaquin Valley, California
(southern two-thirds of the Central Valley) found significantly lower
well nitrate concentrations in anoxic groundwater versus oxic or
mixed redox groundwater and the authors attributed thismostly to lon-
ger residence times (older groundwater ages) of the groundwater clas-
sified as anoxic (Landon et al., 2011). In that study, the anoxic
groundwater samples were clustered near the valley trough (Landon
et al., 2011), where the probability of anoxic conditions has also been
estimated to be greatest (above 0.6) (Rosecrans et al., 2017) (SM Figs.
S2 and S3). Landon et al. (2011) also found that decreases inwell nitrate
concentration due to denitrificationweremostly small throughout their
study region and did not protect wells on a regional scale from nitrate
contamination. Results of another regional study focused in the eastern
San Joaquin Valley agreewith thefindings of Landon et al. (2011): based
on multi-model residence time distributions, estimated nitrate reduc-
tion rateswere significant for the denitrification zone; however,well ni-
trate concentrations will continue to increase given current nitrogen
inputs even after accounting for the rates of oxygen and nitrate reduc-
tion (Green et al., 2016).

Estimated adjusted field-scale unsaturated zone nitrogen leaching
flux to the water table based on components of the GNLM model for
the 1975 time period was ranked third in terms of variable relative im-
portance in the finalmodel (Fig. 3). Predictedwell nitrate concentration
increased rapidly as the normalized adjusted nitrogen flux value for
1975 increased to about 20% (see partial plot Ngw_1975 in SM Fig.
S25). Partial dependence plots for other GNLM time periods in the full
model (not shown) were more erratic and did not display a clear rela-
tionship between well nitrate concentration and adjusted nitrogen
flux value. In addition, adjusted GNLM nitrogen leaching flux value for



Fig. 1. Training well locations, color coded by well nitrate concentration (3508 wells total) for shallow (1400 wells, mostly private) and deep (2108 wells, mostly public supply) zones.
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1975was ranked third in terms of variable importance in the full model,
above the other time periods, which suggested a relationship between
this variable and total travel time through the unsaturated zone and
aquifer to the sampled wells. Training well MCL exceedances for both
shallow anddeepwells (shown as red dots in Fig. 1) appeared to be spa-
tially correlated to regions with GNLM adjusted nitrogen flux values
above 10% for the 1975 period (compare Fig. 1 with SM Fig. S4). Total
landscape nitrogen input to the land surface for the year 1992 was
also relevant (relative importance rank fifth) and represented a more
conventional estimate of nitrogen input from readily available fertilizers
and atmospheric deposition data (SM Fig. S6). Including both total land-
scape nitrogen inputs and GNLM-based unsaturated zone nitrogen
leaching flux in the BRT model allowed us to evaluate the relative im-
portance of these two nitrogen loading estimation methods, and also
improved the fit of the final model. Removing either the adjusted
field-scale nitrogen leaching flux variable or the total landscape nitro-
gen input variable from the final model resulted in a near identical de-
crease in hold-out R2 value and increase in RMSE value compared to
the final model (about 0.438 and 1.137 compared to 0.443 and 1.132
from Table 3). The GNLM model includes additional sources of N, such
as septic systems and urban N losses, and also accounts for N removal
by harvested crops. BRT predicted nitrate tended to increase as total
landscape nitrogen flux for 1992 increased to about 6000 kg within
500 m of a well (partial plot N_total in SM Fig. S25). Total landscape



Table 3
Boosted regression tree (BRT) model training and testing results for full and final models
(CV, cross validation; R2, coefficient of determination; RMSE, root mean square error).

Model 10-fold CV
Testing

Training Hold-out

R2 RMSE R2 RMSE R2 RMSE

Full BRT model, CV testing,
best metaparameters

0.452 1.185 0.873 0.003 0.434 1.142

Final BRT model after
variable reduction

NA NA 0.825 0.002 0.443 1.132

Ordinary kriging 0.423 1.214 NA NA 0.415 1.164
Universal kriging 0.400 1.238 NA NA 0.390 1.185
Multiple linear regression NA NA 0.419 1.218 0.306 1.266
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nitrogen flux for 1992 also tended to appear spatially correlated to
training well MCL exceedances (Fig. 1 and SM Fig. S6).

Precipitation minus evapotranspiration was ranked number 4 in the
BRTmodel and the partial plot indicates a steep decrease in well nitrate
concentration for values greater than−20 in/yr (PrecipMinusET partial
plot in SMFig. S25). Values of this variable become increasingly negative
going fromnorth to south in the Central Valley (SM Fig. S5) and this pat-
tern appears spatially correlated to the training well MCL exceedances
(Fig. 1), which also exhibited a north-south gradient. These patterns
could be the result of precipitation and sediment texture. The Sacra-
mento Valley has greater precipitation and more fine-grained sedi-
ments than the San Joaquin Valley, which contribute to anoxic
conditions (Burow et al., 2013).

Well nitrate concentrations increasedwith increasing average silt con-
tent (SM Fig. S18, importance ranking 19th), hydrologic group C (soils
with a layer that restricts downward flow of water, or soils with moder-
ately fine or fine texture, SM Fig. S19, importance ranking 21st), and de-
creasing percent coarse materials in the upper CVHM model layer (SM
Fig. S12, importance ranking11th). This is counter to previous aquifer vul-
nerability models of the Central Valley, which showed increasing well ni-
trate concentrations with decreasing poorly drained soils or increasing
well-drained soils (Nolan et al., 2014). Previous cluster andprincipal com-
ponent analysis has linked the presence of hardpan or fine-textured soils
Fig. 2. Final model estimated versus observed log nitrate values (training data set) and
final model predicted versus observed log nitrate values (hold-out data set). Plots
correspond to the R2 values of 0.83 for the training data set and 0.44 for the hold-out
data set).
to the presence of pesticides in groundwater of the Central Valley which
suggests a contamination pathway other than leaching (Troiano et al.,
1994). In the current study, hydrologic group C soilsmay indicate the pos-
sibility of alternative contamination pathways such as cracks or drywells,
which are common in some areas of hardpan soils in the Central Valley
(DeMartinis and Royce, 1990).

3.3. Groundwater nitrate and mean age mapping

Extractions of Oasis Montaj interpolated nitrate predictions at the
shallow and deep (private and public supply well depths of 54.86 m
and 121.92 m, respectively, Table 2) typically were greater for the pri-
vate supply well depth versus the public supply well depth as indicated
by the more intense colors in the map of the former, particularly in the
eastern alluvial fans of the San Joaquin Valley (Fig. 4). The majority of
the grid cell predictions for each layer were below the nitrate drinking
water standard of 10 mg/L NO3-N. Empirical cumulative distribution
functions show the proportion (p) of grid cells with predicted nitrate
concentration less than or equal to an indicated value (Fig. 5). The ex-
ceedance rate of an indicated nitrate concentration is 1-p. Based on
the gridded predictions, the rate of a domestic well exceeding 10 mg/L
of nitrate was 0.02 and that of a public supply well was b0.01. In con-
trast, the raw exceedance rates based onmeasured groundwater nitrate
concentrationwere 0.27 and 0.06, respectively. At 5mg/L of nitrate (half
the MCL), the predicted exceedance rate for domestic wells was 0.21
and that of public supply wells was 0.04, whereas raw measured ex-
ceedance rates were 0.47 and 0.23, respectively. These differences
may reflect well sampling bias towards areas of known nitrate contam-
ination, whereas themodel predictions are for grid cells of uniform size
(1 km2) throughout the Central Valley, including extensive areas that
lack measured data. As described above, we attempted to compensate
for well sampling bias by declustering the data. The differences may
also reflect negative bias on the part of themodel, which somewhat un-
derestimates high nitrate concentration (Fig. 2). Lastly, linear interpola-
tion in Oasis Montaj resulted in additional smoothing of the BRT-
predicted nitrate values. To put these values in a more consequential
context, the private well depth layer had the equivalent of a 1021 km2

and 10,366 km2 area with predictions greater than the MCL and one
half the MCL, respectively, while the public supply well depth had the
equivalent of a 25 km2 and 2123 km2 area with predictions greater
than the MCL and one half the MCL, respectively (compared to a total
prediction area of 48,802 km2).

The predictions are similar to those of Nolan et al. (2014), except in
the southern-most portion of the Central Valley, where our current
model has generally lower nitrate predictions for both depths (Fig. 4).
(Following Burow et al. (2013), Nolan et al. used a well depth of 46 m
to designatewells as shallow or deep.) Thismay be due to the additional
predictor variables not included in the Nolan et al. (2014) model, such
as depth to 60 year water, which had a strong north to south gradient
(SM Fig. S7) and which exhibited a strong response in predicted nitrate
(partial plot DTW60YrJurgens in SM Fig. S25). The greatest values for
depth to 60 year old water (N 91 m) were located in the southern-
most region of the Central Valley and greater values of this variable
were related to lower nitrate concentrations suggesting increased travel
time in the unsaturated zone in the southern San Joaquin Valley.
Unsaturated zone thickness, indicated by depth to water
(MFDTWSpr2000Faunt), is greater in this region (SM Fig. S14). As
depth to water increases, unsaturated zone travel time increases and
there is greater opportunity for nitrogen transformation processes
and/or semi confining layers to restrict nitrate transport to groundwa-
ter. The depth to 60 year water variable incorporates unsaturated
zone travel times of between 0 and 24 years (SM S3.0). Therefore,
depth to 60 year water was likely a cause of the lower nitrate predic-
tions when compared to Nolan et al. (2014) for the southern region.
For both the shallow and deep zones, the greatest predicted nitrate con-
centrationswere largely locatedwithin the eastern andwestern alluvial
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fans subregions (Fig. 4). As with Nolan et al. (2014), predicted nitrate
concentrations at background levels (b2mg/L NO3-N)were concentrat-
ed in the basin subregion, along the axis of the Central Valley. Predicted
concentrations above the MCL (N10 mg/L NO3-N) were much more
common in the shallow well zone than in the deep well zone, and are
mainly concentrated in the eastern alluvial fan region for both depths
(Fig. 4). Similarly, predicted nitrate concentrations of b2 mg/L largely
follow the pattern of predicted high probability of anoxic conditions
and low lateral positions, which generally correspond to the basin sub-
region (SM Figs. S2, S3, and S10). In the current study, in the eastern al-
luvial fans subregion, predicted nitrate concentrations b2mg/L spatially
correlate with small distance to major rivers (b3000 m) (Fig. 4 and SM
Fig. S9). This pattern is apparent in our results due to the river distance
variable, which was the eighth most important variable in the final
model. Wells nearer to rivers may have lower nitrate concentrations
due to low nitrate concentration in infiltrating river water (Boyle et
al., 2012). Predicted nitrate N2 mg/L in oxic regions of the valley was
variable due to the spatial distribution of 1975 unsaturated zone nitro-
gen leaching flux and 1992 total landscape nitrogen inputs as well as
other properties such as percent silt, percent clay, and hydrologic
group C soils (Section 3.2.2 and SM Figs. S4, S6, S15, S18, and S19).

The 3D maps revealed that predicted groundwater nitrate concen-
trations generally decreased with depth for the entire Central Valley
(Fig. 6). However, predicted nitrate concentrations remained above
the MCL for portions of the southern eastern alluvial fans subregion
and at elevated concentrations (above 4 mg/L NO3-N) for portions of
the northern eastern alluvial fans and western alluvial fans subregions
down to the deepest depth for which predictions were made
(487.68 m) (Fig. 6). This is likely due to a combination of high nitrogen
loading and low probability of anoxic conditions as well as younger rel-
ative groundwater age at depth (b250–500 years), especially for the
eastern alluvial fans subregion (SM Fig. S16). Portions of the basin sub-
region had older predicted groundwater ages at shallowdepths (SM Fig.
S16). This is likely the result of discharge of groundwater with long res-
idence times along regional flow lines that recharged prior to the mod-
ern period of high nitrogen applications, andwhich is alsomore likely to
be anoxic. MODFLOW non-irrigation and irrigation season vertical
water fluxes show upward groundwater fluxes primarily in these
same areas, and more extensive areas of strong upward fluxes (0 to
10,000 or more m3/d) during the non-irrigation season (SM Figs. S17
and S21). Otherwise, modeled groundwater age tended to increase
with depth throughout the model domain (SM Fig. S16).

According to Sobol’ sensitivity analysis, the most sensitive variables in
the model were the two redox variables (probability of manganese con-
centration to be N50 ppb and probability of dissolved oxygen concentra-
tion to be b0.5 ppm), percent coarse textured soils in the upper active
CVHM model layer, and depth to 60 year old water (SM Fig. S26).
Redox/age proxies such as depth to bottom of well screen and screen
length had comparatively low sensitivities, indicating the added value of
using direct estimates of redox and groundwater age in the BRT model.
These results are generally consistent with the relative influence of pre-
dictor variables by BRT, and underscore the importance of groundwater
redox and age to nitrate occurrence in the Central Valley aquifer.

Maps of BRT prediction interval width show that prediction uncer-
tainty is greater in the alluvial fans than the basin subregion (Fig. 7).
The uncertainty is related to the variance of the bootstrap samples,
which is greater in the fan subregions owing to the heterogeneity of
sediments, variable redox conditions, and localized geologic sources of
nitrogen (Burow et al., 2013). In contrast, groundwater travelling to
the center of the basin is older, more reduced, and typically has lower
nitrate concentration.

3.4. Conclusions

The final BRT model with 25 predictor variables including CVHM/
MODPATH modeled mean groundwater age had higher prediction



Fig. 4. Oasis Montaj interpolated boosted regression tree prediction of groundwater nitrate at median depths of private and public supply wells (54.86 m and 121.92 m, respectively).
Unmapped (white) area within the alluvial bed boundary was due to missing data for one or more predictors in the final BRT model.

Fig. 5. Empirical cumulative distribution functions of predicted groundwater nitrate
concentrations for map grid cells corresponding to the private (black line) and public
supply (blue line) well depths depicted in Fig. 4. Vertical lines are the MCL and one half
the MCL for nitrate (NO3-N).
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accuracy to hold-out data (R2 = 0.44) than previous groundwater ni-
trate models of the Central Valley that lacked direct estimates of
groundwater age and redox conditions. Cross-validation tuning of
metaparameter values within a statistical learning framework opti-
mized model performance with new data, which benefits mapping in
unsampled areas. The BRT model had lower overall error rates com-
pared to OK, UK, and MLR. The incorporation of modeled groundwater
age at depth was a key component not included in previous models
(Nolan et al., 2015, 2014), which relied on age proxies such as depth
to the top of the well screen. In the present study, direct estimates of
groundwater age enhanced understanding and prediction of nitrate oc-
currence at all drinking water depths in the Central Valley aquifer. The
3D map of groundwater age complements that of nitrate and also de-
picts the relative intrinsic susceptibility of the Central Valley aquifer to
contaminants originating at the land surface. Other researchers' model
outputs included as predictor variables in our BRT model were also
highly important predictors of groundwater nitrate including probabil-
ity of anoxic conditions (Rosecrans et al., 2017) and field-scale unsatu-
rated zone nitrogen leaching flux (Viers et al., 2012; Rosenstock et al.,
2013). Predicted nitrate concentration followed a similar pattern as
high probability of anoxic conditions in the basin subregion, but in the
alluvial fan subregions, which have lowprobability of anoxic conditions,
was shapedbyother factors, such as unsaturated zonenitrogen leaching
flux, total landscape nitrogen inputs, and soil properties.

The results of our study highlight the usefulness of the hybrid
modeling approach and resulted in more accurate predictions of nitrate



Fig. 6.Oasis Montaj interpolated groundwater nitrate predictions for the Central Valley aquifer (view from southeast on top, view from southwest on bottom). Vertical scale is depth inm.
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Fig. 7. Relative prediction interval widths at medianmeasured depths of private and public supplywells (54.86 m and 121.92m, respectively). Interval widths are inmg/L nitrate, NO3-N.
Unmapped (white) area within the alluvial bed boundary was due to missing data for one or more predictors in the final BRT model.
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in groundwater in the Central Valley. This model could be updated in
the future and potentially improved with estimates of unsaturated
zone travel time and geostatistically interpolated estimates of ground-
water age from tritium/helium age tracers (Visser et al., 2016).

We anticipate that themodel can be used by local agencies develop-
ing groundwatermanagement plans in response to California's Sustain-
able Groundwater Management Act (SGMA, 2014), which stipulates
management and use of groundwater without significant degradation
of water quality. Reliable models can be used to extend monitoring re-
sults in space; to inform the design of cost effective monitoring pro-
grams by targeting sampling to the most vulnerable areas; and to
forecast future conditions where it is impractical to take decades'
worth of samples. In this way, predictions of nitrate concentration at
private and public supply well depths can help resource managers pro-
tect groundwater quality and support well owners who rely on ground-
water for their daily needs.
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