Appendix D

System Reoperation: Phase III

Ecosystem Evaluation

Analyses Conducted by the System Reoperation Ecosystem Evaluation Team (Mark Tompkins, Carolina Zuri, Craig Williams, Ted Frink, Karen Dove, and Shengjun Wu)

Draft Report Prepared By:

1624 Franklin Street, Suite 901 Oakland, CA 94612

Table of Contents

1.	Background and Purpose	1
2.	Introduction	1
3.	Ecological Metrics for the Central Valley	1
4.	Phase II Synopsis	6
5.	Phase III: Methods and Results	8
6.	Phase III Summary Results	9
7.	Phase III Salmonid Results	10
8.	Phase III Non-Salmonid Results	11
9.	Phase III Riparian Results	12
10.	Phase III Instream Results	12
11.	Conclusions and Recommended Future Analyses	13

1. Background and Purpose

Senate Bill (SB) X2 1 mandated and allocated resources for "planning and feasibility studies to identify potential options for the reoperation of the state's flood protection and water supply systems that will optimize the use of existing facilities and groundwater storage capacity." Specifically, SB X2 1 stipulated that the studies shall be designed to determine the potential to achieve integration of flood protection and water supply systems to increase water supply reliability and flood protection, improve water quality, and *provide for ecosystem protection and restoration*. For this evaluation, a suite of ecosystem evaluation metrics were developed to evaluate the effects of reoperation scenarios simulated in Phases II and III of the SRP.

2. Introduction

Phase II reoperation scenarios were used to develop and test the ecosystem evaluation framework, and to quantify the effects of reoperation at Shasta and Oroville paired with conjunctive use and spring pulse flows. The next step was studying the ecosystem effects of Forecast-Based-Operation (FBO) at Shasta and Oroville combined with conjunctive use and spring pulse flows. Finally, t additional scenarios were developed and evaluated to explore the sensitivity of ecosystem performance to FBO and the potential for reoperation to enhance major ongoing ecosystem restoration efforts in the system. The purpose of this report is to document and describe the methods and results from the ecosystem evaluation to date, and to outline additional steps that could optimize reoperation scenarios for ecosystem improvement.

3. Ecological Metrics for the Central Valley

The suite of ecosystem evaluation metrics used in Phase III of the SRP includes four "families" of metrics (salmonids, non-salmonids, instream, and riparian) that span the Sacramento River and Sacramento-San Joaquin Delta (Delta) from Keswick Dam in the north to Mallard Island in the Delta. Metrics were drawn from well-vetted efforts (CALFED Bay-Delta Program, 1999; The Nature Conservancy and American Rivers, 2013; Alexander et al., 2014), with the majority of the metrics drawn from The Nature Conservancy's Ecological Flows Tool (EFT) (Alexander et al., 2014). This suite of metrics was implemented in a web-based data exploration and decision support platform to facilitate analysis of multiple system operation scenarios across varying levels of detail, from simple summaries across all metrics to single metric evaluations of baseline and scenario flows. All metrics connect system operation flow regimes to multiple species' life history needs and include parameters for flow timing, duration, and frequency (or recurrence interval). The flow frequency criteria from EFT were established as Target Threshold Frequencies (TTFs) to measure the outcome of CALSIM model results for each scenario. Metrics included special status species in the system, as well as fundamental habitat forming or maintenance processes critical to the success of these species. Figure 1 and Table 1 summarize the locations, species, and sources of each of the metrics in the Ecosystem Evaluation suite. Tables 2 through 5 summarize the flow magnitude, timing, frequency, and duration criteria for the salmonid, non salmonid, riparian, and instream metric categories, respectively.

Figure 1: General location map of Ecosystem Evaluation metrics.

Category	Metric	Location	Species	Source
	Spawning WUA	Keswick	All Runs	TNC (EFT CS1)
	Rearing WUA	Keswick	All Runs	TNC (EFT CS2)
Salmonid	Redd Scour	Keswick	All Runs	TNC (EFT CS5)
Samonia	Yolo Growth	Yolo	All Runs	TNC (EFT CS7)
	Predation Risk	Hood	All Runs	TNC (EFT CS9)
	Temperature/Route	Hood	All Runs	TNC (EFT CS10)
	Spawning	Yolo	Splittail	TNC (EFT SS1)
	Spawning Success	Mallard Is.	Delta Smelt	TNC (EFT DS1)
Non-Salmonid	Habitat Suitability	X2	Delta Smelt	TNC (EFT DS2)
	Entrainment Risk	OMR	Delta Smelt	TNC (EFT DS4)
	OMR Entrainment	OMR	DS, LFS, SH	Herbold 2013
Instream	Geomorphic Flow	Red Bluff	N/A	DWR 2001
Riparian	Peak flow	Hamilton City	Bank Swallow	TNC (EFT BASW2)
	Initiation	Hamilton City	Cottonwood	TNC (EFT FC1)
	Scour	Hamilton City	Cottonwood	TNC (EFT FC2)

Table 1: Summary of suite of ecosystem evaluation metrics.

Table 2: Salmonid metric magnitude, timing, frequency, and duration parameters. [cite]

Name of Metric	Location	0	Ν	D	J	F	М	Α	м	J	J	Α	S	RECURRENCE
				SA	LMO	NIDS								
CS5: Chinook and Steelhead, Redd Scour	Sacramento Riv Above Clear Creek				< 15k cfs	< 30k cfs	< 25k cfs							2 out of 3 years (67%)
CS5: Chinook and Steelhead, Redd Scour — Fall	Sacramento Riv Above Clear Creek			< 15	ik cfs									2 out of 3 years (67%)
CS5: Chinook and Steelhead, Redd Scour — Late Fall	Sacramento Riv Above Clear Creek					< 30	k cfs							2 out of 3 years (67%)
CS5: Chinook and Steelhead, Redd Scour — Steelhead	Sacramento Riv Above Clear Creek						<	25k cfs	5					2 out of 3 years (67%)
CS1: Chinook and Steelhead — Spawning WUA	Sacramento Riv above Clear Creek		4k- 8k cfs		3.5k -8k cfs	3.5k -8k cfs	3.5k- 10k cfs		5k- 12k cfs	5k- 12k cfs			6k-10k cfs	2 out of 3 years (67%)
CS1: Chinook and Steelhead — Spawning WUA — Spring	Sacramento Riv above Clear Creek												6k-10k cfs	2 out of 3 years (67%)
CS1: Chinook and Steelhead — Spawning WUA — Fall	Sacramento Riv above Clear Creek		4k- 8k cfs											2 out of 3 years (67%)
CS1: Chinook and Steelhead — Spawning WUA — Late Fall	Sacramento Riv above Clear Creek				3.5k-	8k cfs								2 out of 3 years (67%)

CS1: Chinook and Steelhead — Spawning WUA — Winter	Sacramento Riv above Clear Creek								5k-1	2k cfs				2 out of 3 years (67%)
CS1: Chinook and Steelhead — Spawning WUA — Steelhead	Sacramento Riv above Clear Creek				3	.5k-10k (cfs							2 out of 3 years (67%)
CS2: Chinook and Steelhead, Rearing Habitat	Sacramento Riv Above Clear Creek				3,5K -6K cfs								3,5K- 8K cfs	2 out of 3 years (67%)
CS2: Chinook and Steelhead, Rearing Habitat — Spring	Sacramento Riv Above Clear Creek					3.5k-(5k cfs							2 out of 3 years (67%)
CS2: Chinook and Steelhead, Rearing Habitat — Late Fall	Sacramento Riv Above Clear Creek										3.5	k-9k	cfs	2 out of 3 years (67%)
CS2: Chinook and Steelhead, Rearing Habitat — Winter	Sacramento Riv Above Clear Creek	:	3.5k-8k (cfs								3.	5k-8k cfs	2 out of 3 years (67%)
CS2: Chinook and Steelhead, Rearing Habitat — Steelhead	Sacramento Riv Above Clear Creek	3.5	k-9.7k cfs								3.5k	-9.7	< cfs	2 out of 3 years (67%)
CS7: Chinook and Steelhead, Juvenile Rearing Habitat	Fremont Weir Spill to Yolo Bypass						>	> 5k cfs	-					2 out of 3 years (67%)
CS7: Chinook and Steelhead, Juvenile Rearing Habitat — Spring	Fremont Weir Spill to Yolo Bypass								> 51	< cfs				2 out of 3 years (67%)
CS7: Chinook and Steelhead, Juvenile Rearing Habitat — Fall	Fremont Weir Spill to Yolo Bypass							> 51	< cfs					2 out of 3 years (67%)
CS7: Chinook and Steelhead, Juvenile Rearing Habitat — Late Fall	Fremont Weir Spill to Yolo Bypass		> 5k cfs									2 out of 3 years (67%)		
CS7: Chinook and Steelhead, Juvenile Rearing Habitat — Winter	Fremont Weir Spill to Yolo Bypass					> 5k	: cfs							2 out of 3 years (67%)
CS7: Chinook and Steelhead, Juvenile Rearing Habitat — Steelhead	Fremont Weir Spill to Yolo Bypass							> 51	< cfs	.				2 out of 3 years (67%)
CS9: Chinook and Steelhead. Predation Risk	Sacramento Riv at Hood					> 17	K cfs							1 out of 3 years (33%)
CS9: Chinook and Steelhead, Predation Risk — Spring	Sacramento Riv at Hood								> 11	k cfs				1 out of 3 years (33%)
CS9: Chinook and Steelhead, Predation Risk — Fall	Sacramento Riv at Hood							> 17	k cfs					1 out of 3 years (33%)
CS9: Chinook and Steelhead, Predation Risk — Late Fall	Sacramento Riv at Hood				> 17	k cfs								1 out of 3 years (33%)
CS9: Chinook and Steelhead, Predation Risk — Winter	Sacramento Riv at Hood					> 17	k cfs							1 out of 3 years (33%)
CS9: Chinook and Steelhead, Predation Risk — Steelhead	Sacramento Riv at Hood							> 17	k cfs					1 out of 3 years (33%)
CS10: Chinook and Steelhead, Thermal Stress	Sacramento Riv at Hood						> 27k cfs	> 15 k cfs	>7k cfs					1 out of 3 years (33%)
CS10: Chinook and Steelhead, Thermal Stress — Spring	Sacramento Riv at Hood								> 7	< cfs				1 out of 3 years (33%)
CS10: Chinook and Steelhead, Thermal Stress — Fall	Sacramento Riv at Hood				> 15			> 15k cfs				1 out of 3 years (33%)		

CS10: Chinook and Steelhead, Thermal Stress — Late Fall	Sacramento Riv at Hood	> 27k cfs						1 out of 3 years (33%)	
CS10: Chinook and Steelhead, Thermal Stress — Winter	Sacramento Riv at Hood		> 15K cfs						1 out of 3 years (33%)
CS10: Chinook and Steelhead, Thermal Stress — Steelhead	Sacramento Riv at Hood			> 15		k cfs			1 out of 3 years (33%)

 Table 3: Non salmonid metric magnitude, timing, frequency, and duration parameters.

			NO	N SA	LMO	NIDS	5					
BDCP: Delta Entrainment Index — Delta Smelt Adults	Old and Middle River				> () cfs						Annually (100%)
BDCP: Delta Entrainment Index — Longfin Smelt Adults	Old and Middle River				> 0 cfs							Annually (100%)
BDCP: Delta Entrainment Index — Longfin Juvenile	Old and Middle River					> () cfs					Annually (100%)
BDCP: Delta Entrainment Index — SJ Steelhead Outmigrant	Old and Middle River						> 0 cfs					Annually (100%)
DS1: Delta Smelt — Spawn Success	Suisun Bay at Mallard Island						X2 ≤ 74	4 km				1 out of 2 years (50%)
DS2: Delta Smelt — Habitat Suitability	Fall X2	X2	<u>2</u> ≤ 74/81	. km								Annually (100%)
DS4: Delta Smelt — Entrainment Risk	Old and Middle River							a	l > 0/2K	cfs		Annually (100%)
SS1: Splittail, Spawning Habitat Extent	Fremont Weir Spill to Yolo Bypass					10	00 – 2K cf	s				4 out of 10 years (40%)

Table 4: Riparian metric magnitude, timing, frequency, and duration parameters.

	RIPARIAN											
BASW2: Bank Swallow, Peak Flow during nesting period	Hamilton City							≤ 50K cfs			1 out of 3 years (33%)	
FC1: Cottonwood Initiation	Hamilton City							> minQtarget			1 out of 8 years (13%)	

Table 5: Instream metric magnitude, timing, frequency, and duration parameters.

	INSTREAM										
								1 out of 3			
Geomorphic Flow	RedBluff			> 40K cfs				years			
								(33%)			

4. Phase II Synopsis

Phase II produced a total of 26 different operation scenarios that included different combinations of additional spring (March–May) releases and conjunctive management (Table 6).

Scenario	River System	Additional Annual Release Volume (TAF)	Release Period	Annual Conjunctive Management Volume (TAF)	Pumping Period
1	Sacramento	25	March-May	None	None
2	Sacramento	50	March-May	None	None
3	Sacramento	100	March-May	None	None
4	Sacramento	200	March-May	None	None
5	Sacramento	300	March-May	None	None
6	Sacramento	400	March-May	None	None
7	Sacramento	500	March-May	None	None
8	Feather	25	March-May	None	None
9	Feather	50	March-May	None	None
10	Feather	100	March-May	None	None
11	Feather	200	March-May	None	None
12	Feather	300	March-May	None	None
13	Feather	400	March-May	None	None
14	Feather	500	March-May	None	None
15	Sacramento	None	None	25	May–August
16	Sacramento	None	None	50	May–August
17	Sacramento	None	None	100	May–August
18	Feather	None	None	25	May–August
19	Feather	None	None	50	May–August
20	Feather	None	None	100	May–August
21	Sacramento	25	March-May	25	May–August
22	Sacramento	50	March-May	50	May–August
23	Sacramento	100	March-May	100	May–August
24	Feather	25	March-May	25	May–August
25	Feather	50	March-May	50	May–August
26	Feather	100	March-May	100	May–August

Table 6: Phase II Operations Simulation Parameters

Phase II yielded two important results for the ecosystem evaluation process. First, it provided system operation modeling output that could be used to develop and refine the suite of ecosystem metrics to be sensitive to the changes in system operation likely to occur with the strategies under consideration by the SRP. Next, it demonstrated that relatively limited "pulse" flows for ecosystem benefit released between March and May, even when combined with conjunctive use, generated very few measurable benefits, and had nearly as many negative impacts as positive benefits. Figure 2 illustrates how the 26 Phase II scenarios showed very few positive benefits, and how many benefits were offset by negative impacts. Drilling deeper into this rolled-up result using the ecosystem evaluation platform, it became apparent that many of the negative impacts from scenarios were associated with extra water being captured in reservoirs outside the March to May "pulse" flow period.

Figure 2: Roll-up summary of the number of months of improvements and negative impacts (relative to baseline conditions) for the 26 Phase II scenarios, evaluated using the suite of Ecosystem Evaluation metrics.

5. Phase III: Methods and Results

Phase III scenarios were similar to Phase II scenarios, with the addition of Forecast Based Operations (FBO) to the pulse flows and conjunctive use evaluated in Phase II. Table 7 summarizes the key components of the initial set of Phase III scenarios.

		Water	r Supply Re	liability	Flood Hazard Reduction	Ecosystem Protection and Restoration
Scenario	Reservoir	Sacramento CM (TAF)	Feather CM (TAF)	Forecast Base	ed Operations	Annual Pulse Release (TAF)
Baseline	None	None	None	0% Encroachment	None	None
0 (Baseline with FBO)	None	None	None		None	None
1	Shasta	50	0			50
2	Shasta	100	0			200
3	Oroville	0	50		Advance	50
4	Oroville	0	100	25%	roloacoc	200
5	Shasta & Oroville	50	50	Encroachment	ahead of a	50/50 (100 Total)
6	Shasta & Oroville	100	100		storm	150/150 (300 Total)
7 (FBO Sensitivity)	Oroville	None	None			None

Table 7: Summary of Phase III scenarios

A set of operation simulations were developed to evaluate the sensitivity of ecosystem performance to the level of reservoir operation rule encroachment (Table 8).

		Wate	r Supply Re	liability	Flood Hazard Reduction	Ecosystem Protection and Restoration	Notes
Scenario	Reservoir	Sacramento CM (TAF)	Feather CM (TAF)	Forecast Bas	ed Operations	Annual Pulse Release (TAF)	
8	None	None	None	15% Encroachment	None	None	
9	None	None	None	25% Encroachment	None	None	Modified from
10	None	None	None	25% Encroachment + 7%	None	None	FBO of Phase
11	None	None	None	35% Encroachment	None	None	
12	Shasta	100	0	35% Encroachment	Advance releases ahead of a damaging storm	200	Modified from Scenario 2 of Phase III

Table 8: Ecosystem evaluation system operation simulation model runs to test FBO sensitivity

Finally, in order to explore the effects of FBO on current ecosystem enhancement efforts in the Central Valley, a third set of scenarios were developed to attempt to optimize operations for red scour protection and thermal stress (note, this combination did not yield significant changes in operations from baseline conditions), and to evaluate flow into Yolo Bypass with a modified (notched) Fremont Weir. Table 9 summarizes these scenarios, and the modified Fremont Weir scenarios were designed to be consistent with

notch configuration being explored in the investigations around the Central Valley Project Operations Biological Opinion. The three sets of Phase III scenarios provided an array of outputs to evaluate based on a single spring pulse event between March and May.

The error in the hydrologic model was not compared against the ecosystem results, therefore, the absolute value of improvement is unknown relative to the error of the hydrologic model. However, trends in increases and decreases in ecosystem metric scores (percentages) are identified and may represent realized improvements or impacts of evaluated flow regimes.

Increases or decreases in ecosystem metrics are relative to the baseline flow conditions from the model, represented as "Base" in the results tables and text.

Table 9: Ecosystem evaluation system operation simulation model runs to test compatibility with ecosystem enhancement efforts.

Scenario	Forecast Based Operations	Conjunctive Management	Notes
13	None	None	Optimized for metrics Chinook and Steelhead Redd Scour (CS5), and Chinook and Steelhead Thermal Stress (CS10)
14	None	None	Optimized for metric Chinook and Steelhead Yolo Growth (CS7). Weir flow is increased to 6000 cfs when Qsac = 17,819 cfs*. 15 days of weir in April and 14 days in February are turned off to not create a big difference in the total April and February spill.
15	None	None	Optimized for metric Chinook and Steelhead Yolo Growth (CS7). Weir flow is increased to 7000 cfs when Qsac = 20,317 cfs*. 15 days of weir in April are turned off so that the weir modification won't cause a big difference in the total April weir spill.
16	None	None	Optimized for metric Chinook and Steelhead Yolo Growth (CS7). Weir flow is increased to 7000 cfs when Qsac = 20,317 cfs*. 15 days of weir in April and 14 days in February are turned off to not create a big difference in the total April and February spill.
17	25%	None	Optimized for metric Chinook and Steelhead Yolo Growth (CS7). Weir flow is increased to 7000 cfs when Qsac = 20,317 cfs*. 15 days of weir in April and 14 days in February are turned off to not create a big difference in the total April and February spill. A 25% encroachment is applied

6. Phase III Summary Results

Table 10 summarizes results for a selected set of the Phase III scenarios that include: FBO; Shasta reoperation with small and big ecosystem "pulse" flows; Oroville reoperation with small and big ecosystem "pulse" flows; Shasta and Oroville reoperation with small and big "pulse" flows; Shasta reoperation with a big "pulse" flow and sensitivity to FBO with increased encroachment; and Yolo Bypass ecosystem enhancement (Fremont Weir Notch) with and without FBO. This selected set of reoperation scenarios yields more improvements in more ecosystem evaluation metrics (10-23) than negative impacts (4-7) and instances of no change from baseline conditions (3-15). However, as the following sections detail, most improvements in ecosystem evaluation metrics are for very small (< 5%) increases in the frequency with which important ecological flow conditions are satisfied. In addition, ecosystem evaluation metrics show reductions in the frequency with which important ecological conditions are satisfied; this combination of very small improvements and impacts to ecosystem conditions is somewhat an artifact of the limited range of operations modeling conducted in this phase. For example, while we see small improvements in spring-run rearing Weighted Useable Area (WUA) for most scenarios, we see impacts to fall-run spawning WUA because the ecosystem flows in the operation modeling release additional water in the spring, but recapture that water in the following fall, thereby negatively impacting ecosystem conditions outside of the pulse-flow period. Additional refined operations modeling rules could be developed to accentuate the periods showing improvement and minimize the periods showing impacts.

Table 10: Summary of ecosystem evaluation results for selected Phase II Scenarios. Symbols indicate the following change from baseline condition (+ = improvement; 0 = no change; - = negative impact). Note: "Small" and "Big" refers to the 50 TAF and 200 TAF annual pulse release targets in Table 7.

		Scenario									
		0	1	2	3	4	5	6	12	16	17
							Shasta	Shasta	Shasta		Fremont
		FBO	Shasta	Shasta	Oroville	Oroville	+	+	Big	Fremont	Notch
		100	Small	Big	Small	Big	Oroville	Oroville	FBO	Notch	FBO
							Small	Blg	Sens		100
CS7	Yolo Growth: Spring Run	0	0	0	0	0	0	0	0	0	0
CS7	Yolo Growth: Fall Run	+	+	+	+	+	+	+	+	+	+
CS7	Yolo Growth: Steelhead	+	+	+	+	+	+	+	+	+	+
CS7	Yolo Growth: Late-Fall Run	+	+	0	+	+	+	+	0	+	+
CS7	Yolo Growth: Winter Run	+	+	+	+	+	+	+	+	+	+
CS1	Spawning Habitat (WUA)-Spring	-	-	-	0	+	0	-	-	0	-
CS1	Spawning Habitat (WUA)-Fall	-	-	-	-	-	-	-	-	0	-
CS1	Spawning Habitat (WUA)-Late Fall	+	+	+	+	+	+	+	+	+	+
CS1	Spawning Habitat (WUA)-Winter	-	-	-	-	-	-	-	-	0	-
CS1	Spawning Habitat (WUA)-Steelhead	+	+	+	+	+	+	+	+	+	+
CS2	Rearing WUA-Spring	+	+	-	+	+	+	+	-	+	+
CS2	Rearing WUA-Late-Fall	+	+	+	+	+	+	+	+	+	+
CS2	Rearing WUA-Winter	+	+	+	+	+	+	+	+	0	+
CS2	Rearing WUA-Steelhead		+	+	0	-	+	+	+	0	0
CS9	Predation Risk - Fall	+	+	+	+	+	+	+	+	-	-
CS9	Predation Risk - Steelhead	+	+	+	+	+	+	+	+	-	-
CS10	Thermal Stress - Late Fall	-	-	-	-	-	-	-	-	-	-
BDCP	Delta Salvage Analysis-Adult Delta Smelt	+	+	+	+	+	+	+	+	+	+
BDCP	Delta Salvage Analysis-Longfin Smelt Adult	+	+	+	+	+	+	+	+	+	+
BDCP	Delta Salvage Analysis-Longfin Juvenile	+	+	+	+	+	+	+	+	0	+
BDCP	Delta Salvage Analysis-SJ Steelhead Outmigrant	+	+	+	+	+	+	+	+	0	+
SS1	Splittail - Spawn	+	+	+	+	+	+	+	+	-	-
DS1	Delta Smelt - Index of Spawning Success	0	0	0	0	0	0	0	0	0	0
DS2	Delta Smelt - Index of Habitat Suitability	+	-	+	-	+	-	-	-	0	+
DS4	Delta Smelt Entrainment	0	0	0	0	0	0	0	0	0	0
GF	Geomorphic Flow - 1 day duration	+	+	+	+	+	+	+	+	0	+
GF	Geomorphic Flow - 3 days duration	+	+	+	+	+	+	+	+	-	+
GF	Geomorphic Flow - 7 day duration	+	+	+	+	+	+	+	+	0	+
GF	Geomorphic Flow - 14 days duration	+	+	+	+	+	+	+	+	0	+
FC1	Cottonwood initiation	+	+	+	+	+	+	+	+	0	+
	TOTAL NUMBER OF IMPROVEMENTS	22	22	21	21	23	22	22	20	10	19
	TOTAL NUMBER OF IMPACTS	4	5	5	4	4	4	5	6	5	7
	TOTAL NUMBER OF NO CHANGE	4	3	4	5	3	4	3	4	15	4

7. Phase III Salmonid Results

Table 11 summarizes the ecosystem performance of Phase III scenarios with respect to salmonid metrics. Except for Spring Run, Fall Run, and Winter Run spawning habitat and thermal stress, most of the Phase III scenarios result in small improvements or protection of existing conditions for salmonid ecosystem evaluation metrics. Spring-run rearing WUA showed improvement (2 percent max) for most scenarios; however, fall run spawning WUA showed a decreasing trend (up to 6 percent) relative to baseline because the ecosystem flows in the operation modeling release additional water in the spring but recapture that water in the following fall, thereby negatively impacting fall-run spawning.

Table 11: Summary	of Phase III sc	enario performano	e (relative to	baseline) fo	or the salmonid	ecosystem
evaluation metrics.						

ReO	p EcoEval	Roll Up Results - Salm	onids													
	Α	В	C		D	E	F	G	Н	1	J	K	L	R	V	W
2	Scena	ario Parameter	s:			Base	0	1	2	3	4	5	6	12	16	17
3			FBO %	•		n/a	25	25	25	25	25	25	25	35	0	25
4			Shast	а СМ (Т	AF)	n/a	0	50	100	0	0	50	100	100	0	0
5			Shast	a Eco (TAF)	n/a	0	50	200	0	0	50	100	200	0	0
6			Orovil			n/a	0	0	0	50	100	50	150	0	0	0
1			Orovii	Oroville Eco (TAF)		n/a	0	0	0	50	200	50	150	0	0	0
8			Fremo (Weir	Fremont Weir Mod (Weir Q @ Sac Q)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	7K @ 20K	7K @ 20K
10	Code	Name	Relev Monti per yea	vant 1s (# 82 T rs) F	Threshold Frequency	Base	FBO	Shasta Small	a Shasta Big	a Oroville Small	e Oroville Big	Shasta + Oroville Small	Shasta + Oroville Blg	Shasta Big FBO Sens	Fremont Notch	Fremont Notch FBO
11	CS7	Yolo Growth Spring Run	: 16	4	67%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%
12	CS7	Yolo Growth Fall Run and Steelhead	: 1 32	8	67%	11.0%	12.2%	11.9%	11.9%	12.2%	12.5%	11.9%	11.9%	12.2%	14.6%	14.0%
13	CS7	Yolo Growth Late-Fall Ru	: 49 n	2	67%	20.9%	21.3%	21.1%	20.9%	21.3%	21.7%	21.1%	21.1%	20.9%	25.6%	24.0%
14	CS7	Yolo Growth Winter Run	: 32	8	67%	17.9%	18.9%	18.7%	18.5%	18.9%	19.3%	18.7%	18.7%	18.5%	21.7%	20.7%
15																
CS	1 Ha	Spawning Ibitat (WUA)- Spring	82	6	7%	15.9%	14.6%	13.4%	13.4%	15.9%	19.5%	15.9%	13.4%	14.6%	15.9%	14.6%
CS	1 Ha	Spawning Ibitat (WUA)- Fall	82	6	7%	46.3%	42.7%	41.5%	40.2%	42.7%	43.9%	41.5%	40.2%	40.2%	46.3%	42.7%
CS	1 Ha	Spawning Ibitat (WUA)- Late Fall	164	6	7%	31.7%	33.5%	33.5%	32.9%	33.5%	33.5%	33.5%	33.5%	34.1%	32.3%	33.5%
CS	1 Ha	Spawning bitat (WUA)- Winter	164	6	7%	53.7%	50.0%	49.4%	51.2%	49.4%	49.4%	50.0%	49.4%	49.4%	53.7%	50.0%
CS	1 Ha	Spawning ibitat (WUA)- Steelhead	246	6	7%	37.4%	38.6%	42.7%	40.7%	38.6%	38.6%	42.7%	41.1%	39.8%	37.8%	38.6%
CS	2 ^{Re}	earing WUA- Spring	328	6	7%	31.7%	32.0%	34.5%	30.2%	32.3%	32.0%	34.5%	32.9%	28.7%	32.0%	32.0%
CS	2 ^{Re}	earing WUA- Late-Fall	328	6	7%	23.2%	24.1%	24.4%	25.6%	23.8%	24.1%	24.4%	25.0%	25.9%	23.5%	24.1%
CS	2 ^{Re}	earing WUA- Winter	410	6	7%	51.5%	52.9%	53.7%	53.9%	53.2%	52.0%	53.7%	53.4%	53.7%	51.5%	52.9%
CS	2 Re	earing WUA- Steelhead	492	6	7%	51.6%	51.6%	52.0%	51.8%	51.6%	51.0%	52.0%	52.0%	52.4%	51.6%	51.6%
CS	Pre Fa 9	dation Risk - all Run and Steelhead	328	3	3%	45.1%	46.3%	46.3%	48.5%	46.3%	47.0%	46.6%	48.2%	47.9%	43.3%	44.8%
CS	The	ermal Stress - Late Fall	492	3	3%	31.1%	30.5%	30.7%	30.5%	30.5%	30.7%	30.7%	30.9%	30.3%	30.1%	29.7%

8. Phase III Non-Salmonid Results

Table 12 summarizes ecosystem performance of Phase III scenarios with respect to non-salmonid metrics. Except for Delta Smelt habitat suitability, most of the Phase III scenarios result in small improvements or protection of existing conditions for non-salmonid ecosystem evaluation metrics.

Table 12: Summary of Phase III scenario performance (relative to baseline) for the non-salmonid ecosystem evaluation metrics.

ReO	eOp EccEval Roll Up Results - Non-Salmonids														
	Α	В	С	D	E	F	G	Н	- I	J	K	L	R	V	W
2	Scena	rio Parameters:			Base	0	1	2	3	4	5	6	12	16	17
3			FBO %	FBO %		25	25	25	25	25	25	25	35	0	25
4			Shasta CM	TAF)	n/a	0	50	100	0	0	50	100	100	0	0
5			Shasta Eco	(TAF)	n/a	0	50	200	0	0	50	100	200	0	0
6			Oroville CM	(TAF)	n/a	0	0	0	50	100	50	150	0	0	0
7			Oroville Eco	D (TAF)	n/a	0	0	0	50	200	50	150	0	0	0
8			Fremont Weir Mod (Weir Q @ Sac Q)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	7K @ 20K	7K @ 20K
9															
10	Code	Name	Relevant Months (# per 82 years)	Threshold Frequency	Base	FBO	Shasta Small	Shasta Big	Oroville Small	Oroville Big	Shasta + Oroville Small	Shasta + Oroville Blg	Shasta Big FBO Sens	Fremont Notch	Fremont Notch FBO
		Delta Salvage													
11	BDCP	Delta Smelt	328	N/A	N/A	5.8%	7.3%	6.1%	5.5%	4.9%	6.7%	6.1%	6.7%	0.9%	5.8%
12	BDCP	Delta Salvage Analysis-Longfin Smelt Adult	246	N/A	N/A	4.3%	5.8%	4.9%	4.0%	3.7%	5.2%	4.9%	5.5%	0.9%	4.3%
13	BDCP	Delta Salvage Analysis-Longfin Juvenile	164	N/A	N/A	1.5%	2.1%	1.2%	1.5%	1.2%	2.1%	1.5%	1.5%	0.0%	1.5%
14	BDCP	Delta Salvage Analysis-SJ Steelhead Outmigrant	246	N/A	N/A	1.8%	2.4%	1.5%	1.8%	1.5%	2.4%	1.5%	1.8%	0.0%	1.8%
15			I												

9. Phase III Riparian Results

Table 13 summarizes ecosystem performance of Phase III scenarios with respect to riparian metrics. All of the Phase III scenarios result in small improvements or protection of existing conditions for riparian ecosystem evaluation metrics. However, it is important to note that the cottonwood initiation metric is still substantially lower than the desired minimum frequency of occurrence.

 Table 13: Summary of Phase III scenario performance (relative to baseline) for the riparian ecosystem evaluation metrics.

ReO	keOp EcoEval Roll Up Results - Riparian														
	Α	В	С	D	E	F	G	Н	- I	J	K	L	R	V	W
2	Scenario	Parameters:			Base	0	1	2	3	4	5	6	12	16	17
3			FBO %		n/a	25	25	25	25	25	25	25	35	0	25
4			Shasta CM (TAF)	n/a	0	50	100	0	0	50	100	100	0	0
5			Shasta Eco	(TAF)	n/a	0	50	200	0	0	50	100	200	0	0
6			Oroville CM	(TAF)	n/a	0	0	0	50	100	50	150	0	0	0
7			Oroville Eco	(TAF)	n/a	0	0	0	50	200	50	150	0	0	0
8			Fremont Weir Mod (Weir Q @ Sac Q)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	7K @ 20K	7K @ 20K
0															
9															
10	Code	Name	Relevant Months (# per 82 years)	Threshold Frequency	Base	FBO	Shasta Small	Shasta Big	Oroville Small	Oroville Big	Shasta + Oroville Small	Shasta + Oroville Blg	Shasta Big FBO Sens	Fremont Notch	Fremont Notch FBO
10	Code	Name Swallow, Peak Flow during nesting	Relevant Months (# per 82 years)	Threshold Frequency	Base	FBO	Shasta Small	Shasta Big	Oroville Small	Oroville Big	Shasta + Oroville Small	Shasta + Oroville Blg	Shasta Big FBO Sens	Fremont Notch	Fremont Notch FBO
10	Code BASW2	Name Swallow, Peak Flow during nesting period	Relevant Months (# per 82 years) 328	Threshold Frequency 33%	Base	FBO 100.0%	Shasta Small 100.0%	Shasta Big	Oroville Small	Oroville Big	Shasta + Oroville Small 100.0%	Shasta + Oroville Blg 100.0%	Shasta Big FBO Sens 100.0%	Fremont Notch	Fremont Notch FBO

10. Phase III Instream Results

The Phase III scenarios have the most significant impact on the instream ecosystem evaluation metrics (results summarized in Table 12) that quantify the potential to achieve more frequent geomorphic flows that form and maintain habitat. Nearly all of the selected scenarios increase the frequency of one-to-three day

geomorphic flows of 50,000 cfs at Red Bluff from below the desired minimum threshold of once every three years under baseline conditions to above this threshold.

Reop	Adup Educival Roll up Results - Insueani														
	Α	В	С	D	E	F	G	H		J	K	L	R	V	W
2	Scenario	Parameters:	5:		Base	0	1	2	3	4	5	6	12	16	17
3			FBO %		n/a	25	25	25	25	25	25	25	35	0	25
4			Shasta C	M (TAF)	n/a	0	50	100	0	0	50	100	100	0	0
5			Shasta E	CO (TAF)	n/a	0	50	200	0	0	50	100	200	0	0
6			Oroville (CM (TAF)	n/a	0	0	0	50	100	50	150	0	0	0
7			Oroville E	Eco (TAF)	n/a	0	0	0	50	200	50	150	0	0	0
8			Fremont Weir Mod (Weir Q @ Sac Q)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	7K @ 20K	7K @ 20K
9															
10	Code	Name	Relevant Months (# per 82 years)	Threshold Frequency	Base	FBO	Shasta Small	Shasta Big	Oroville Small	Oroville Big	Shasta + Oroville Small	Shasta + Oroville Blg	Shasta Big FBO Sens	Fremont Notch	Fremont Notch FBO
11	GF	Geomorphic Flow - 1 day duration	82	33%	36.6%	42.7%	42.7%	53.7%	42.7%	42.7%	42.7%	51.2%	53.7%	36.6%	42.7%
12	GF	Geomorphic Flow - 3 days duration	82	33%	29.3%	32.9%	34.1%	40.2%	32.9%	32.9%	34.1%	36.6%	40.2%	28.0%	32.9%
13	GF	Geomorphic Flow - 7 day duration	82	33%	22.0%	26.8%	26.8%	26.8%	26.8%	26.8%	26.8%	26.8%	26.8%	22.0%	26.8%
14	GF	Geomorphic Flow - 14 days duration	82	33%	15.9%	18.3%	19.5%	19.5%	18.3%	18.3%	19.5%	19.5%	20.7%	15.9%	18.3%

 Table 14: Summary of Phase III scenario performance (relative to baseline) for the instream ecosystem

 evaluation metric for geomorphic flows ranging from one-to-fourteen days in duration.

11. Conclusions and Recommended Future Analyses

Future analyses would benefit from a limited number of additional ecosystem evaluation metrics to address the Feather River (it is clear that the current suite of metrics does not adequately capture the benefits of Oroville pulse flows) as well as floodplain rearing (to provide linkage to California Department of Water Resources' [DWR's] Conservation Strategy). In addition, this framework could be used to evaluate and refine a range of related potential system reoperation components, including Yolo bypass inflow scenarios¹, a wider timing window of ecosystem "pulse" flows, fish passage above major dams (by modifying carry-over storage requirements)², North of Delta Offstream Storage (NODOS), Delta conveyance, and climate change. While climate change effects typically overwhelm the operational scenarios considered in studies such as this (Alexander et al., 2014), alternative reoperation strategies can be evaluated to assess which is the most robust relative to a range of climate futures. Also, the approach used to quantify ecosystem performance could also be applied to more rigorously evaluate flood risk reduction performance.

¹ DWR's Yolo Bypass Habitat Restoration Program is working with federal agencies and other stakeholders on alterations to Fremont Weir to provide for more frequent inundation of the Yolo Bypass to benefit ecosystem function.

² DWR is identified in the biological opinion (OCAP 2009) as assisting the United States Bureau of Reclamation (Reclamation) with a Shasta Dam Fish Passage Evaluation. The National Marine Fisheries Service (NMFS) believes it is necessary for Reclamation, in cooperation with NMFS, other fisheries agencies, and DWR, to undertake a program to provide fish passage above currently impassable artificial barriers for Sacramento River winter-run, spring-run, and CV steelhead, and to reintroduce these fish to historical habitats above Shasta and Folsom dams.

Most importantly, in light of the numerous trade-offs between species and life stages that would occur under any reoperation strategy, we recommend a collaborative approach to ecosystem and water supply modeling; this approach would include iterative analyses to craft operating rules that address how frequently a species or ecosystem requires favorable conditions to support its sustainability. For example, Fremont cottonwood initiation need only occur approximately once every decade (see Table 4). Existing water-year type rules assume a one-size-fits-all approach to water releases instead of accounting for the recent natural history experienced by important species and ecosystems. Operating rules must integrate the time since a species or ecosystem has last experienced favorable conditions relative to the recurrence necessary to maintain a sustainable condition.

References

Alexander, C.A.D., D.C.E. Robinson, F. Poulsen. 2014. *Application of the Ecological Flows Tool to Complement Water Planning Efforts in the Delta & Sacramento River: Multi-Species effects analysis & Ecological Flow Criteria*. Final Report to The Nature Conservancy. Chico, California. 228 p + appendices.

CALFED Bay-Delta Program. 1999. *Flow regime requirements for habitat restoration along the Sacramento River between Colusa and Red Bluff.* Sacramento. 20 December.

The Nature Conservancy and American Rivers. 2013. *Panel Review of the Draft Bay Delta Conservation Plan*. Prepared by Saracino & Mount, LLC. August.