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Mission Statements 
The U.S. Department of the Interior protects America’s 
natural resources and heritage, honors our cultures and tribal 
communities, and supplies the energy to power our future. 

The mission of the Bureau of Reclamation is to manage, 
develop, and protect water and related resources in an 
environmentally and economically sound manner in the 
interest of the American public. 
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Executive Summary 

Executive Summary
For over a century, Reclamation’s mission has focused on managing water 
resources in the Western United States. Water resources, planning, and 
environmental studies carried out to support Reclamation’s mission have 
routinely considered hydrologic variability, including variability of water supplies 
and demands from season to season and year to year. Because weather and 
climate are two of the primary drivers of water supply and demand, Reclamation 
studies have also routinely considered weather and climate variability. The 
SECURE Water Act directs Reclamation to evaluate the risks and impacts of 
climate change in long-range planning and decision making (see Section 1.1. of 
the main report), including: 

•	 Water resources and environmental analyses
•	 Planning studies
•	 Design and analysis of current and proposed infrastructure and operating

plans

Considering climate change involves analyzing projected changes in weather and
 
climate conditions as well as the effects of these changes on water supplies,
 
demands, and management. 

This document provides an overview of the primary considerations relevant to 

selecting climate projection information for use in a given water resources,
 
planning, or environmental analysis. 


Audience 

For technical specialists involved in selecting and using climate projections for a 
given study—e.g., climatologist, hydrologists, and water resources engineers— 
this document provides a brief overview of the models and methods used to 
develop climate projections (Section 2.) and relevant considerations for selecting 
an appropriate climate projection dataset and set of climate projections to meet 
their specific study objectives (Section 3.). This document also provides a detailed 
summary of available climate projection datasets (Section 4.) and established 
methods for selecting climate projections for use in a detailed analysis (Section 5.). 

For other study team members involved in interpreting and documenting the use 
of climate change information in a given study—e.g., planners, environmental 
specialists, and resource managers—this document provides an overview of how 
climate projections are developed (Section 2.) and the choices and considerations 
involved in selecting climate projections for analysis in the study (Section 3.). 
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Selecting Climate Projection Information 

Understanding Climate Projections 

Section 2. of this document provides an overview of the models, methods, and 
assumptions used to develop climate change projections and to incorporate 
climate projections into subsequent analyses of future water supplies and demands 
and environmental conditions. Technical specialists involved in selecting and 
using climate projections need a firm understanding of how climate projections 
are developed by the scientific community in order to select, interpret, and apply 
climate projection information to support water resources, planning, and 
environmental analyses. In addition, other study team members should have a 
basic understanding of how climate projections are developed and used in order to 
accurately interpret and document climate change information used in a given 
study. Team leads and all team members also need to be able to effectively 
consider and communicate climate change results within the overall study and 
decision-making context. 

Selecting Climate Change Information 

Section 3. of this document summarizes key questions and considerations for 
study teams when selecting climate projection information for a given study. The 
scientific community has developed a vast amount of information regarding 
projected climate change, including several large datasets of climate projections 
based on different models, methods, and assumptions. In many cases, these 
datasets contain a large number—in some cases several hundred—of global or 
regional climate projections. To consider risks and impacts from climate change, 
study teams must choose an appropriate source of climate change projections for 
their study. This typically consists of two inter-related choices: 

1.	 Selecting an appropriate climate projection dataset (or datasets) to serve 
as the basis for considering climate change. 

2.	 Selecting a set of the climate projections from the chosen dataset for 
detailed analysis in support of the study objectives. 

Study teams must consider a number of factors when selecting a climate change 
projection dataset. Should we use projections from the CMIP3 Multi-Model 
Dataset, the CMIP5 Multi-Model Dataset, or a combination of both? Should we 
use GCM projections directly or should we use downscaled projections? How 
should we select an appropriate set of projections for detailed analysis? 

Section 3. of this document discusses key questions and considerations in 
selecting climate projection information. This section will help technical 
specialists to understand and consider these relevant factors in selecting climate 
projection information. In addition, this section will help general team members 
to understand these relevant factors in order to characterize and document the 
selection of climate projection information used in the study. 
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Executive Summary 

Climate Projection Datasets and Climate Projection Selection 
Methods 

Sections 4. and 5. of this document provide technical specialists—e.g., 
climatologists, hydrologists, and water resources engineers—with a concise 
summary of available climate projection datasets and established methods for 
selecting a set of climate projections from a given dataset for detailed analysis. 
Section 4. of this document briefly describes several existing global and 
regional climate projection datasets that study teams may choose as the basis 
for analyzing potential risks and impacts from climate change.  Section 5. then 
summarizes two broad classes of methods for selecting a set of climate 
projections from a given climate projection dataset for detailed analysis in 
support of a given study. These sections also provide references where 
technical specialists can go for more detailed information. In addition, these 
sections also provide general team members with an overview of key 
information regarding available climate projection information resources. 
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Introduction 

1. Introduction
For over a century, the Bureau of Reclamation’s (Reclamation) mission has 
focused on managing water resources in the Western United States. Water 
resources, planning, and environmental studies carried out to support 
Reclamation’s mission have routinely considered hydrologic variability, including 
variability of water supplies and demands from season to season and year to year. 
Because weather and climate are two of the primary drivers of water supply and 
demand, Reclamation studies have also routinely considered weather and climate 
variability. Since 2009, Reclamation is now required to consider and analyze risks 
and impacts from climate change in long-range planning and decision making 
(see Section 1.1). Considering climate change involves analyzing projected 
changes in weather and climate conditions as well as the effects of these changes 
on water supplies, demands, and management. 

The scientific community has developed a vast amount of information resources 
regarding projected climate change, including several large datasets of climate 
projections based on different models, methods, and assumptions. In many cases, 
these datasets contain a large number—in some cases several hundred—of global 
or regional climate projections. 

When conducting a quantitative analysis of the potential impacts of climate 
change, study teams must choose an appropriate source of climate change 
information to support their specific study objectives. This typically consists of 
two inter-related choices: 

1.	 Selecting an appropriate climate projection information resource
(i.e., dataset or datasets) to serve as the basis for considering climate
change

2.	 Selecting a set of the climate projections from the chosen dataset for
detailed analysis in support of the study objectives.

Selection of an appropriate climate projection dataset and selection of a set of 
climate projections for detailed analysis are commonly carried out by the 
technical specialists on a given study team. Technical specialists involved in 
selecting and using climate projections—e.g., climatologist, hydrologists, and 
water resources engineers—should have a detailed understanding of available 
climate projection datasets, the models and methods used to develop these 
datasets, and relevant considerations for selecting an appropriate climate 
projection dataset and set of climate projections to meet their specific study 
objectives. 

In addition to these technical specialists, other study team members who are not 
directly involved in selecting and using climate projections—e.g., planners, 
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Selecting Climate Projection Information 

environmental specialists, and resource managers—should have a general 
understanding of how climate projections are developed and the choices and 
considerations involved in selecting climate projections in order to accurately 
interpret and document the information and methods used in the study. 

This document provides an overview of the primary considerations relevant to 
selecting climate projection information for use in a given water resources, 
planning, or environmental analysis. The information in this document is intended 
to help study teams make well-informed decisions regarding selection of climate 
projection information to inform water resources and environmental planning. 
The purpose of this document is not to provide guidance regarding selection of 
climate projections for a given study, but instead to provide an overview of 
relevant considerations and a concise summary of available climate projection 
datasets and established methods for selecting a set of climate projections for use 
in a given study. 

1.1. Requirements for Analyzing Climate Change 

The Omnibus Public Land Management Act of 2009 (Public Law 111-11) 
Subtitle F, referred to as the SECURE Water Act, directs Reclamation to evaluate 
the risks and impacts of climate change in each of eight major Reclamation river 
basins identified in the Act. The act also authorizes Reclamation to work with 
non-Federal partners to develop and evaluate adaptation and mitigation strategies 
to address potential water shortages, conflicts, and other impacts from climate 
change. 

As stated above, in addition to the SECURE Water Act, The Department of the 
Interior’s (Department) Secretarial Order 3289 requires that “each bureau and 
office of the Department must consider and analyze potential climate change 
impacts when undertaking long-range planning exercises, setting priorities for 
scientific research and investigations, developing multi-year management plans, 
and making major decisions regarding the potential use of resources under the 
Department’s purview.” Building on this order, Departmental Manual 523 DM 1 
states that: 

“The Department will use the best available science to increase 
understanding of climate change impacts, inform decision making, and 
coordinate an appropriate response to impacts on land, water, wildlife, 
cultural and tribal resources, and other assets. The Department will 
integrate climate change adaptation strategies into its policies, planning, 
programs, and operations, including, but not limited to, park, refuge, and 
public land management; habitat restoration; conservation of species and 
ecosystems; services and support for tribes and Alaska Natives; protection 
and restoration of cultural, archeological and tribal resources; water 
management; scientific research and data collection; land acquisition; 

2 



  
 

 

 

  
   

  
 

 
 

 

  
 

 
  

      
 

 

  
 

   
     

  

    
  

   
   

  

  
 
 

  
 

 
  

 
    
   

 
  

 
 

 
  

    
                                                 

  
 

  
  

Introduction 

management of employees and volunteers; visitor services; construction; 
use authorizations; and facilities maintenance.” 

Further direction for a climate change adaptation program comes from Executive 
Order 13653 (November 1, 2013), which lays out new policy directives for 
Federal agencies to, “…prepare the Nation for the impacts of climate change by 
undertaking actions to enhance climate preparedness and resilience…” The 
Executive Order includes direction for agencies to modernize Federal programs to 
support climate resilient investments and manage land and water resources for 
climate preparedness and resilience. 

To implement Department Policy 523 DM 1, Reclamation updated its 
Reclamation Manual with a new Directive and Standard (D&S) for Water and 
Related Resources Feasibility Studies (CMP 09-02)1 on July 1, 2015. This D&S 
outlines the process by which Reclamation conducts feasibility studies. 
Specifically, the D&S states that “potential impacts of climate change will be 
considered when developing projections of environmental conditions, water 
supply and demand, and operational conditions at existing facilities as part of the 
without-plan future condition”2 (CMP 09-02 section 7.H.2.f). The D&S also 
directs climate change impacts to be further analyzed if “there is a reasonable 
likelihood of significant variation in hydro-climatic conditions over the planning 
horizon, between alternatives, or both; and regional models have been down­
scaled to a resolution adequate for the study area, or can be produced within a 
reasonable time and cost constraints” (CMP 09-02 section 7.H.2.f (i) and (ii)). 

1.2. Reclamation Activities to Address the Effects of 
Climate Change 

Meeting Reclamation’s mission in the face of 
changing climate conditions will require 
continued emphasis on successful, ongoing 
efforts, as well as consideration of climate 
change in areas where it has not been fully 
considered in the past, such as in decisions 
regarding ecosystem restoration, reservoir 
operations, and infrastructure investments. 

Reclamation is taking actions to address the 
impacts of climate change by working with our 
partners in river basins across the West to incorporate climate change projections 

1 http://www.usbr.gov/recman/cmp/cmp09-02.pdf 
2 The without-plan future condition is also termed the “Forecast Future Condition” and is defined in CMP 09­
02 as, “Characterizing future conditions without the proposed Reclamation action, including actions that may 
be expected or anticipated by others.” 

To meet the needs for affordable 
water and power in the West,
protect the water-related 
environment, and meet trust 
obligations to tribes, Reclamation 
must become more resilient to the 
impacts of climate change and 
variability, including severe floods 
and droughts. 

3 

http://www.usbr.gov/recman/cmp/cmp09-02.pdf
http://www.usbr.gov/recman/cmp/cmp09-02.pdf


 
 
 

 
 

 
    

 
  

 
   

    
 

    
   

 
    

   
 

 
      

 
 

   
  

 
  

 
   

  
 

  
   

 
 

   

 
   

    
  

 
 

  
   

   
 

 
  

 

Selecting Climate Projection Information 

into relevant aspects of Reclamation’s mission. General information on 
Reclamation’s climate change programs is available at http://www.usbr.gov/ 
climate. Reclamation activities to address climate change are being implemented 
through a combination of three primary approaches: 

•	 Collaborative Climate Change Impact and Adaptation Studies. See
the WaterSMART Programs at http://www.usbr.gov/watersmart.

•	 Planning and Related Environmental Compliance. See Reclamation’s
technical guidance at http://www.usbr.gov/watersmart/wcra.

•	 Research and Development Activities. See the Research and 

Development Office’s climate website at
 
http://www.usbr.gov/research/climate.
 

1.2.1. Collaborative Climate Change Impact and Adaptation
Studies 

The Department of the Interior’s WaterSMART (Sustain and Manage America’s 
Resources for Tomorrow) Program, is a key component of Reclamation’s 
implementation of a climate change adaptation program. The WaterSMART 
Program follows a tiered approach that includes: 

•	 West-Wide Climate Risk Assessments (WWCRA). These assessments
encompass a variety of activities aimed at developing baseline information
regarding the risks and impacts of climate change to water supplies and
demands in Reclamation’s river basins, including conducting impact
assessments to evaluate climate change impacts to Reclamation’s mission.
See http://www.usbr.gov/watersmart/wcra/index.html.

•	 Basin Studies. These in-depth water supply and demand analyses are
selected through a competitive proposal process and are cost shared
between Reclamation and local stakeholders. Through the Basin Studies,
Reclamation works collaboratively with stakeholders to evaluate current
and future water supplies and demands, system reliability, and adaptation
and mitigation strategies to address current and projected imbalances
between water supply and demand. See http://www.usbr.gov/watersmart/
bsp/index.html.

•	 Landscape Conservation Cooperatives (LCC). LCCs are partnerships of
governmental (Federal, State, tribal, and local) and non-governmental
entities and are an important part of the Departments efforts to coordinate
climate change science efforts and resource management strategies. See
http://www.usbr.gov/watersmart/lcc/ for more information on
Reclamation’s participation in LCCs.

4 

http://www.usbr.gov/climate
http://www.usbr.gov/climate
http://www.usbr.gov/watersmart.
http://www.usbr.gov/watersmart/wcra/
http://www.usbr.gov/research/climate/
http://www.usbr.gov/watersmart/wcra/index.html
http://www.usbr.gov/watersmart/bsp/index.html
http://www.usbr.gov/watersmart/bsp/index.html
http://www.usbr.gov/watersmart/lcc/


  
 

 

 

   
 

  
  

 
  

 
    

    
 

  
  

 
    

  
  

 
 

   
 

 
   

 
 

  
  

   
 

    
 

  
  

  
  

 
  

 
  

  
 

   

                                                 
   

Introduction 

These activities are complementary and represent a multi-faceted approach to 
assess climate change risks to water supplies and impacts to activities in 
Reclamation’s mission, as well as the development of adaptation strategies to 
meet future water demands. 

1.2.2. Planning and Related Environmental Compliance. 

A variety of planning efforts and related environmental compliance are 
incorporating climate change considerations. Reclamation has issued guidelines 
for incorporating climate change information into water resources planning 
studies and environmental compliance studies conducted under the National 
Environmental Policy Act (NEPA): 

•	 Reclamation 2014 (Technical Guidance).3 Technical Guidance for
Incorporating Climate Change Information into Water Resources Planning
Studies and plans to continue issuing guidance
http://www.usbr.gov/watersmart/wcra/docs/WWCRATechnicalGuidance.
pdf

•	 Reclamation 2014 (Adaptation). Climate Change Adaptation Strategy
http://www.usbr.gov/climate/docs/ClimateChangeAdaptationStrategy.pdf.

•	 Reclamation 2012. Reclamation’s NEPA Handbook, Section 11.7 Climate
Change. http://www.usbr.gov/nepa/docs/NEPA_Handbook2012.pdf

Reclamation continues to develop strategies and guidance to support 
consideration of climate change throughout its mission. Information on guidance 
and updates is available at http://www.usbr.gov/watersmart/wcra/. 

1.2.3. Research and Development Activities 

Reclamation’s Science and Technology (S&T) Program is leading development 
of the data and tools necessary to support climate change adaptation by 
Reclamation, and its customers and stakeholders. The S&T Program is a 
Reclamation-wide competitive, merit-based applied research and development 
program that focuses on developing innovative solutions to water and power 
challenges in the Western United States. Climate change and variability is an 
S&T Program priority area, and S&T projects have developed improved methods 
to develop and use climate change and variability information for a variety of 
water resources planning and applications. For a list of research projects, go to the 
S&T Program project website (http://www.usbr.gov/research/projects/search.cfm) 
and search for the keyword “climate.” 

3 Parentheses after a citation differentiate references from the same entity in the same year. 

5 

http://www.usbr.gov/watersmart/wcra/docs/WWCRATechnicalGuidance.pdf
http://www.usbr.gov/watersmart/wcra/docs/WWCRATechnicalGuidance.pdf
http://www.usbr.gov/climate/docs/ClimateChangeAdaptationStrategy.pdf
http://www.usbr.gov/nepa/docs/NEPA_Handbook2012.pdf
http://www.usbr.gov/watersmart/wcra/
http://www.usbr.gov/research/projects/search.cfm


 
 
 

 
 

 
 

 
 

 
 

 
  

 
 

  
  

 
    

  
   

   
  

  
 
 

  
 

  
    

 
  

  
 

 
   

   
 

 
 

 
  

 
    

 

  
 

  
  

 
   

  
 

 
 
  

Selecting Climate Projection Information 

This document provides 
Reclamation study
teams with a concise 
summary of available 
climate projection
information resources, 
as well as established 
methods to select a 
subset of climate 
projections for detailed
analysis to support a 
specific study. 

In addition, through the S&T Program, Reclamation has led a partnership of eight 
Federal, academic, and non-governmental organizations to provide future 
projections of temperature, precipitation, and streamflow throughout the 
contiguous United States (CONUS) to support locally relevant decision making 
(see http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/). Reclamation’s 
Research Office also supports a variety of cooperative agreements and 
collaborative research efforts with universities, research centers, and other Federal 
agencies focused on developing and applying climate projection information for 
water resources planning and management. 

1.3. Purpose of This Document 

The purpose of this document is to provide study teams 
with an overview of the primary considerations 
relevant to selecting appropriate climate change 
information for use in a given water resources, 
planning, or environmental analysis. This document 
also provides a concise summary of existing climate 
projection datasets and established methods for 
selecting a set of climate projections from a given 
dataset for detailed analysis. 

As part of WWCRA, Reclamation recently developed 
technical guidance for incorporating climate change 
information into water resources planning studies 
(Reclamation 2014 [Technical Guidance]). This 
technical guidance was developed to assist study teams in determining an 
appropriate level of climate change analysis and identifying a specific method for 
incorporating climate projections into a given study. However, the guidance does 
not address how to select a climate projection dataset to serve as the basis for 
considering climate change and how to select a set of climate projections from the 
chosen dataset for detailed analysis. This document is intended to provide study 
teams with the information needed to make informed decisions regarding 
selection of climate projection information to support water resources, planning, 
and environmental analyses. However, this document does not provide direct 
guidance regarding selection of climate projections for any given study. 

This document is intended for Reclamation study teams, including technical 
specialists involved in selecting and using climate projections—e.g., 
climatologist, hydrologists, and water resources engineers—as well as other study 
team members involved in interpreting and documenting study data, methods, and 
results—e.g., planners, environmental specialists, and resource managers. 
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Introduction 

This document is organized into five sections: 

•	 Section 1 (this section) provides an introduction to this document, 
including an overview of orders, directives, and legislation detailing 
Reclamation’s requirements and responsibilities with respect to 
considering and analyzing climate change impacts; a summary of 
Reclamation activities to address the effects of climate change; and a 
summary of the purpose and organization of this document. 

•	 Section 2 provides a brief introduction to the models and methods used to 
develop climate projection information, including an overview of global 
climate models (GCM), emissions scenarios and representative 
concentration pathways (RCP), and downscaling methods. 

•	 Section 3 provides discussion of key questions and issues related to 
selecting an appropriate climate projection dataset and selecting a subset 
of projections to be incorporated into detailed analysis in support of a 
specific study. 

•	 Section 4 describes several widely used climate projection datasets, 
including multi-model datasets of climate projections derived from global4 

and downscaled GCM simulations. 

•	 Section 5 summarizes commonly used methods for selecting subsets of 
climate projections for use in a detailed analysis in a given study along 
with their potential strengths and weaknesses in the context of water 
resources and environmental planning. 

Sections 2 and 3 of this document provide all study team members an overview of 
how climate projections are developed and the choices and considerations 
involved in selecting climate projections for a given study. These sections are 
intended primarily to help planners, environmental specialists, resource managers, 
and other study team members with a general understanding of climate 
projections in order to facilitate interpreting and documenting study data, 
methods, and results. Sections 4 and 5 provide technical specialists with a concise 
summary of existing climate projection datasets and an overview of established 
methods for selecting climate projection information for use in a given study. 

4 Throughout this document, the terms global GCM simulation and global projection refer to GCM outputs at 
the original GCM spatial resolution, without any downscaling or bias correction applied. 
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Overview 

2. Overview of Models and Methods Used 
to Develop Climate Projections 

This section provides a general overview of how climate projections are 
developed, along with a brief summary of how climate projections are 
incorporated into hydrology and resource models to evaluate impacts of projected 
climate change on water and environmental resources. This section also defines 
key terms and concepts related to climate, climate change, and climate 
projections. 

The purpose of this section is to provide planners, environmental specialists, 
resource managers, and other study team members with a general understanding 
of how climate projections are developed in order to facilitate interpreting and 
documenting study data, methods, and results. This section does not provide a 
detailed or comprehensive technical discussion of the data, models, and methods 
used to develop and apply climate projections to support water resources, 
planning, and environmental analyses. 

The process of developing and applying climate projection information is 
illustrated schematically in Figure 1. In the context of water resources and 
environmental management, planners, resource managers, and decision makers 
identify the decisions to be made and the information required to support those 
decisions. Study teams, including technical specialists, develop the data, models, 
and decision support tools to evaluate relevant conditions and alternatives. Where 
decisions require information on future climate, hydrologic, and environmental 
conditions—e.g., future water supplies and demands, habitat conditions, and 
relevant factors—study teams must also select relevant climate projections and 
incorporate climate projections into relevant data, models, and decision support 
tools. 

Climate projections typically are not developed as part of an individual water 
resources, planning, or environmental analysis. Rather, the scientific community 
has developed a vast amount of information regarding projected climate 
conditions, including multiple datasets of global and regional climate projections 
(see Section 4). These datasets constitute the climate projection information 
available to Reclamation study teams. While climate projections are not 
developed to meet the specific needs of a given study, the scientific community 
has developed climate projections in part to meet the general decision needs of 
decision makers, including water and environmental resource managers. The 
technical specialists on a given study team must select an appropriate set of 
climate projections to support their study needs and incorporate those projections 
into relevant data, models, and decision support tools. 
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Selecting Climate Projection Information 

Figure 1: Schematic overview of steps required to develop projections of future 
climate and to incorporate climate projection information into modeling and 

analysis to support water resources and environmental planning, management, 
and decision making. 

•	 Section 2.1 provides an overview of the steps required to develop 

projections of future climate and to incorporate climate projection
 
information into subsequent modeling and analysis of water and 

environmental resources.
 

•	 Section 2.2 introduces and defines key concepts related to climate, climate 
change, and climate projections. 

•	 Section 2.3 discusses how climate projection information is incorporated 
into subsequent modeling and analysis of water and environmental 
resources. 
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Overview 

2.1. Key Terms and Concepts 

Understanding, interpreting, and documenting climate projections and their use in 
water resources, planning, and environmental analyses requires study teams to 
clearly understand key terms and concepts related to climate. In particular, study 
teams should understand the distinctions between weather and climate, as well as 
between climate variability and climate change. Study teams should also 
understand the concepts of stationarity and non-stationarity as they relate to 
climate variability and climate change, and to study assumptions regarding future 
climate conditions. 

The term weather is generally used to describe the state of the atmosphere at a 
specific place and time, including characteristics such as temperature, 
precipitation, wind speed, and humidity. Weather typically refers to the day-to­
day conditions directly experienced by humans and the environment, including 
rain storms and heat waves. The term climate, on the other hand, is generally used 
to describe the long-term average weather conditions over a given region. In 
general, climate describes “normal” conditions for a given place at a given time of 
year, while weather describes “actual” conditions for that place at a specific date 
and time. In other words, “Climate is what we expect; weather is what we get” 
(Heinlein 1973). 

The World Meteorological Organization (WMO) defines the term climate 
variability as “variations in the mean state and other statistics of the climate [such 
as standard deviations, the occurrence of extremes, etc.] on all temporal and 
spatial scales, beyond individual weather events” (WMO 2015). By contrast, 
WMO defines climate change is defined as “a statistically significant variation in 
either the mean state of the climate or in its variability, persisting for an extended 
period (typically decades or longer)” (WMO 2015; emphasis added). In other 
words, climate variability refers to year-to-year changes in climate conditions, 
whereas climate change refers to long-term trends in climate that persist for 
multiple decades or longer. For example, year-to-year variations in annual rainfall 
over a given region represent climate variability, whereas a significant trend in 
annual rainfall over a fifty-year period represents climate change. Climate change 
is thus typically distinguished from climate variability by the timescale being 
considered. 

Both climate variability and climate change may occur due to natural processes or 
due to anthropogenic (human-caused) activities (WMO 2015). Climate variability 
on timescales from years to a few decades, however, is driven overwhelmingly by 
natural processes. Natural processes that contribute to climate variability include 
internal atmospheric dynamics, as well as coupled interactions between quickly-
varying atmospheric dynamics and slowly-varying components of the earth 
system such as ocean circulation and temperature patters (Intergovernmental 
Panel on Climate Change [IPCC] 2007 [Physical Science]). 
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Selecting Climate Projection Information 

Climate change on timescales of a few decades and longer is more strongly 
influenced by anthropogenic activities (IPCC 2013). Anthropogenic activities that 
contribute to climate change include changes in atmospheric composition due to 
anthropogenic emissions of carbon-containing greenhouse gases, aerosols, and 
ozone, as well as widespread changes in land cover associated with agriculture, 
deforestation, and urbanization. Due to the strong influence of anthropogenic 
activities on climate change, the United Nations Framework Convention on 
Climate Change (UNFCCC) and other organizations define the term climate 
change as solely related to human activity: “a change of climate which is 
attributed directly or indirectly to human activity that alters the composition of 
the global atmosphere and which is in addition to natural climate variability 
observed over comparable time periods” (United Nations 1992). Throughout this 
document, unless otherwise noted, the term climate change refers to changes in 
climate conditions on timescales of a few decades to a century resulting from 
anthropogenic activities. 

It should be noted that in addition to anthropogenic activities, naturally occurring 
processes are also known to contribute to climate change. Volcanic eruptions, for 
example, spew dust and gases into the atmosphere that can affect global climate 
conditions. Dust from volcanic eruptions can have a large-scale cooling effect on 
the atmosphere by shading incoming solar radiation. This effect may be 
significant and can last from months to years, but does not contribute significantly 
to climate change on timescales of a few decades and longer (UCAR 2016). 
Changes in solar intensity and in earth’s orbit around the sun also have the 
potential to affect climate conditions. However, changes in solar intensity have 
not significantly contributed to climate change over the past several decades 
(IPCC 2013), whereas changes in earth’s orbit occurs on timescales of tens to 
hundreds of thousands of years and have negligible impact on timescales of a few 
decades to a century (IPCC 2013). Lastly, coupled interactions between slowly 
varying components of the earth system result in multi-decadal fluctuations in 
climate conditions. These naturally-occurring multi-decadal fluctuations are often 
considered to be low-frequency climate variability rather than climate change. 

The concepts of stationarity and non-stationarity are closely related to the 
concepts of climate variability and climate change, respectively. With respect to 
climate, stationarity refers to a situation where weather and climate conditions 
vary over time, but the statistical characteristics of weather and climate—i.e., the 
average climate condition over time and the magnitude of climate variability— 
remain the same. By contrast, non-stationarity refers to a situation where weather 
and climate conditions vary over time, but the statistical characteristics do not 
remain the same. Non-stationarity occurs when there is a change in long-term 
average climate or in the range or character of climate variability, as occurs under 
climate change. 
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Overview 

The concepts of stationarity and non-stationarity are directly related to the 
technical approach used in water resources, planning, and environmental analyses. 
For any given study, the study team must make assumptions regarding future 
weather and climate conditions. These assumptions directly affect subsequent 
analysis of future hydrology and environmental conditions, including water 
supplies, demands, and operations. 

Weather conditions at any given place and time cannot be accurately predicted in 
more than a seven to ten days in advance (for example, see Epstein 1988 and 
Palmer 2000 for discussion of the fundamental limits of predictability in weather 
and climate). Over most of human history, however, the complex processes that 
govern weather systems have tended to average out with some consistency over a 
period of a few decades. Analysis of historical weather and climate conditions 
over long periods thus provided a reasonable estimate of future conditions, 
including long-term averages as well as the likely range of variability and 
extremes. Based on this multi-decadal stability, water resources, planning, and 
environmental analyses commonly characterized future climate conditions using 
the paradigm of stationarity, or the assumption that past climate conditions can be 
used to characterize expected future climate conditions (NOAA 2015). As a 
result, historical climate conditions were used as the basis for water resources and 
environmental planning, design, and management (McMahon 1993, Milly et al. 
2008). 

Climate change, however, has altered and will 
continue to alter weather and climate conditions 
on global, regional, and local scales. These 
changes affect the basic assumptions underlying 
water resources and environmental planning and 
decision making (IPCC 2014 [AR5 Impacts]). 
Most notably, the assumption of climate 
stationarity is no longer valid (for example, see 
Milly et al. 2008). 

“For the longest period when 
calculation of regional trends 
is sufficiently complete (1901 
to 2012), almost the entire 
globe has experienced surface 
warming.” 

IPCC 2013 
(Physical Science Summary) 

Under the paradigm of stationarity, using one historically observed climate 
scenario as the basis for characterizing future conditions is an accepted practice. 
By contrast, under the paradigm of non-stationarity—i.e., climate change—study 
teams must develop assumptions regarding future conditions that appropriately 
characterize projected climate conditions and that are relevant to the decisions 
that must be made in the study. In addition to understanding the physical, 
institutional, and regulatory factors that affect water resources management, 
effective planning ultimately depends on a firm understanding of climate change 
impacts on water supply, demand, and criteria that govern or guide water 
management. Planners, managers, and decision makers thus need reliable and 
relevant projections of future climate conditions to inform resource management 
decisions. 
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Selecting Climate Projection Information 

Throughout this document, the term climate projection refers to a simulation of 
future climate conditions under a given emissions scenario and corresponding 
concentrations of greenhouse gases and aerosols. As summarized in Section 2.2, 
global climate projections are generally developed using GCMs and regional 
climate projections are developed by downscaling GCM-based global projections 
over a region of interest. By contrast, the term climate scenarios refer to plausible 
and often simplified representations of future climate, based on an internally 
consistent set of climatological relationships that have been explicitly constructed 
for use in investigating the potential consequences of climate change. Climate 
projections often serve as the raw material for constructing climate scenarios; 
however, climate scenarios usually incorporate additional information, such as 
information from historical observations of weather and climate. Climate 
scenarios often serve as inputs to resource models, including hydrologic models 
and water resources operations models, for analysis of climate change risks and 
impacts and evaluation of climate change adaptation strategies. Methods for 
developing climate scenarios from climate projections are outlined in Section 5.2 
of Reclamation 2014 (Technical Guidance), which provides guidance for 
incorporating climate change information into water resources planning studies. 

2.2. Developing Future Climate Projections 

Climate change is a direct result of changes in the earth’s energy balance—e.g., 
the reflection or absorption of energy from the sun, re-radiation of energy from 
the earth surface to the atmosphere, and movement of energy within the earth 
system (Lindsey 2009). Large-scale atmospheric circulation and local winds, for 
example, are both driven largely by spatial differences in the absorption of energy 
by the atmosphere (Wallace and Hobbs 2006). As air in the atmosphere absorbs 
energy, it becomes warmer and begins to expand. As the air expands, its density 
decreases and it begins to rise. Differences in energy absorption and heating 
within the atmosphere result in density and pressure gradients that ultimately 
drive atmospheric circulation. Latent heating via evaporation from land and ocean 
surfaces and transpiration from plants, and the subsequent movement and 
precipitation of water vapor in the atmosphere, also play an important role in the 
earth’s energy balance, as well as weather and climate conditions. 

The amount of energy that is absorbed by the atmosphere depends on chemical 
composition of the atmosphere, in particular the concentrations of greenhouse 
gases and aerosols. 

•	 Greenhouse gases absorb longwave radiation emitted by the earth, 
resulting in increased warming of the atmosphere. Major greenhouse gases 
including carbon dioxide (CO2), methane (CH4), ozone (O3), nitrous oxide 
(N2O), and water vapor (H2O). 

14 



  
  

 

 

   
 

  

 
  

 
 

 
 

 
  

 

   
 

 
  

 
 

 
 

 
    

 
 

  
  

 
 

 
 

 
     

 
   
 

   
 

  
 

  
 

  
 

  
  

  
   

 
 

 
  

 
 

 
  

 

Overview 

•	 Aerosols are minute solid or liquid particles suspended in the atmosphere. 
The effects of aerosols on the atmospheric energy balance depends on the 
composition and color of aerosol particles. Some aerosols such as sulfates 
and nitrates reflect incoming solar radiation, resulting in cooling of the 
atmosphere and the earth’s surface. Others such as black carbon absorb 
solar radiation, which warms the atmosphere while shading the surface. 
Aerosols also affect the formation and characteristics of clouds, as well as 
chemical reactions in the atmosphere. The overall effect of human-caused 
aerosols on climate remains an area of active research. 

Changes to the chemical composition of the atmosphere—including changes in 
greenhouse gases and aerosol concentrations—affect the atmosphere’s energy 
balance. Changes in the atmosphere’s energy balance subsequently affect 
atmospheric circulation, which in turn affects weather and climate. Atmospheric 
concentrations of greenhouse gases and aerosols play an increasingly important 
role in the earth’s energy balance, and consequently in the global climate system 
(IPCC 2013). 

Climate projections are typically developed by simulating changes in the earth’s 
energy balance, and corresponding changes in weather and climate conditions, in 
response to specified changes in atmospheric composition. Development of 
climate projections thus generally involves three key components: 

(1) Emissions scenarios 

(2) Global climate models (GCM) 

(3) Downscaling methods, including optional bias correction 

Each of these components is briefly discussed below. 

2.2.1. Emissions Scenarios 

To analyze the impacts of human-caused greenhouse 
gas and aerosol emissions on climate, and to evaluate 
and plan for the potential impacts of climate change, 
the scientific community must first develop trajectories 
of future emissions and corresponding atmospheric 
concentrations. 

Future emissions will depend on many factors, 
including regional and global demographics, 
technological and socioeconomic development, and 
potential efforts to reduce emissions. As a result, the 
future evolution of greenhouse gas and aerosol 
emissions is highly uncertain (IPCC 2000 [SRES 

“The goal of working with
scenarios is not to predict
the future, but to better 
understand uncertainties 
and alternative futures, in 
order to consider how 
robust different decisions or 
options may be under a 
wide range of possible 
futures.” 

IPCC 2014 
(Scenario Process for AR5) 
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Selecting Climate Projection Information 

Summary]). Rather than attempting to predict the actual trajectory of future 
emissions—i.e., the quantity of emissions each month or year over the next 
century—the climate science community has developed a broad range of 
emissions scenarios that represent “alternative images of how the future might 
unfold and are an appropriate tool with which to analyze how driving forces may 
influence future emissions outcomes and assess the associated uncertainties” 
(IPCC 2000 [SRES Summary]). Developing and analyzing scenarios is a widely 
used approach to planning and decision-making in situations characterized by a 
high level of uncertainty. By considering a broad range of scenarios, planners and 
decision makers can address relevant “what if” questions and develop robust and 
effective strategies despite large uncertainty in future conditions. 

Emissions scenarios represent “estimates of future emissions based on our 
understanding of natural sources of greenhouse gases and on assumptions about . 
. . how much greenhouses gases will be released into the atmosphere by humans” 
(AdaptNSW 2015). Each emissions scenario consists of a set of time-evolving 
values representing the emissions and corresponding atmospheric concentrations 
of various greenhouse gases and aerosol compounds that affect the earth’s energy 
balance, as well as corresponding land use and land cover data. Emissions 
scenarios include both natural5 and anthropogenic emissions. It should be noted 
that emissions scenarios are not scenarios of future climate, but instead are 
scenarios of the future trajectory of greenhouse gas and aerosol emissions and 
corresponding atmospheric concentrations. Projections of future climate 
conditions are then developed by using GCMs to simulate global climate under a 
specified emissions scenario. 

IPCC initially developed emissions scenarios in 1990 (SA90 scenarios) and 1992 
(IS92 scenarios) to facilitate coordinated analysis of climate change and its 
impacts by providing climate scientists around the world with a common 
foundation for modeling climate change. IPCC updated emissions scenarios in 
2000 to incorporate improved data and understanding regarding the factors that 
drive greenhouse gas and aerosol emissions and underlying uncertainties. These 
scenarios were described in the IPCC Special Report on Emissions Scenarios 
(SRES) (IPCC 2000 [SRES Summary]) and are commonly referred to as the 
SRES scenarios. Climate projections under the SRES emissions scenarios served 
as the basis for the IPCC Third Assessment Report (TAR) (IPCC 2001) and 
Fourth Assessment Report (AR4) (IPCC 2007). IPCC updated emissions 
scenarios in 2009 to again incorporate improved data and understanding, to 
address new science questions that arose from the IPCC Third and Fourth 
Assessment Reports, and to provide scenario datasets consistent with updated 

5 Emissions scenarios account for some, but not all, natural sources and sinks of greenhouse gases and 
aerosols. In particular, volcanic emissions are not considered in future emissions scenarios due to the inability 
to reasonably predict future volcanic activity. The extent to which climate-carbon cycle feedbacks are 
represented varies between emissions scenario; climate-carbon cycle feedbacks occur when climate 
conditions affect natural sources and sinks of carbon-based greenhouse gases. 
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Overview 

Global climate models (GCM) are 
computer models designed to
help understand and simulate 
global and regional climate,
including the climatic response 
to changing concentrations of 
greenhouse gas emissions. 

climate models (Moss et al. 2010). Climate projections under the RCP scenarios 
served as the basis of the IPCC Fifth Assessment Report (AR5) (IPCC 2014 [AR5 
Synthesis]). 

SRES and RCP emissions scenarios are discussed in more detail in Section 3.1.2. 

2.2.2. Global Climate Models 

The National Oceanographic and Atmospheric 
Administration’s (NOAA) National Weather 
Service (NWS) defines climate models as 
“mathematical model[s] for quantitatively 
describing, simulating, and analyzing the 
interactions between the atmosphere and 
underlying surface (e.g., ocean, land, and 
ice)” (NWS 2015). NOAA’s Climate 
Prediction Center (CPC) further describes 
GCMs as computer models capable of 
reproducing the earth’s weather patterns and that can be used to predict and 
analyze changes in global weather and climate (NWS CPC 2015). 

Figure 2 shows a conceptual schematic illustration of a GCM. GCMs represent 
the key physical processes that affect weather and climate, including the 
movement of energy, mass, and moisture within the atmosphere and between the 
atmosphere and the underlying surface. GCMs represent the atmosphere, oceans, 
land, and ice on a three-dimensional grid and simulate the movement of mass and 
energy vertically and horizontally between grid cells, along with the resulting 
weather conditions—e.g., temperature and precipitation—at each grid cell. 

Numerous GCMs have been developed by modeling centers around the world, 
including universities, government agencies, and national laboratories and 
research centers. A total of 23 GCMs from 16 modeling centers contributed to the 
Coupled Model Intercomparison Project Phase 3 (CMIP3) Multi-Model Dataset 
which supported the IPCC TAR and AR4, while a total of 61 models from 27 
modeling centers contributed to the CMIP Phase 5 (CMIP5) Multi-Model Dataset 
which supported the IPCC AR5. 
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Selecting Climate Projection Information 

Figure 2: Schematic illustration of a global climate model (GCM). 

While different GCMs often share common methods and assumptions—including 
parameterizations,6 modules, and in some cases sub-models—each model 
represents a unique (though not necessarily independent) representation of the 
global climate system (Sanderson et al. 2015). As a result, different GCMs exhibit 
different levels of skill in simulating different aspects of observed 20th century 
climate conditions. For example, a GCM may exhibit high skill in simulating 
northern hemisphere precipitation patterns compared to other models while 
simultaneously exhibiting low skill in simulating southern hemisphere 
precipitation patterns. Similarly, the projected climate change in response to a 
given emissions scenario differs between GCMs. Differences between GCMs are 
often difficult to diagnose due to the large number of physical processes and 
complex process interactions represented by each GCM (Sanderson et al. 2015). 

6 Parameterization in a weather or climate model refers to using simplified equations and relationships to 
represent processes that occur at too small a scale, are too complex, or about which too little is known to 
simulate explicitly. For example, processes such as cloud formation, precipitation, and turbulence occur at 
spatial scales much smaller than the model grid resolution. It is not possible to simulate these processes 
explicitly due to limitations of existing computer resources and physical understanding. However, these 
processes are fundamental to the atmosphere and cannot be neglected. Instead, simplified equations and 
relationships referred to as parameterizations are used to represent these processes. 
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Overview 

2.2.3. Downscaling and Bias Correction 

The spatial resolution of most GCM-based climate projections is typically on the 
order of one to two degree latitude by one to two degree longitude, or roughly 
110-220 kilometers (km) by 110-220 km over mid-latitudes. Local weather and 
climate conditions, by contrast, exhibit substantial variability across a degree of 
latitude or longitude due to variations in topography, land cover, and many other 
factors that affect local climate. As a result, the spatial resolution of GCMs is too 
coarse to use in most regional or basin-scale analyses. Applying GCM-based 
climate projections to support regional and basin-scale planning and decision 
making therefore requires a method to downscale coarse-resolution GCM results 
to finer spatial resolutions (Wood et al. 2004, Fowler et al. 2007, and IPCC 2013). 

Numerous methods have been developed to downscale coarse-resolution GCM 
projections to finer spatial resolutions over a selected area to support regional and 
basin-scale analyses, planning, and decision making. Downscaling methods fall 
into two broad categories: dynamical methods and statistical (non-dynamical) 
methods. Dynamical downscaling methods use finer-resolution regional climate 
models (RCM) to simulate the three-dimensional and multivariate atmospheric 
response to global climate change, nesting the RCM inside the GCM over a 
selected region. The RCM then simulates weather and climate conditions over the 
selected region at a finer resolution that is more applicable to a regional and local 
planning and decision making. Statistical (non-dynamical) downscaling methods 
rely on relationships between observed (historical) large-scale and finer-scale 
weather and climate conditions. These relationships are applied to the large-scale 
GCM results to develop GCM-based projections at the finer spatial scale. 

Dynamical and statistical downscaling methods each exhibit a number of benefits 
and limitations (Wood et al. 2004 and Fowler et al. 2007). For example, 
dynamical downscaling uses RCMs that represent the physical processes which 
govern regional weather and climate conditions and thereby account for physical 
processes and interactions that affect local weather and climate, such as snow-
albedo and cloud feedbacks. However, dynamical downscaling is extremely 
computationally expensive, limiting the number of projections that can be 
practically downscaled. In addition, dynamical downscaling methods often do not 
address biases inherent in GCMs, and these methods may also be affected by 
biases in the RCMs used to downscale GCM results. 

By contrast, statistical downscaling is computationally efficient, incorporates 
observed weather and climate information, and often includes a bias correction 
step to remove biases in GCM results (see discussion below). However, statistical 
downscaling methods require accurate observational data at fine spatial 
resolutions and over a long period of record, which may not be available over all 
regions. Many statistically downscaled datasets are based on gridded meteorology 
datasets developed by interpolating meteorological station data; these datasets 
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Selecting Climate Projection Information 

may exhibit notable biases in some areas due to the limited number of stations and 
extensive interpolation between stations (Maurer et al. 2002, Livneh et al. 2013, 
and Abatzoglou 2011). In addition to data quality issues, statistical downscaling 
methods inherently assume that observed relationships between large-scale and 
finer-scale weather and climate conditions will remain valid under changing 
climate conditions—in other words, statistical downscaling methods assume that 
relationships between large-scale and finer-scale weather and climate conditions 
are stationary. It is generally acknowledged that these relationships will in fact 
change under changing climate conditions; however, the magnitude of errors 
introduced by the stationarity assumption is not well understood at this time. 

In addition to downscaling, GCM projections are often adjusted to remove or 
reduce biases in model-simulated weather and climate conditions. While modern 
GCMs accurately represent many important characteristics of weather and 
climate, no model is a perfect representation of the real world—in other words, all 
models exhibit biases. In this context, the term bias refers to differences between 
simulated and observed climate conditions—e.g., differences between simulated 
and observed mean annual temperature or precipitation over a region of interest. 
The term bias correction thus refers to the use of a statistical procedure to adjust 
GCM projections to remove differences between simulated and observed climate 
conditions. The primary causes of bias in GCM simulations include (IPCC 2007 
[Physical Science]): 

•	 The coarse resolution of GCMs and the corresponding inability to resolve 
important stationary features such as land surface topography and land-
water interfaces along coastlines 

•	 The use of simplified parameterizations to represent physical processes 
that occur at too small a scale or are too complex to be represented 
physically (see Section 2.2.2.) 

Numerous studies have evaluated biases in individual GCMs or across multi-
model ensembles of GCM simulations. While it is quite easy to identify biases, it 
is often difficult to determine the root cause of a particular model bias (Palmer 
and Weisheimer 2011). Model biases can significantly affect impact studies that 
use climate projections to evaluate hydrologic and ecosystem response to climate 
change. As a result, bias correction is often required before GCM outputs can be 
used as inputs to other types of models. Numerous approaches have been 
developed to remove biases from climate model outputs; further discussion of 
bias correction methods is beyond the scope of this document. 
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Overview 

2.3. Incorporating Climate Projections into Water
 
Resources and Environmental Analyses
 

As required under several
executive and secretarial orders, 
departmental policies, and 
bureau directives and standards, 
Reclamation must consider the 
potential effects of climate
change in planning and decision 
making, including design and 
analysis of current and proposed 
infrastructure and operating 
plans (see Section 1.1). 

Effective management of water and 
environmental resources often requires 
understanding current and future water 
supplies and demands, and the ability of 
current and/or proposed infrastructure and 
operations to meet those demands now and 
into the future. Reclamation study teams 
therefore need practical, relevant, and 
credible information regarding projected 
future climate to support analyses of future 
hydrology and environmental conditions, and 
to inform decision-makers, stakeholders, and 
the public. 

Reclamation recently issued guidance for incorporating climate projection 
information into water resources and environmental analyses and planning studies 
(Reclamation 2014 [Technical Guidance]). For any given study, the guidance 
assists study teams in determining an appropriate level of climate change analysis, 
ranging from no analysis of climate change to a quantitative analysis of climate 
change effects. If a quantitative analysis is selected, the guidance assists study 
teams in identifying a specific climate change method to use in the analysis. 
However, the guidance does not address selecting a climate projection dataset or 
selecting a subset of projections for use in a detailed analysis. (Available climate 
projection datasets are described in Section 4 of this document; methods for 
selecting a subset of climate projections for use in a detailed analysis are 
described in Sections 5.) 

Numerous methods have been developed to incorporate climate change 
information into analyses to support water resources and environmental planning 
and decision making. Generally, climate projection information is incorporated 
into a given analysis through the inputs to resource models used in the analysis, 
including: 

•	 Hydrologic models, water demands models, and water resources planning 
and operations models used to simulate and analyze water supplies, 
demands, and management 

•	 Resource models used to simulate and analyze environmental and habitat 
conditions and ecosystem behavior 

•	 Economic models used to simulate and analyze economic cost and 

benefits
 

21 



 
 
 

 
 

  
  

   
 

  
 

   
  

   
   

   
  

   
   

  
 

  
   

  
 

 
 

 
  

 
 

   
 

   
 

     
 

     
 

  
  

 
 

 
 

    
  

 
    

 
    

Selecting Climate Projection Information 

In some cases, downscaled climate projections are used directly as inputs to the 
study models. In other cases, climate projection information is incorporated by 
modifying model inputs that are based on historical observations to represent the 
projected change in certain aspects of climate. In the latter case, climate 
projection information is merged with historical data to characterize future 
climate conditions. For example, precipitation and temperature inputs to a 
hydrologic model based on historical observations may be modified to reflect 
projected changes in monthly precipitation and temperature while preserving the 
sequencing and relative magnitude of climate variability from the historical 
record. This type of method allows technical specialists on a given study team to 
incorporate aspects of climate change that are represented well by GCMs such as 
long-term trends, while relying on historical information for aspects of weather 
systems and natural climate variability that are not represented sufficiently well 
such as daily precipitation frequency and intensity (Reclamation 2014 [Technical 
Guidance]). 

Incorporating climate projection information into water resources and 
environmental analyses typically involves several interrelated steps, including but 
not limited to: 

(1) Selecting hydrologic, demands, planning and operations, and/or other 
resource models to be used in the study 

(2) Identifying model inputs that must be adjusted to reflect projected climate 
change 

(3) Selecting climate projection dataset 

(4) Selecting individual climate projections to be considered in analysis 

(5) Developing climate scenarios for use in a detailed analysis 

(6) Developing model inputs for each climate scenario 

A wide range of modeling approaches have been developed to simulate water 
resources and environmental systems, ranging from simple statistical models 
based on linear relationships between variables to highly detailed physically-
based and rule-based models that explicitly simulate physical processes, process 
interactions, and operational decisions. Study teams should select modeling 
approaches that are consistent with the needs of their particular study, including 
the questions to be address and the level of detail required (Reclamation 2014 
[Technical Guidance]). 

Once a model has been selected, climate projections are incorporated by 
developing model input datasets that reflect projected future climate conditions. 
Any given modeling approach requires a number of inputs, including time­

22 



  
  

 

 

 
   

  
 

    
  

 
  

 
  

   
    

    
  

   
    

  
     

   
  

    
  

   
    

  
  

 
    

  
  

   
   

  
  

  
  

  
 

   
 

  

Overview 

varying inputs (e.g., precipitation and temperature inputs to a hydrologic model) 
as well as constant inputs (e.g., model coefficients in a statistical model). The 
type(s) of climate projection information required for a given study depend on the 
selected modeling approach, the associated inputs, and the study questions to be 
addressed. Climate-related inputs for typical hydrologic and water resources 
models include precipitation and temperature, and may include other relevant 
variables such as humidity, wind speed, solar (shortwave) radiation, and 
atmospheric carbon dioxide concentration. 

For any given study, the technical specialists on the study team must select a 
specific set (or sets) of GCM or downscaled climate projections for their analysis. 
Several widely used climate projection datasets are summarized in Section 4, 
including multi-model GCM datasets and multi-model datasets of downscaled 
GCM projections. When selecting a projection dataset for a given study, study 
teams should consider the study objectives to determine the relevant spatial and 
temporal scales and specific climate variables and aspects of climate variability. 
Many climate projection datasets provide a large number of individual climate 
projections from many different GCMs and emissions scenarios. In addition, 
climate projection datasets may include multiple projections for a single 
combination of GCM and emissions scenario, each differing only in its initial 
state at the start of the projection (see Section 3.4.3). As a result, detailed analysis 
of all available climate projections from a selected dataset is often not feasible 
given the practical limitations of study budget and schedule. Study teams must 
select a subset of climate projections from the selected dataset to be included in 
further analysis. A variety of methods are available to select a subset of climate 
projections from a given dataset; several widely used methods are summarized in 
Section 5. 

After selecting a set of climate projections to be considered in a given study, the 
technical specialists on the study team must then develop climate scenarios for 
use in a detailed analysis. As summarized in Section 2.1., climate projections are 
simulations of future climate conditions under a given emissions scenario and 
corresponding concentrations of greenhouse gases and aerosols. By contrast, 
climate scenarios are plausible and often simplified representations of future 
climate constructed to use in investigating the potential consequences of climate 
change. Climate scenarios often serve as inputs to resource models, including 
hydrologic models and water resources operations models, for analysis of climate 
change risks and impacts and evaluation of climate change adaptation strategies. 
Methods for developing climate scenarios from climate projections are outlined in 
Reclamation 2014 (Technical Guidance) in Section 5.2., which provides guidance 
for incorporating climate change information into water resources planning 
studies. 

23 





  
  

 

 

 

 
   

  
 
 

 

 

   
 

 
    

  
 

   
    

 
  

  
   

  
   

  
 

   
 

 
 

   
 

 

  
 

  
   

  
 

 
 

  
 

 
  

 
 

 
 

 
  

Considerations 

3. Considerations for Selecting Climate
Projection Information 

The climate and hydrology technical specialists on a given study team must make 
a number of choices when selecting the climate projection information basis for a 
specific study. Should we use projections from CMIP3 or CMIP5? Should we use 
GCM projections directly or should we use downscaled projections? How should 
we select an appropriate number of projections for use in a detailed analysis? 

The purpose of this section is to identify important choices that these technical 
specialists must make to choose appropriate climate change information for a 
given study and to discusses key considerations in making each of these choices. 
This section is intended to help technical specialists recognize key decisions that 
are often made on an ad hoc basis. In addition, this section is intended to help 
other study team members understand the decisions and considerations required to 
choose appropriate climate change information in order to facilitate 
documentation and interpretation study data, methods, and results. This section 
does not, however, provide direct guidance to study teams regarding selection of 
climate projection information. 

3.1. Choosing between CMIP3 and CMIP5 

The CMIP3 and CMIP5 multi-model 
datasets were both developed to support 
broad analysis of climate change and its 
impacts to society and the environment. 
The overall approach to developing global 
projections of 21st century climate is 
virtually identical for CMIP3 and CMIP5. 
As summarized in Section 2.2, both 
datasets were developed by using GCMs 
to simulate future climate conditions 
under emissions scenarios representing 
possible future trajectories of greenhouse 
gas and aerosol emissions. Both datasets 
provide output from these global 
simulations, including projections of future precipitation, temperature, and other 
important weather and climate variables. However, several important details 
differ between the two datasets, including the features and capabilities of the 
models used in each dataset, the emissions scenarios considered, and the temporal 
resolution and model output variables included in each dataset. 

This section briefly summarizes key differences between the CMIP3 and CMIP5 
multi-model datasets. Differences between the models used in CMIP3 and CMIP5 

The climate science community 
has not determined that CMIP5 is 
a better or more reliable source 
of climate projection information
than CMIP3. The World Climate 
Research Program (WCRP) 
therefore suggests that the
CMIP5 Multi-Model Dataset 
should be considered an 
addition to, and not a 
replacement of, the CMIP3 Multi-
Model Dataset. 
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Selecting Climate Projection Information 

are discussed in Section 3.1.1 and differences between the emissions scenarios 
used in each dataset are discussed in Section 3.1.2. Differences between the 
model outputs available for each dataset are briefly summarized in Section 3.1.3. 

3.1.1. Differences between Global Climate Models 

Climate models are the primary tools used to evaluate the climate system response 
to changes in atmospheric composition, including changes resulting from natural 
and anthropogenic greenhouse gas and aerosol emissions (IPCC 2013). While the 
models used in CMIP3 and CMIP5 are fundamentally similar, many of the 
models used in CMIP5 incorporate a number of improvements compared to those 
used in CMIP3. 

Improvements in models used in CMIP5 generally reflect advances in 
parameterization of physical processes, representation of new physical processes, 
and increases in model resolution (IPCC 2013). Improvements in atmospheric 
parameterizations, for example, include advances in representation of cloud 
processes (aerosol-cloud and cloud-radiation feedbacks), atmospheric convection, 
and atmospheric boundary layer processes (IPCC 2013). Important improvements 
in land surface parameterization include representation of vegetation dynamics, 
land-atmosphere carbon exchanges, and sub-gridscale hydrology in some models 
(IPCC 2013). 

In addition to improvements to traditional global climate models (GCM), CMIP5 
reflects the emergence of earth system models (ESM). GCMs have long been the 
‘standard’ tool for understanding the dynamics of the climate system and for 
making projections of future climate changes in response to changes in 
greenhouse gas and aerosol concentrations in the atmosphere. ESMs expand on 
GCMs to include dynamic representation of the carbon cycle, including 
biogeochemical processes that affect the exchange of carbon dioxide between the 
land, oceans, and atmosphere (IPCC 2013). 

Figure 3 shows a schematic illustration of the difference between GCMs and 
ESMs. Like GCMs, ESMs are complex mathematical models that represent the 
key physical processes that affect weather and climate, including the movement of 
water and energy within the atmosphere and between the atmosphere and the 
underlying land and ocean surfaces. Similarly, like GCMs, ESMs represent the 
atmosphere, oceans, land, and ice on a three-dimensional grid; simulate the 
movement of water and energy vertically and horizontally between grid cells; and 
simulate the resulting weather and climate conditions—e.g., temperature and 
precipitation—at each grid cell. Unlike GCMs, however, ESMs include an 
interactive carbon cycle model that allows for dynamic simulation of carbon 
sources and sinks and their interactions with the global climate system. Some 
ESMs also include dynamic representation of biogeochemical processes affecting 
nitrogen and sulfur in the atmosphere. The objective of ESMs is to simulate 
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changes in land and ocean interaction with atmospheric carbon dioxide and 
aerosols, along with subsequent feedbacks on global climate. 

Figure 3: Schematic illustration of the difference between GCMs and ESMs. Black 
arrows represent exchanges of water and energy between components; white 

arrows represent exchanges of carbon between components. 

As summarized by IPCC (2013), more than half of the models used in CMIP5 
include dynamic representation carbon uptake and release from land and/or 
oceans, while more than one in four models includes dynamic representation 
atmospheric chemistry and their interactions with climate. By contrast, none of 
the models used in CMIP3 included dynamic representation of land and ocean 
carbon fluxes, and only one included dynamic representation of atmospheric 
chemistry. In addition, nearly all models that contributed to CMIP5 include some 
degree of interactive aerosols, compared to just a few of the models used in 
CMIP3. However, representation of biogeochemical processes varies widely 
among models used in CMIP5. 

Despite these improvements, however, IPCC notes that for most evaluation 
metrics, “the CMIP3 and CMIP5 model performances are broadly similar” (IPCC 
2013). Similarly, projected changes in future climate are generally similar for the 
models used in CMIP3 and CMIP5 (see Section 3.1.5). Differences between the 
models used in CMIP5 compared to those used in CMIP3 are, therefore, not 
sufficient to suggest that CMIP3 models are outdated or obsolete, but rather that 
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Selecting Climate Projection Information 

both the CMIP3 and CMIP5 are appropriate for use in evaluating projected future 
climate conditions. 

3.1.2. Differences between Emissions Scenarios 

As summarized in Section 2.2., to analyze the impacts of anthropogenic 
greenhouse gas and aerosol emissions on climate and to plan for the potential 
impacts of climate change, the scientific community must first develop 
trajectories of future emissions and corresponding atmospheric concentrations. 
Rather than attempting to predict the trajectory of future emissions, which depend 
on a multitude of highly uncertain factors, the climate science community has 
developed a suite of emissions scenarios that represent “alternative images of how 
the future might unfold and are an appropriate tool with which to analyze how 
driving forces may influence future emissions outcomes and assess the associated 
uncertainties” (IPCC 2000 [SRES Summary]). Each emissions scenario consists 
of a set of time-evolving values representing the emissions and/or atmospheric 
concentrations of various greenhouse gases and aerosol compounds that affect the 
earth’s energy balance, as well as corresponding land use and land cover data. 

Scenarios are widely used by planners and decision makers in situations 
characterized by a high level of uncertainty. By considering a broad range of 
scenarios or storylines that address relevant “what if” questions, planners and 
decision makers can develop robust and effective strategies despite large 
uncertainty in future conditions. Emissions scenarios represent “estimates of 
future emissions based on our understanding of natural sources of greenhouse 
gases and on assumptions about . . . how much greenhouses gases will be 
released into the atmosphere by humans” (AdaptNSW 2015). As noted in Section 
2.2.1., emissions scenarios are not scenarios of future climate, but instead 
scenarios of the future trajectory of greenhouse gas and aerosol emissions and 
corresponding atmospheric concentrations; projections of future climate 
conditions are then developed by using GCMs to simulate future climate under a 
specified emissions scenario. 

The emissions scenarios used in CMIP5 differ from those used in CMIP3. In 
CMIP3, projections of future climate change are based on emissions scenarios 
described by the IPCC Special Report on Emissions Scenarios (IPCC 2000 
[SRES]), referred to as the SRES emissions scenarios. The SRES emissions 
scenarios were developed by using integrated assessment models (IAM) 7 to 
simulate specific socioeconomic scenarios representing different “storylines about 
future demographic and economic development, regionalization, energy 

7 Integrated Assessment Models (IAM) are computer models that represent the scientific and socioeconomic 
factors that affect climate change. IAMs combine physical and social science models of demographics, 
policy, and economics to evaluate how assumptions regarding future socioeconomic and policy drivers will 
affect anthropogenic emissions and global climate. Additional discussion of IAMs is provided by Janetos et 
al. 2009. 

28 



  
  

 

 

  
 

  
  

   
  

  
  

 

 
 

 
 

  
 

  
 

  
    
  

   

  
  

  

   
  

 
 

  
   

 
 

Considerations 

production and use, technology, agriculture, forestry, and land use” (IPCC 2013) 
Each of the SRES scenarios thus represents a specific socioeconomic scenario and 
resulting greenhouse gas emissions and concentrations. 

In CMIP5, by contrast, projections are based on a new set of emissions scenarios 
described by Moss et al. (2010) and van Vuuren et al. (2011), referred to as 
“representative concentration pathways” (RCP). In contrast to the SRES 
scenarios, the RCP scenarios were developed through a new parallel process for 
scenario development. Like the SRES emissions scenarios, the RCPs consist of 
trajectories of greenhouse gas emissions and concentrations. However, for the 
RCPs, emissions and concentration trajectories were developed independently of 
specific socioeconomic storylines or scenarios. This approach recognizes that a 
given trajectory of emissions and concentrations could occur under multiple 
socioeconomic scenarios. RCPs were thus developed independently of 
socioeconomic scenarios to allow parallel development of climate projections and 
socioeconomic storylines, as well as to facilitate interaction between the science 
communities focusing on the physical science aspects of climate change and those 
focusing on the socioeconomic and policy aspects (IPCC 2013). 

Future trajectories of anthropogenic radiative forcing—i.e., the effects of 
anthropogenic greenhouse gas emission on the atmospheric energy balance, 
expressed as Watts per meter squared (W/m2)—under the SRES and RCP 
emission scenarios are illustrated in Figure 4, along with the projected change in 
global average surface temperature. The range of projected change in temperature 
over the 21st century is generally similar between the SRES and RCP scenarios, 
with the projected change under RCP 4.5 similar to under SRES scenario B2 and 
projected change under RCP 8.5 slightly greater than under SRES scenario A2. 
Radiative forcing under RCP 8.5 closely follows that under SRES scenario A2, 
while RCP 4.5 closely follows SRES scenario B1. Radiative forcing under RCP 
2.6 is lower than all SRES scenarios, whereas RCP 6.0 is slightly lower than 
SRES scenario B1 through 2060, then increases above B1 through the end of the 
21st century. 

Note that IPCC (2000) [Special Report on Emissions Scenarios] discusses a total 
of six emissions scenarios. All six scenarios are shown in Figure 4; however, 
scenarios A1FI, A1B, and B2 are not included in the CMIP3 multi-model dataset. 
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Selecting Climate Projection Information 

Figure 4: (a) Projected radiative forcing [W/m2] and (b) projected change in global 
average surface temperature degrees Celsius (°C) over the 21st century under the 

SRES emissions scenarios used in CMIP3 and the RCPs used in CMIP5. 
Temperature changes are decadal averages based on the multi-model ensemble 

mean. Source: AdaptNSW (2015, used by permission, all rights reserved). 
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Given the tremendous uncertainty in future emissions, there is little basis in most 
cases for selecting climate projections based on an emissions scenario: each 
emissions scenario represents a plausible trajectory of future emissions and 
corresponding changes in atmospheric composition, and all scenarios are 
generally considered equally likely. Historical emissions since the year 2000 have 
been consistent with the higher emission SRES and RCP scenarios (SRES 
scenario A2 and RCP 8.5, respectively), rather than the moderate and lower 
emissions scenarios. However, it is important to note that projected climate 
conditions are generally similar under all emissions scenarios through the 2040s. 
Projected climate conditions under different emissions scenarios do not diverge 
significantly until the latter half of the 21st century. The choice of emissions 
scenario is therefore less likely to affect study results if the study period is limited 
to the first half of the 21st century, but this choice is very likely to affect results if 
the study period extends into the latter half of the century. 

Lastly, it should be emphasized that the RCP scenarios used in CMIP5 are neither 
improved nor more accurate representations of future emissions than the SRES 
scenarios used in CMIP3. Both the SRES and RCP emissions scenarios represent 
valid scenarios of future anthropogenic greenhouse gas emissions to support 
analysis of climate change and its impacts on water and environmental resources. 

3.1.3. Differences between Availability of Model Outputs 

The temporal coverage and temporal resolution of model outputs available from 
the CMIP3 and CMIP5 multi-model datasets vary widely between models and 
scenarios. Similarly, the availability of model outputs differs between model 
output variables, with some models providing outputs for many more variables 
than others. In both the CMIP3 and CMIP5 datasets, monthly model outputs of 
primary climate variables—e.g., monthly mean temperature and monthly 
accumulated precipitation—are available from virtually all models for the primary 
scenarios, including pre-industrial and 20th century climate scenarios from both 
datasets, SRES scenarios B1, A1B, and A2 from the CMIP3 dataset, and RCPs 
4.5 and 8.5 from the CMIP5 dataset. Daily model outputs are available for many 
of the CMIP3 models for selected scenarios and time periods, but generally not 
for the complete 20th and 21st centuries. By contrast, daily model outputs are 
available for a larger portion of the CMIP5 models and scenarios. In addition, 
while model outputs differ between models, the CMIP5 dataset generally includes 
a larger number of model output variables compared to the CMIP3 dataset. 

In cases where study objectives require data at higher temporal resolution—e.g., 
daily rather than monthly—or for additional climate variables, study teams may 
need to consider data availability as a factor in selecting between the CMIP3 and 
CMIP5 multi-model datasets. 
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3.1.4. Comparison of Model Results: 20th Century 
Simulations 

Several studies have compared various spatial and temporal characteristics of 
simulated precipitation, temperature, and other important variables between the 
CMIP3 and CMIP5 multi-model datasets. Detailed summaries of comparisons 
between CMIP3 and CMIP5 models are provided by IPCC 2013 and NOAA 
2014. Overall, studies suggest that models in the CMIP5 multi-model dataset 
demonstrate general improvements in simulating several aspects of observed 20th 

century climate compared to the CMIP3 models, including improvements in 
large-scale patterns and magnitudes of average annual precipitation and 
temperature, regional-scale average annual temperature, globally-averaged 
temperature trends, and precipitation extremes (IPCC 2013). For example, 
improvements in model capabilities in simulating global annual average 
temperature and precipitation patterns between CMIP28, CMIP3, and CMIP5 are 
illustrated in Figure 5 (IPCC 2013). 

Figure 5: Spatial pattern correlation between observed and simulated annual mean 
temperature (top) and precipitation (bottom) over the globe. Larger values indicate 
better agreement between simulated and observed spatial patterns; black symbols 
represent individual models and green symbols indicate the median value over all 

models. Source: FAQ 9.1, Figure 1 from Flato et al. 2013 in IPCC. Used by 
permission. 

8 Coupled Model Intercomparison Project Phase 2 (CMIP2) was completed between 1996 and 1997. An 
overview of CMIP2 and summary of key results are provided by Covey et al. 2003. 
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The CMIP5 models also show modest improvements in simulating low-frequency 
modes of climate variability, including the El Niño-Southern Oscillation (ENSO), 
Pacific Decadal Variability, and Atlantic Multidecadal Variability (NOAA 2014). 
IPCC 2013 also notes that there are no categories for which CMIP5 models 
perform worse overall than their predecessor models in CMIP3. However, it 
should be emphasized that model performance varies substantially between 
models: “No model scores high or low in all performance metrics, but some 
models perform substantially better than others for specific climate variables or 
phenomena” (IPCC 2013). 

Despite modest improvements in individual model performance compared to 
observed 20th century climate, performance of the multi-model ensemble mean 
did not show significant improvement between CMIP3 and CMIP5. Moreover, 
CMIP5 models continue to exhibit many of the biases exhibited by CMIP3, 
particularly with respect to simulated precipitation characteristics (IPCC 2013, 
NOAA 2014, Liu et al. 2014, Wuebbles et al. 2014, and Sun et al. 2015). As a 
result, the climate science community has not determined that CMIP5 is a better 
or more reliable source of climate projection information than CMIP3. The 
WCRP therefore suggests that the CMIP5 Multi-Model Dataset should be 
considered an addition to, and not a replacement of, the CMIP3 Multi-Model 
Dataset unless and until the climate science community determines otherwise 
(Reclamation et al. 2013). 

3.1.5. Comparison of Model Results: 21st Century 
Projections 

Several studies have attempted to compare projections of 21st century climate 
between the CMIP3 and CMIP5 multi-model datasets. However, the lack of 
common emissions scenarios between CMIP3 and CMIP5 make it difficult to 
directly compare 20th and 21st century simulations between the two datasets 
(Knutti and Sedláček 2012, IPCC 2013, and NOAA 2014). Direct comparison 
between CMIP3 and CMIP5 climate projections is further complicated by the 
inclusion of different models (see Section 3.1.1.) and different numbers of 
individual projections available for a given model. 

At the global scale, recent studies indicate a general consistency in simulated 
large-scale climate patterns and projected climate change over the 21st century 
between the two datasets (IPCC 2013). In particular, Knutti and Sedláček (2012) 
found that despite differences between the models and emissions scenarios used 
in CMIP3 and CMIP5, the magnitudes and spatial patterns of projected changes in 
annual average temperature and precipitation are “remarkably similar in CMIP3 
and CMIP5, indicating that the large-scale features of climate change are 
robust.” For example, Figure 6 shows the projected change in 21st century global-
average surface temperature from CMIP3 under the SRES emissions scenarios 
(left panel) and from CMIP5 under the RCP scenarios (right panel), along with 
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Selecting Climate Projection Information 

estimates of what the CMIP3 models would have projected had they been used to 
simulate the RCP scenarios (box plots). 

Figure 6: Projected changes in global-average surface temperature from CMIP3 
models under the SRES emissions scenarios (left panel) and CMIP5 models under 
the RCP scenarios (right panel), and the range of projected changes in surface air 
temperature by the end of the 21st century from CMIP5 models and from estimates 
of CMIP3 response to RCP scenarios. Source: Figure 1 from Knutti and Sedláček 

(2012). Used by permission, all rights reserved. 

Estimates of how the CMIP3 models would have responded under the RCP 
scenarios were developed using a simplified climate model referred to as the 
Model for the Assessment of Greenhouse-gas Induced Climate Change 
(MAGICC). MAGICC was calibrated to reproduce results from 19 of the CMIP3 
GCMs, and then used to estimate projected changes in temperature that each 
GCM would project under the RCP scenarios. These and other studies 
demonstrate that despite substantial differences between the models used in 
CMIP3 and CMIP5 (see Section 5.1.1.) and the emissions scenarios used in 
CMIP3 and CMIP5 (see Section 5.1.2.), the magnitude and spread of projected 
climate change is generally consistent between the datasets at continental and 
larger scales (IPCC 2013). 

While several studies have illustrated the overall similarity between CMIP3 and 
CMIP5 projections at larger scales, recent studies demonstrate notable differences 
in projections of regional-scale climate changes between the two datasets. 
Differences in projections of regional-scale climate between CMIP3 and CMIP5 
depend on the region, time period, and climate variable of interest. Few studies 
have conducted detailed analysis of differences in regional-scale climate change 
based directly on global model outputs available in the CMIP3 and CMIP5 multi­
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model datasets. Using statistically downscaled projections9 from both datasets, 
Reclamation et al. (2013) found that: 

“A comparison of downscaled CMIP5 and CMIP3 climate projections over 
the [Western United States] shows broad regional similarities (e.g., similar 
levels of warming throughout much of the West and similar precipitation 
trends towards the North and Southwest). There are also notable differences 
in some regions (e.g., greater warming over the Upper Columbia Basin, less 
precipitation over the northern Great Plains, and more precipitation over 
California and the Upper Colorado Basin from CMIP5 compared to CMIP3). 
Projections showing wetter portions of California and the Upper Colorado 
Basin are notable because they challenge previous projections from CMIP3 
that suggested these regions will become drier, resulting in reduced runoff. It 
is important to recognize that, while CMIP5 offers new information, more 
work is required to better understand CMIP5 and its differences from 
CMIP3.” 

It should be noted that the choice of downscaling method may affect differences 
in projected climate change between the CMIP3 and CMIP5 multi-model 
datasets. Further analysis is needed to understand the extent and causes of 
differences in projected regional-scale climate change between the CMIP3 and 
CMIP5 multi-model datasets. 

As noted in Section 3.1.1., the climate science community has not determined that 
CMIP5 is a better or more reliable source of climate projection information than 
CMIP3. The WCRP therefore suggests that the CMIP5 Multi-Model Dataset 
should be considered an addition to, and not a replacement of, the CMIP3 Multi-
Model Dataset unless and until the climate science community determines 
otherwise. 

3.1.6. Additional Consideration Regarding Ongoing Studies
and Consistency with Previous Studies 

Additional considerations in choosing between CMIP3 and CMIP5 may apply 
when a given study builds upon previous analyses of climate change. Consider, 
for example, the following two situations: 

•	 Ongoing Studies: A study was initiated using climate projection 
information from CMIP3, and the CMIP5 Multi-Model Dataset 
subsequently became available during the course of the study. Should the 
study team revise their analysis to use climate projection information from 
CMIP5, either by replacing the projections from CMIP3 with projections 

9 It should be noted that statistical downscaling may affect projected changes. 
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Selecting Climate Projection Information 

from CMIP5 or by incorporating information from both CMIP3 and 
CMIP5? 

•	 Successive Studies: A study is initiated to perform more detailed analysis 
of a proposed project or plan that was previously analyzed at a lower level 
of detail—for example, a feasibility study is initiated for a project or plan 
for which an appraisal study has already been completed. The previous 
study used climate projection information from CMIP3. Should the new 
study continue to use CMIP3, or should the new study incorporate climate 
projection information from CMIP5, either replacing the projections from 
CMIP3 with projections from CMIP5 or by incorporating information 
from both CMIP3 and CMIP5? 

As discussed in Sections 3.1.1 through 3.1.5, the climate science community has 
not determined that CMIP5 is a better or more reliable source of climate 
projection information than CMIP3 and, as a result, the WCRP suggests that 
CMIP5 be considered an addition to, rather than a replacement of, CMIP3 unless 
and until the climate science community determines otherwise. Based on this 
conclusion from the WCRP, it is not necessary to update ongoing or successive 
studies to use climate projection information from CMIP5 over information from 
CMIP3. 

For new studies, an appropriate set of climate projections should be selected 
based on consideration of study needs and dataset attributes as discussed 
previously in this section. 

3.2. Choosing between Global and Downscaled 
Climate Projections 

When selecting the climate projection dataset for a given study, technical 
specialists on the study teams must choose whether to use global climate 
projections (sometimes called raw GCM projections) or to use projections that 
have been downscaled to a finer spatial resolution (i.e., downscaled climate 
projections). 

Global climate projections may be appropriate for use in studies that do not 
require quantitative analysis of climate change impacts and that do not use climate 
projections to develop inputs to hydrology models or other resource models. In 
addition, global climate projections may be appropriate for studies that consider 
large spatial scales, such as projected changes in continental or global climate 
conditions. Global climate projections may also be appropriate for studies where 
large-scale weather phenomena are an important factor, such as projected changes 
in ocean-atmosphere teleconnections or mid-latitude storm tracks. Important 
aspects of the large-scale weather and climate phenomena may not be represented 
in downscaled projections or may be altered by the downscaling method. In these 
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cases, study teams may consider using global projections, or joint use of both 
global and downscaled projections, to meet their specific study needs. It should be 
noted, however, that study teams must take care to assess how well the large-scale 
weather phenomena of interest are represented in GCMs prior to using GCM-
based climate projections in their analysis. 

By contrast, global climate projections likely are typically not appropriate for 
studies that require detailed, quantitative analysis of climate change and its 
impacts on water and environmental resources, including studies that involve the 
use of hydrology and other resource models to evaluate projected risks and 
impacts of climate change. As discussed in Section 2.2.3., the spatial resolution of 
GCMs is typically too coarse to use in most regional or basin-scale analyses, 
including analyses of how climate change will impact water supplies and 
demands. For this type of study, downscaled climate projections are likely to be 
more appropriate. 

3.3. Choosing a Downscaled Climate Projection 
Datasets 

Once a study team has determined that it will use downscaled climate projections, 
the technical specialists on the study team must then select which downscaled 
dataset is most appropriate with respect to their specific study objectives. In 
selecting a downscaled climate projection dataset, study teams should consider 
the general strengths and limitations of statistical versus dynamical downscaling 
methods, as well as the specific attributes of individual datasets. 

This section outlines several important attributes of climate projection datasets 
that study teams should consider and provides a brief discussion of how each 
attribute typically compares between statistically and dynamically downscaled 
climate projection datasets. A general overview of statistical and dynamical 
downscaling methods is provided in Section 2.2.3., and specific attributes of 
individual downscaled projection datasets are described in Section 3.2. 

3.3.1. General Dataset Attributes to Consider in Selecting a
Downscaled Climate Projection Dataset 

Table 1 provides a list of general dataset attributes that study teams should 
consider when selecting a downscaled climate projection dataset. Each of these 
attributes varies widely among available downscaled climate projection datasets, 
and each one may affect the applicability of a given downscaled dataset with 
respect to the specific objectives of any given study. When choosing a 
downscaled climate projection dataset, study teams should consider which 
attributes are most relevant to their study objectives and select a downscaled 
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Selecting Climate Projection Information 

projection method and/or dataset whose attributes best meet the needs of their 
specific study. 

Table 1: General Attributes of Downscaled Climate Projection Datasets 
Attribute Relevance to Study Objectives 
Spatial Coverage Does the dataset fully encompass the region of interest? 

Spatial Resolution Is the dataset’s spatial resolution sufficient to meet the 
needs of the study? 

Temporal Coverage Does the dataset encompass the time period(s) required 
to meet the needs of the study? 

Temporal Resolution Is the dataset’s temporal resolution (e.g., daily or 
monthly) sufficient to meet the needs of the study? 

Available Scenarios/Projections Does the dataset include a sufficient number of 
emissions scenarios and/or projections to meet the 
needs of the study? 

Available Climate Variables Does the dataset include the relevant climate variables 
needed to meet the needs of the study—e.g., does the 
dataset include all variables needed as inputs to the 
models used in the study? 

If the dataset does not include all input variables, is it 
acceptable to use alternate methods to estimate 
variables not provided by the dataset under future 
climate or to use inputs based on historical data for 
these variables? 

Bias Correction If relevant for the study, does the downscaling method 
include bias correction of GCM outputs? 

Coherence among Climate 
Variables 

If relevant for the study, does the downscaling method 
preserve the physical relationships (coherence) among 
climate variables? 

Local-Scale Climate Feedbacks If relevant for the study, does the downscaling method 
used by the dataset represent local-scale processes 
that affect the relationship between local-scale and 
large-scale climate conditions? 

3.3.2. Comparison of General Attributes between 
Statistically and Dynamically Downscaled Climate 
Projection Datasets 

As summarized in Section 2.2.3., downscaling methods fall into two broad 
categories: dynamical methods and statistical (non-dynamical) methods. 
Dynamical downscaling methods use finer-resolution regional climate models 
(RCM) to simulate the three-dimensional and multivariate atmospheric response 
to global climate change, nesting the RCM inside the GCM. By contrast, 
statistical downscaling methods use relationships between observed large-scale 
and finer-scale weather and climate conditions to downscale coarse-resolution 
GCM projections to finer resolution. 
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This section briefly discusses similarities and differences between the general 
attributes typical of statistical and dynamical downscaling datasets; differences 
are summarized in Table 2. While dynamical and statistical downscaling methods 
each exhibit a number of benefits and limitations, the attributes of a typical 
statically downscaled dataset differ from those of a typical dynamical downscaled 
dataset. Understanding these differences will help the technical specialists on a 
given study teams to make informed decisions when choosing the climate 
projection dataset for a given study. 

Table 2: Comparison of General Attributes between Statistically and Dynamically 
Downscaled Climate Projection Datasets 

Attribute Statistical Downscaling Dynamical 
Downscaling 

Spatial Coverage Depends on dataset Depends on dataset 
Spatial Resolution Typically higher Typically lower 
Temporal Coverage Typically longer Typically shorter 
Temporal Resolution Similar or lower Similar or higher 
Available Scenarios/Projections Typically more Typically fewer 
Available Climate Variables Typically fewer Typically more 
Bias Correction Typically yes Typically no 
Coherence among Climate Variables Typically not preserved Preserved by RCM 
Local-Scale Climate Feedbacks Typically not represented Represented by RCM 

Spatial Coverage: Spatial coverage depends on the individual dataset rather than 
whether the dataset is based on a statistical or dynamical downscaling method. 
Spatial coverage varies widely between downscaling datasets regardless of the 
overall downscaling method used. The publically available climate projection 
datasets summarized in Section 4.2. were selected in part based on their spatial 
domains encompassing the Western United States. However, several of these 
datasets encompass the entire CONUS and some include portions of southern 
Canada and northern Mexico. 

Spatial Resolution: The spatial resolution of statistical downscaling methods is 
primarily limited by the spatial resolution of available historical climate 
observations. By contrast, the spatial resolution of dynamically downscaled 
datasets is limited primarily by the computer resources available to run the 
RCM(s) used to dynamically downscale GCM outputs. The spatial resolution of 
statistically downscaled datasets typically ranges from approximately 4 km (1/24 ° 
latitude by 1/24° longitude) to approximately 12 km (1/8° latitude by 1/8° longitude). 
The spatial resolution of dynamically downscaled datasets is typically on the 
order of 25-50 km (1/4°-1/2° latitude by 1/4°-1/2° longitude) for datasets covering 
the CONUS, whereas dynamically downscaled datasets covering smaller regions 
have resolutions as high as 15 km (1/10° latitude by 1/10° longitude). Hence the 
spatial resolution of statistically downscaled datasets is typically greater than 
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Selecting Climate Projection Information 

those of dynamically downscaled datasets for the publically available datasets 
discussed in Section 4.2. 

Temporal Coverage: Temporal coverage of statistically downscaled climate 
projections is primarily limited by the temporal coverage of the GCM outputs. By 
contrast, temporal coverage of dynamically downscaled datasets is strongly 
limited by the computer resources available to run the RCM(s) used to 
dynamically downscale GCM outputs. As a result, dynamically downscaled 
datasets often contain projections for selected periods of the 20th and 21st 

centuries (e.g., one 20-year period from the late 20th century and two or three 20­
year periods from the 21st century). By contrast, statistically downscaled climate 
projection datasets commonly encompass a continuous period from the mid- or 
late-20th century through the end of the 21st century. However, temporal coverage 
ultimately depends on the individual downscaled dataset. 

Temporal Resolution: Statistical downscaling methods are typically developed 
to operate on a monthly or daily timescale and are often only valid at the intended 
timescale. As a result, statistically downscaled projections are typically available 
either daily or monthly resolution. By contrast, the RCMs used to produce 
dynamically downscaled projections simulate regional climate using a much 
shorter model timestep, often as short as just a few minutes. The temporal 
resolution of dynamically downscaled climate projections depends on the data 
archiving interval specified by the modeling team who developed the downscaled 
projections. The archive interval is limited by the computer storage available to 
host the dataset and typically ranges from 3 to 6 hours for primary climate 
variables, with daily or monthly outputs for secondary variables. Dynamically 
downscaled climate projection datasets therefore often offer higher temporal 
resolution than statistically downscaled datasets. 

Available Scenarios/Projections: Dynamical downscaling is extremely 
computationally expensive compared to statistical downscaling methods. As a 
result, dynamically downscaled climate projection datasets often contain fewer 
emissions scenarios and individual climate projections than statistically 
downscaled datasets. The smaller number of scenarios and projections typical of 
dynamical downscaling datasets may limit the range of uncertainty represented by 
these datasets. 

Available Climate Variables: Statistical downscaling methods are based on 
relationships between large-scale and finer-scale climate conditions, where the 
relationship between large- and small-scale conditions are developed based on 
historical observations. Statistical downscaling methods, therefore, depend on the 
availability of historical observations for each variable that is downscaled. As a 
result, many statistically downscaled datasets provide data for only temperature 
and precipitation, while some provide additional variables relevant to the 
hydrologic cycle such as wind speed, humidity, and solar radiation. Dynamically 
downscaled climate projections are produced by RCMs that simulate the complete 
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regional climate system, including a multitude of climate and hydrologic variables 
in the atmosphere and at the land surface. While RCMs simulate virtually all 
relevant climate variables, the variables available from any given dynamically 
downscaled dataset vary widely, depending on which variables were selected to 
be archived as part of the dataset. It should be noted that empirical methods are 
available to estimate some variables if they are not provided by a given dataset— 
for example, Reclamation 2015 estimated solar radiation and humidity under 
future climate based on projected maximum and minimum daily temperature. 

Bias Correction: Statistical downscaling methods generally incorporate a bias 
correction step that adjusts GCM output so that simulated historical climate 
conditions match observed historical conditions (see Section 2.2.3.). Biases are 
similarly removed from simulated future climate conditions by assuming that the 
characteristics of model bias under future climate conditions are the same as 
under historical conditions. Dynamically downscaled datasets, by contrast, often 
do not include bias correction: raw GCM outputs are used as inputs to a RCM, 
and the RCM then inherits any biases exhibited by the GCM. Lack of bias 
correction may inhibit the use of dynamically downscaled climate projections as 
direct inputs to hydrologic models and other resource models. 

Coherence among Climate Variables: Statistical downscaling methods typically 
downscale each climate variable independently, without considering relationships 
between climate variables. Dynamical downscaling, by contrast, uses RCMs to 
simultaneously downscale all relevant climate variables. Dynamical downscaling 
therefore preserves the coherence among climate variables, whereas statistical 
downscaling may not. 

Local-Scale Climate Feedbacks: Statistical downscaling methods use 
relationships between observed large-scale and finer-scale weather and climate 
conditions to downscale large-scale GCM results to a finer resolution. This 
approach assumes that observed relationships between large-scale and finer-scale 
weather and climate remain valid under future climate conditions. As a result, 
statistical downscaling methods do not account for potential local-scale feedbacks 
that may alter the relationship between large-scale and finer-scale weather and 
climate conditions as the climate changes, such as feedbacks between changes in 
snow covered area or soil moisture content and local temperature, winds, 
humidity, and precipitation. Dynamical downscaling using RCMs does allow for 
local-scale feedbacks to affect the local weather and climate response to changes 
in large-scale climate. 

3.3.3. Project-Specific Downscaling to Support Study
Needs 

In some cases, after reviewing the existing publically available downscaled 
climate projection datasets, study teams may find that none of the existing 
datasets meet the specific needs of their study. For example, downscaled climate 
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Selecting Climate Projection Information 

projections may not be available for studies focusing on areas outside of the 
CONUS or other regions where downscaled projections have been previously 
developed. In other cases, study teams focusing on extreme climate events 
(e.g., extreme precipitation) may determine that none of the available downscaled 
datasets are suitable for their analysis due to potential limitations of statistical 
downscaling methods in capturing changes in climate extremes, insufficient 
coverage or resolution of dynamical downscaling datasets, and/or biases in 
dynamically downscaled climate projections. Alternatively, study teams may 
determine that existing datasets do not sufficiently represent aspects of weather 
and climate that are important for their study region, such local topography 
(e.g., narrow valleys), coastal winds, or local fog and/or clouds that significantly 
affect evapotranspiration in the study area. 

In such cases, study teams may consider conducting project-specific downscaling 
of CMIP3 or CMIP5 climate projections to support the specific needs of their 
study. Project-specific downscaling involves applying a verified and published 
statistical method or RCM to downscale global climate projections from the 
CMIP3 or CMIP5 multi-model dataset over the study region. It should be noted 
that the time and budget needed to conduct project-specific downscaling is 
significantly greater than that needed to use an existing dataset. As a result, study 
teams must clearly justify the choice to conduct project-specific downscaling 
based on the limitations of existing downscaled climate projection datasets with 
respect to their specific study objectives and the ability of the proposed project-
specific downscaling to overcome those limitations. 

3.4. Choosing a Method to Select Climate 
Projections for Use in a Detailed Analysis 

As summarized in Section 5., several methods have been developed to select a 
subset of climate projections for use in a detailed analysis when schedule and 
budget constraints prohibit detailed analysis of all available projections from the 
climate projection dataset chosen for use in a given study. These methods fall into 
two general categories: 

•	 Uncertainty-based: selecting projections based on sampling the range of 
uncertainty in projected future climate 

•	 Performance-based: selecting models based on their performance in 
simulating observed historical climate conditions 

Uncertainty-based and performance-based methods have both been widely used in 
climate change impact and adaptation studies. This section discusses important 
assumptions and limitations to consider when choosing a selection method. 

42 



  
  

 

 

  
  

  
 

 
  

 
 

 
 

 
  

 
 

   
 

 
 

  
 

  
  

 
 

   
 
 

  
    

  
 

  
 

 
 

 
  

   
 

  
  

  
  

  

Considerations 

In addition to these two general categories of selection methods, this section 
discusses considerations that arise when the climate projection dataset chosen for 
use in a given study contains multiple climate projections produced using the 
same combination of GCM and emissions scenario. 

3.4.1. Methods Based on Sampling Range of Uncertainty 

Section 5.1 discusses methods for selecting climate projections based on sampling 
the range of uncertainty in projected climate conditions from a given climate 
projection dataset. In general, uncertainty-based methods are preferred in cases 
where study teams have an interest in characterizing uncertainty in future 
conditions and developing adaptation strategies that are robust under a broad 
range of potential future conditions. 

It should be noted, however, that climate projection information resources are not 
designed to provide an accurate and unbiased estimate of the range of uncertainty 
in future climate projections (Tebaldi and Knutti 2007, Knutti et al. 2013, and 
Sanderson et al. 2015). There are three primary sources of uncertainty regarding 
future climate conditions: uncertainty in the trajectory (amount and timing) of 
anthropogenic greenhouse gas and aerosol emissions; uncertainty in the climate 
system response to anthropogenic emissions; and uncertainty in how natural 
emissions (e.g., volcanic eruptions) and natural (unforced) climate variability may 
act to mask or amplify the climate response to anthropogenic forcing (Hawkins 
and Sutton 2009 and Mote et al. 2011). Climate projection information resources 
such as the CMIP3 and CMIP5 multi-model datasets and corresponding 
downscaled projection datasets partially represent each of these uncertainties. For 
example, uncertainty in future emissions is partially represented by the range of 
emissions scenarios considered in each dataset; however, actual future emissions 
may diverge from the range of scenarios considered. As a result, sampling the 
range of projected climate change based on any given climate projection dataset is 
likely to underestimate the full range of potential future climate conditions. 

Another important consideration regarding selection methods based on sampling 
the range of uncertainty in projected future climate is the potential influence of 
similarities between different models and projections within a given dataset. 
Some projection datasets include multiple projections from the same combination 
of model and emissions scenario, differing only in the initial conditions at the start 
of the projection (see Section 3.4.3.). Because each model produces a unique 
estimate of climate sensitivity to anthropogenic emissions, including more 
simulations from some models than others may bias the range of projected 
changes and therefore the projection selection process. For example, consider a 
hypothetical dataset that includes projections based on two climate models under 
one emissions scenario. One of the model exhibits a high sensitivity to 
anthropogenic emissions and one that exhibits a low sensitivity. If five projections 
are available from one model and one projections are available from the other, 
then the range of projected change will be skewed towards the model with a larger 
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Selecting Climate Projection Information 

number of projections. The situation is more complicated for the CMIP3 and 
CMIP5 multi-model datasets given the larger number of models, emissions 
scenarios, and individual climate projections, but the same principle applies: the 
range of projected climate change is potentially skewed towards the models and 
emissions scenarios for which more projections are available. 

In addition, studies suggest that similarities between GCMs themselves may bias 
estimates of uncertainty based on multi-model datasets (Tebaldi and Knutti 2007, 
Knutti et al. 2013, and Sanderson et al. 2015). While any given GCM provides a 
unique representation of the overall climate system, many GCMs share various 
model components. For example, two GCMs may have different atmospheric 
components but share a common ocean component. Similarly, even when 
different components are used, models often share many underlying assumptions 
and parameterizations. These common components, assumptions, and 
parameterizations result in similarities between models. As a result, the 
probability distribution of projected climate change may be biased due to the lack 
of independence between GCMs—in other words, a multi-model ensemble does 
not represent a random sample of projected climate conditions. 

With respect to water resources, planning, and environmental analyses, the 
underlying objective of selecting climate projections for detailed analysis based 
on sampling the range of uncertainty is often to consider a range broad range of 
plausible future conditions. In this context, the lack of independence between 
models and projections within a given dataset does not impact the underlying 
objective. As a result, it remains common practice in water resources, planning, 
and environmental analyses to consider all available projections from a given 
dataset and to treat all models as independent when selecting a subset of 
projections 

3.4.2. Methods Based on Evaluation of Model Performance 

Section 5.2. discusses methods for selecting climate projections based on 
evaluation of model performance with respect to simulation of observed historical 
climate conditions. Performance-based methods may be preferred in cases where 
study teams have a strong interest in ensuring that specific weather or climate 
phenomena relevant to the study region and/or study objectives are well 
represented in the GCMs used to develop climate projection information used in 
the study. Study teams considering future floods or droughts in some regions, for 
example, may want to ensure that the GCMs used to develop climate projections 
for that study are able to represent important weather phenomena associated with 
floods or droughts in that region—e.g., representation of the El Niño-Southern 
Oscillation with respect to floods and droughts in California and the Pacific 
Northwest, or representation of the North American monsoon with respect to 
floods in the arid Southwest. 

44 



  
  

 

 

  
 

  
 

   
 

  

 
 

  
 

  
 

  
 

 
 

 
   

  
  

 
  

  
  

   
    

 
  

 
   

    
  

  
 

 

 
  

 

Considerations 

While selection methods based on evaluation of model performance have been 
used in previous water resources and environmental planning efforts, recent 
studies have demonstrated several potential limitations associated with these 
methods. First and foremost, several studies suggest that model performance in 
simulating historical weather and climate are not a clear indicator of model 
credibility in projecting future climate change (Reifen and Toumi 2009, Knutti et 
al. 2010, and IPCC 2013). IPCC 2013 notes that “confidence in climate model 
projections is based on physical understanding of the climate system and its 
representation in climate models, and on a demonstration of how well models 
represent a wide range of processes and climate characteristics.” By contrast, 
attempts to rank or weight the relative credibility of different GCMs has shown 
that there is no clear relationship between a model’s performance in simulating 
historical climate and its projection of future climate change (Knutti et al. 2010): 

“Correlations between model simulated historical trends, variability or 
current mean climate state…on the one hand, and future projections for 
observable climate variables on the other hand, are often predominately 
weak. For example, the climate response in the 21st century does not seem to 
depend in an obvious way on the simulated pattern of current temperature.” 

These studies indicate that while it is important to verify that climate models 
provide a realistic representation of the global climate system, the relative 
difference in models’ performance is not an indicator of the relative credibility or 
accuracy of projected of future climate change. 

In addition to challenging the underlying premise that model performance is not 
related to the credibility or accuracy of future climate projections, several studies 
have identified practical challenges in using model performance metrics to select 
a subset of models for use in a detailed analysis (Gleckler et al. 2008, Brekke et 
al. 2008, and see Section 9.8 of IPCC 2013 for additional discussion). In 
particular, model performance—along with the relative ranking of performance 
among models—is often strongly dependent on the region, metric, and time 
period selected for analysis: “inevitably, some models perform better than others 
for certain climate variables, but no individual model clearly emerges as ‘the 
best’ overall” (IPCC 2013). As a result, small changes in the metrics used to 
evaluate model performance, or the region and time period over which metrics are 
calculated, can significantly alter the relative performance ranking between 
models. For example, a given model’s performance ranking based on temperature 
may be significantly different than its ranking based on precipitation; 
alternatively, model rankings over the period 1970-1999 may be significantly 
different than rankings based on evaluation over the longer period 1950-1999. 
These results indicate that the relative performance ranking of models based on a 
limited number of performance metrics is not a robust criterion for model 
selection. 
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Selecting Climate Projection Information 

It is also important to note that selection methods based on evaluation of model 
performance focus on selection of GCMs based on their relative performance 
ranking. However, these methods do not facilitate selection of individual 
projections. Where multiple projections are available for a given combination of 
GCM and emissions scenario (i.e., where multiple projections were produced by 
varying the initial conditions at the start of the projection), study teams must 
identify additional criteria for selecting individual projections for use in a detailed 
analysis. These additional criteria may be based on sampling the range of 
uncertainty in projected climate change from the selected models or may focus on 
some alternative criteria developed by the study team. 

3.4.3. Consideration of Multiple Projections from a Single
Combination of GCM and Emissions Scenario 

As noted above, some climate projection datasets include multiple projections 
from a single combination of model and emissions scenario, where each 
simulation differs from the others only in the initial conditions at the start of the 
projection. In other words, the GCM and all time-varying inputs are identical, 
including atmospheric concentrations of greenhouse gases and aerosols, but the 
distribution of mass and energy (i.e., temperature, humidity, pressure, and other 
variables) are different at the start of each projection. If the climate projection 
dataset chosen for a given study includes multiple projections from a single 
combination of GCM and emissions scenario, technical specialists on the study 
team must determine how to treat these projections when selecting a subset for 
use in a detailed analysis. 

Modeling teams often produce multiple simulations using the same GCM and 
emissions scenario—but with different initial conditions—to evaluate the 
sensitivity of projected weather and climate conditions to changes in these initial 
conditions. Changes in the initial conditions at the start of a simulation affect day­
to-day weather conditions, which in turn affects natural climate variability on 
seasonal to decadal timescales. By conducting multiple climate projections using 
the same GCM and emissions scenario, climate scientists can distinguish between 
naturally-occurring low-frequency climate variability and climate change 
resulting from anthropogenic changes in atmospheric composition. 

Day-to-day weather conditions at any given place and time are largely determined 
by the complex and highly non-linear processes that govern atmospheric 
dynamics (Wallace and Hobbs 2006). These processes cause the atmosphere to be 
highly unstable: small changes in the state of the atmosphere (e.g., small changes 
in the distribution of mass and energy) grow rapidly over time. One important 
implication of this unstable behavior is that the day-to-day evolution of weather 
conditions generally cannot be accurately predicted more than seven to ten days in 
advance. Imperfect observations of the atmosphere lead to errors in the initial 
state at the start of a forecast. The complex and highly non-linear nature of 
atmosphere dynamics subsequently causes these errors to grow rapidly over the 

46 



  
  

 

 

   
 

  
 

 
  

 
  

 
 

     
 

  
     

 
 

    
 

    
  

 
  

  
  

  
 

  
 

 

 
   

      
  

    
 

 
    

 
   

  
 

Considerations 

forecast period, resulting in large uncertainty in predicted weather conditions just 
hours or days into the forecast. While our incomplete understanding of 
atmospheric processes contributes to forecast errors, many studies suggest that 
even if weather prediction models perfectly represented all aspects of the 
atmosphere, infinitesimally small errors in model initial conditions at the start of a 
forecast would still limit our ability to forecast day-to-day weather conditions 
more than two weeks in advance (for example, see Epstein 1988 and Palmer 2000 
for discussion of the fundamental limits of predictability in weather and climate). 

This sensitivity of day-to-day weather to changes in initial conditions also has 
implications for projections of long-term climate change. Interactions between 
rapidly-changing atmospheric conditions and slowly-varying ocean and land 
surface conditions contribute to climate variability on interannual and decadal 
timescales. Low-frequency (decadal) climate variability can result in apparent 
trends in temperature and precipitation. These trends may persist for several 
decades before abating or reversing. As a result, it is difficult to distinguish 
between low-frequency climate variability and anthropogenic climate change in a 
single GCM projection (see Section 2.1. for discussion of the difference between 
climate variability and climate change). However, the timing and magnitude of 
apparent trends resulting from low-frequency variability will be different between 
simulations starting from different initial conditions. By contrast, trends resulting 
from anthropogenic climate change are less sensitive to initial conditions. 
Analysis of multiple climate projections from a single combination of GCM and 
emissions scenario can thus be used to distinguish between low-frequency climate 
variability and climate change. 

It is important to note that multiple projections from a given GCM and emissions 
scenario—but with different initial conditions—are not independent. Attempts to 
characterize the magnitude and uncertainty of projected climate change may 
therefore be biased by considering different numbers of projections from each 
combination of model and emissions scenario. For example, one GCM may 
project a larger change in temperature under a given emissions scenario than 
another GCM. If a dataset includes five projections under this scenario from the 
first GCM and only one under the second, averaging over all available projections 
would result in an average projected change that is larger than if each GCM 
contributed the same number of simulations. 

When selecting climate projections for use in a detailed analysis, however, each 
individual projection is considered equally valid. If the study team’s objective is 
to consider a broad range of future climate conditions, it is reasonable to sample 
the full range of projections without accounting for differences in the number of 
projections from each combination of GCM and emissions scenario. 

47 





   
 

 

 
  

 

 
 

 
 

    
 

  

  
  

 
  

  
 

  
  

 
  

 
    

    
  

      
    

 

  
  

 
     

 
 

    
     

 
    

   
 
 
 

                                                 
  

 
 

   
 

 
 

 

Climate Projection Datasets 

4. Climate Projection Datasets 
The scientific community has developed a vast amount of 
information regarding projected future climate conditions, 
including multiple datasets10 containing climate 
projections from one or more global climate models 
(GCM) under one or more emissions scenarios 
representing possible future trajectories of global 
greenhouse gas and aerosol emissions. In addition to 
global projections, datasets have been developed to 
provide projections of future climate at finer spatial and 
temporal scales based on downscaling global projections 
over various regions. These datasets constitute the climate 
projection information resources available to Reclamation 

The summaries provided in
this section are intended to 
aid technical specialists in 
selecting an appropriate 
climate projection
information resource to 
support climate change 
projections and analysis for 
a particular study. 

study teams. 

Climate projection datasets vary substantially—for example, covering different 
geographical areas and time periods, and with different spatial and temporal 
resolutions. The models, methods, and assumptions used to develop climate 
projection information also vary widely between resources. These differences can 
have important implications for applying a given information resource to a 
specific study, including the range of projected future climate conditions and 
corresponding impacts on water and environmental resources. In addition, 
differences between datasets may affect the method options available to 
incorporate projection information into a given analysis. 

This section summarizes several currently available and widely used climate 
projection information resources. 

•	 Section 3.1. and Table 3.1. summarize global climate projection datasets 
based on GCM projections of future climate conditions 

•	 Section 3.2. and Table 3.2. summarize regional climate projection datasets 
based on downscaling and/or bias correction of GCM projections. 

10 Climate projection datasets consist of set of numerical data files. Each value in a given file represents the 
value of a specific climate variable—precipitation, temperature, pressure, humidity, etc.—at a specific time 
and location. Global and downscaled climate projections are typically provided in the form of gridded data 
files, where values are organized as a three-dimensional array with dimensions representing latitude, 
longitude, and time. Some variables such as air pressure may be represented as a four-dimensional array, 
where the fourth dimension represents height above the earth’s surface. The data structure, file format, units, 
and other attributes vary between datasets; dataset attributes are defined in the corresponding dataset 
documentation. 
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Selecting Climate Projection Information 

4.1. Global Climate Projection Datasets 

Global Climate Models (GCM) are the primary tools used to develop projections 
of future climate conditions. As summarized in Section 2.2,. GCMs simulate the 
physical processes within and between the atmosphere, oceans, land surface, and 
cryosphere that govern the global climate system. Notably, GCMs are widely 
used to simulate changes in the global climate system in response to changes in 
atmospheric composition, including changes in greenhouse gas and aerosol 
concentrations. GCMs simulate climate processes across the entire globe. Due to 
computational constraints, however, GCMs typically simulate climate processes 
at relatively coarse spatial resolution. For the current generation global climate 
projections for the 21st century, GCMs are typically configured such that each 
model grid cell represents an area on the order of 10,000 km2 (i.e., an area 
spanning ~100 km east-west by ~100 km north-south). 

The scientific community currently uses two primary GCM-based climate 
projection datasets: the CMIP Phase 3 (CMIP3) Multi-Model Dataset, completed 
in 2007, and the CMIP Phase 5 (CMIP5) Multi-Model Dataset, completed in 
2013. Both datasets were coordinated and facilitated by the World Climate 
Research Programme (WCRP) Coupled Model Intercomparison Project (CMIP). 
It should also be noted that there was no CMIP Phase 4; the CMIP numbering was 
modified to coincide with the corresponding IPCC assessment reports to avoid 
confusion. 

Since its inception in 1995, CMIP has played a central role in coordinating 
international modeling efforts focused on better understanding the global climate 
system, including past, present, and future climate changes resulting from natural 
(unforced) climate variability and from changes in radiative forcing (e.g., 
anthropogenic changes in greenhouse gas concentrations) (WCRP 2015). An 
important focus of CMIP is to facilitate broader analysis and application of global 
climate projections across the climate science research community by making 
climate model data available to scientists outside of the major modeling groups 
who develop and run GCMs. To this end, CMIP provides standards and 
guidelines that allow for comparing GCM results across the many GCMs 
developed by scientists and research groups from around the world. Beginning 
with CMIP3, the U.S. Department of Energy’s Program for Climate Model 
Diagnostics and Intercomparison (PCMDI) has worked closely with CMIP to 
compile GCM datasets from modeling centers around the globe and make them 
freely available to the scientific community (PCMDI 2015). The multi-model 
datasets developed by each phase of CMIP constitute the primary climate 
projection information resources used by the global climate science community, 
including the IPCC, to evaluate climate change and its potential impacts. 

Climate projections available in the CMIP3 and CMIP5 multi-model datasets are 
briefly described below and summarized in Table 3. Table 3 does not include 
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Climate Projection Datasets 

historical simulations (e.g., pre-industrial and 20th century) or idealized emissions 
scenarios (e.g., 1% increase in CO2 per year until doubling). In addition, Table 3 
does not include the three SRES “marker” scenarios that are not included in the 
CMIP3 multi-model dataset (SRES scenarios A1T, A1FI, and B2). 

Table 3. Summary of 21st Century Global Climate Projections in the CMIP3 and 
CMIP5 Multi-Model Datasets 

CMIP3 CMIP5 

Web Address http://cmip­
pcmdi.llnl.gov/cmip3_overview.html 

http://cmip­
pcmdi.llnl.gov/cmip5/index.html 

Emissions Scenarios SRES A2: High emissions scenario 
characterized by globally 
fragmented development and 
slower economic growth 

SRES A1B: Medium emissions 
scenario characterized by rapid 
economic growth and a balance 
between fossil and alternative 
energy sources 

SRES B1: Low emissions scenario 
characterized by rapid changes in 
economic structures, with 
reductions in material intensity and 
introduction of clean and resource-
efficient technologies 

RCP 8.5: “Business as usual” 
scenario. High emissions scenario 
where greenhouse gas 
concentrations continue to rise 
unchecked 

RCP 6.0: “Medium emissions 
scenario by 2080” assumes a 
mitigation strategy where 
greenhouse gas emissions peak 
around 2080 and decline thereafter 

RCP 4.5: “Medium emissions 
scenario by 2040” assumes a 
mitigation strategy where 
greenhouse gas emissions peak 
around 2040 and decline thereafter 

RCP 2.6: “High mitigation” 
scenario, considered the low 
emissions scenario, assumes that 
greenhouse gas emissions peak 
between 2010 and 2020 and 
decline substantially thereafter 

Number of GCMs 23 61 

Model Resolution 
(Atmospheric Grid) 

Latitude: 1.125° – 5.0° 

Longitude:1.125° – 4.0° 

Latitude: 0.56° – 3.44° 

Longitude:0.56° – 3.75° 
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Selecting Climate Projection Information 

4.1.1. CMIP Phase 3 Multi-Model Dataset 

CMIP3 was the climate modeling community’s first large-scale effort to 
coordinate a set of climate model simulations that “could be performed by as 
many modeling groups as possible with state-of-the-art global coupled11 climate 
models” and with results compiled and made available to the broader research 
community for analysis (IPCC 2007 [Physical Science]). The CMIP3 simulations 
include a total of eleven emissions scenarios, each of which represents a different 
set of time-varying atmospheric concentrations of greenhouse gasses and aerosols. 
Four of these scenarios served as the primary basis for analyzing future climate 
change in the IPCC Fourth Assessment Report (IPCC 2007 [Physical Science] 
and IPCC 2007 [AR4 Impacts]), including one scenario corresponding to 
historical emissions over the 20th century and three scenarios representing 
plausible trajectories of future emissions over the 21st century (SRES scenarios 
B1, A1B, and B2). The range of emissions scenarios considered in CMIP3 is 
summarized below: 

•	 Constant atmospheric composition (100-year minimum simulation period) 
based on pre-industrial conditions 

•	 Time-varying 20th century atmospheric composition (1860-2000) based on 
historical trajectories of natural (e.g., volcanic) and human (e.g., industrial 
greenhouse gas and aerosol) emissions 

•	 Time-varying 21st century atmospheric composition (2001-2100) based on 
hypothetical trajectories of human greenhouse gas and aerosol emissions 
under selected emissions scenarios from the IPCC 2000 (SRES) (see 
Section 2.2.1. for additional discussion): 

o	 B1 (low emissions) 
o	 A1B (medium emissions) 
o	 A2 (high emissions) 

•	 Constant atmospheric composition (100-year minimum simulation period) 
based on observed conditions for the year 2000, conditions under scenario 
SRES B1 for the year 2100, and conditions under scenario SRES A1B for 
the year 2100 

11 In the context of global climate models, the term coupled refers to models that represent interactions 
between the atmosphere and the underlying land, ocean, and ice through exchanges of energy (heat), 
moisture, and momentum. For example, a coupled climate model includes an ocean model that can simulate 
heat uptake by the oceans from the atmosphere and subsequent effects on ocean circulation and sea surface 
temperatures; by contrast, an atmosphere-only (un-coupled) climate model represents ocean conditions as a 
model input and does not simulate the ocean’s response to atmospheric conditions. All climate models in the 
CMIP3 Multi-Model Dataset are coupled climate models. Additional discussion of coupled climate models is 
provided at World Meteorological Organization’s website: https://www.wmo.int/pages/themes/climate/ 
climate_models.php. 
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Climate Projection Datasets 

•	 Constant and time-varying atmospheric compositions under various 
idealized scenarios 

CMIP3 model results were compiled and made available for analysis by the 
broader research community. In total, the CMIP3 Multi-Model Dataset includes 
model outputs from a total of 23 GCMs from 16 modeling centers representing 
12 different countries. CMIP3 ultimately became “the largest international global 
coupled climate model experiment and multi-model analysis ever attempted” 
(IPCC 2007 [Physical Science]). 

Simulations of pre-industrial climate, 20th century climate, and 21st century 
climate under scenarios B1, A1B, and A2 were provided by nearly all of the 
23 GCMs that contributed to the CMIP3 Multi-Model Dataset.12 Additional 
simulations under constant and idealized atmospheric forcings were provided by 
some but not all models. Several models provided multiple simulations for some 
emissions scenarios. In these cases, individual simulations incorporate identical 
atmospheric forcings as specified by the scenario and differ only in their initial 
conditions at the start of the simulation. As atmospheric processes are sensitive to 
small perturbations in atmospheric conditions, the use of different initial 
conditions results in a different evolution of natural (unforced) climate variability 
in each simulation. Simulation of the same simulations (i.e., identical external 
forcings) from different initial conditions thus allows for comparison of natural13 

(unforced) versus anthropogenic14 (forced) climate variability and change 
(IPCC 2007 [Physical Science] and Solomon et al. 2011). 

CMIP3 simulations of 20th and 21st century climate have been widely used to 
diagnose and attribute historical climate variability and change and to assess 
potential impacts of climate change over the 21st century, including impacts on 
water and environmental resources at global and regional scales (e.g., see IPCC 
2007 [Physical Science] and IPCC 2007 [AR4 Impacts]). In particular, 
simulations of 21st century climate under the SRES B1, A1B, and A2 emissions 
scenarios constituted the primary source of climate projection information 
available to scientists, engineers, planners, and decision makers around the world 
at the time of their release (IPCC 2007 [Physical Science] and IPCC 2007 [AR4 
Impacts]). (See Section 2.2.1. of this report for a brief summary of emission 
scenarios). 

12 Note that SRES scenarios A1T, A1FI, and B2 are not included in the CMIP3 multi-model dataset. 
13 Natural or unforced climate variability and change result from “internal interactions between components 
of the climate system” (IPCC 2007 [Physical Science]). 
14 Anthropogenic or forced climate variability and change result from human-caused changes to one or more 
component of the global climate system, including human-caused greenhouse gas and aerosol emissions and 
changes in land cover (e.g., deforestation) (IPCC 2007 [Physical Science]). 
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Selecting Climate Projection Information 

4.1.2. CMIP Phase 5 Multi-Model Dataset 

CMIP5 was initiated shortly after the completion of CMIP3 and the related IPCC 
Fourth Assessment Report (AR4). A new set of coordinated model simulations for 
CMIP5 was finalized at an international meeting of the WCRP Working Group on 
Climate Modeling in September 2008 with input from more than 20 climate 
modeling centers from around the world. CMIP5 emissions scenarios were 
developed specifically to address scientific questions that arose as part of the AR4 
assessment process, as well as to improve scientific understanding of the global 
climate system and to provide projections of future climate change for use in 
evaluating climate change impacts by scientists, policy makers, and decision 
makers (Taylor et al. 2009, Taylor et al. 2012, and IPCC 2013). CMIP5 was 
developed in part to contribute to the scientific basis for the IPCC Fifth 
Assessment Report (AR5), published in 2013. 

Similar to CMIP3, CMIP5 defines a standard set of simulations and scenarios to 
address specific scientific questions. Key objectives guiding the development of 
CMIP5 scenarios include (Taylor et al. 2009 and Taylor et al. 2012): 

•	 Evaluate how well climate models are able to simulate recent observed 
climate conditions, including seasonal, interannual, and multi-decadal 
variability as well as multi-decadal trends 

•	 Develop climate projections of future climate change on near-term 
(through 2035) and long-term (through 2100) timescales 

•	 Facilitate improved understanding of inter-model differences in 
projections of future climate, including differences in key feedback 
processes (for example, cloud radiative feedbacks15 and carbon cycle 
feedbacks16) 

15 The term cloud radiative feedbacks refers to the interdependence between clouds and the atmospheric 
energy balance. The atmospheric energy balance affects air temperature, circulation, and movement of water 
vapor in the atmosphere. These factors in turn affect the formation of clouds. The occurrence and properties 
of clouds subsequently affect the amount of solar radiation reflected by and the amount of infrared radiation 
absorbed by the atmosphere, which in turn affects the atmospheric energy balance. 
16 The term carbon cycle feedback refers to the interdependence between the atmospheric concentration of 
carbon dioxide, global climate, and biogeochemical processes that govern the exchange of carbon between 
the atmosphere, land, and ocean: changes in atmospheric concentration of carbon dioxide affect global 
climate, including temperature and precipitation patterns; changes in precipitation and temperature affect 
biogeochemical processes, including metabolic and weathering processes that result in uptake or release of 
carbon from land and ocean systems; changes in carbon uptake and release affect the atmospheric 
concentration of carbon dioxide, which in turn affects global climate. 
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Climate Projection Datasets 

In contrast to CMIP3, which focuses on long-term projections of future conditions 
through the end of the 21st century, CMIP5 includes two sets of projections: 

•	 Near-term projections of the next few decades (through 2035). Near-
term projections are designed to evaluate model skill in forecasting 
climate change on timescales of 10-30 years, when initial states may exert 
some influence on climate trends through their influence on natural 
(unforced) low-frequency climate variability (Taylor et al. 2009). 

•	 Long-term projections through the end of the 21st century (through 
2100). Long-term projections are designed to evaluate the climate system 
response to external forcing by anthropogenic emissions of greenhouse 
gases and aerosols under specified emissions scenarios. 

CMIP5 simulations of 20th and 21st century climate served as the primary 
scientific basis for the IPCC Fifth Assessment Report (AR5) and continue to be 
analyzed by the scientific community. Similar to the CMIP3 simulations, CMIP5 
simulations are being used to diagnose and attribute historical climate variability 
and change and to assess potential impacts of climate change over the 21st century 
(e.g., see IPCC 2013, IPCC 2014 [AR5 Impacts]). CMIP5’s long-term projections 
currently constitute the most current resource for global climate projection 
information. Analogous to CMIP3, four of the long-term projections served as the 
primary basis for analyzing future climate change, including one scenario 
corresponding to historical emissions over the 20th century and three scenarios 
representing possible trajectories of future emissions over the 21st century (RCPs 
4.5, 6.0, and 8.5; see Section 3.1.2. for discussion of RCP emissions scenarios). 

The CMIP5 Multi-Model Dataset of long-term climate projections includes global 
climate projections from a total of 61 GCMs from 27 modeling centers 
representing 15 different countries (PCMDI 2015). Simulations of pre-industrial 
climate, 20th century climate, and 21st century climate under RCPs 4.5 and 8.5 
were provided by nearly all of the participating models. Additional simulations of 
21st century climate under RCPs 2.6 and 6.0 were also provided by many 
participating models. Similar to CMIP3, additional simulations under constant 
and idealized atmospheric forcings were provided by some but not all models. 
Like CMIP3, several models provided multiple simulations for selected scenarios 
to allow comparison of natural (unforced) versus anthropogenic (forced) climate 
variability and change. 
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While dynamical and statistical 
downscaling methods each exhibit
a number of strengths and 
limitations, previous research 
suggests that neither dynamical
nor statistical downscaling 
methods are inherently more
reliable than the other, and that 
technical teams should aim to 
select a downscaling method that
is appropriate for their specific 
study objectives. 

Selecting Climate Projection Information 

4.2. Downscaled Climate Projection Datasets 

While GCMs represent the primary 
tools used to develop climate 
projection information, the coarse 
spatial resolution and inherent bias17 of 
GCMs effectively prohibit direct 
application of GCM results for 
hydrology and water resources 
applications, including analyses of 
climate change impacts on water 
availability. To use GCM outputs— 
e.g., simulated precipitation and
temperature at the native GCM 
resolution—as inputs to hydrologic and 
other resources models, GCM outputs 
must first be downscaled or spatially disaggregated to a finer spatial resolution 
that is consistent with those models (see Section 2.2.3).. In addition, GCM outputs 
may be adjusted to remove biases between simulated and observed climate 
conditions (see Section 2.2.3.). 

Numerous methods have been developed to downscale climate projection 
information for use in climate impact and adaptation studies, including studies in 
the water sector as well as other environmental and resource management sectors. 
As summarized in Section 2.2.3., downscaling methods generally fall into one of 
two broad categories: 

•	 Dynamical methods use finer-resolution regional climate models (RCM)
to simulate the three-dimensional and multivariate response to global
climate change.

•	 Statistical (non-dynamical) methods encompass a broad range of
approaches that rely on observed historical weather and climate as the
basis for deriving finer-resolution climate projections from coarse-
resolution global climate projections. Statistical methods range from
simple change factors and transfer functions, to regression models, to
more physically based weather generators (Wilby et al. 2004).

This section briefly describes eleven downscaled climate projection datasets that 
are publically available and have been previously used to evaluate the impacts of 
climate change on hydrology and water resources in the Western United States. 

17 The term bias refers to differences between simulated and observed climate conditions—e.g., differences 
between simulated and observed mean annual temperature or precipitation over a region of interest. See 
Section 2.2.3. 
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Climate Projection Datasets 

Details of each downscaled dataset are summarized in Table 4. All of the datasets 
summarized here were developed by statistically or dynamically downscaling 
GCM-based global climate projections from the CMIP3 and/or CMIP5 multi-
model datasets over part or all of the CONUS. Datasets differ by: 

• Downscaling method

• Spatial and temporal domains and resolutions

• Combinations of climate variables

• Sets of GCM projections

While the datasets summarized here represent several of the more widely used 
downscaled climate projection datasets for the Western United States, it should be 
noted that these datasets represent a relatively small sample of the downscaling 
methods available in the scientific literature. The statistically downscaled 
datasets, in particular, represent on a small subset of available statistical 
downscaling methods. However, while many other downscaling methods have 
been documented in the scientific literature, these other methods have not been 
used to develop publically-accessible datasets of downscaled climate projections. 

The datasets summarized in this document were selected based on their: 

• Spatial domains encompassing the Western United States

• Availability through publically-accessible websites

• Prior use in water resources impact assessments and planning studies

Comprehensive discussion of downscaling methods presented in the scientific 
literature is beyond the scope of this document. 
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Selecting Climate Projection Information 

Table 4. Summary of Downscaled Climate Projection Datasets 
Spatial 
Domain 

Spatial 
Resolution 

Temporal 
Domain 

Temporal 
Resolution 

Climate 
Variables 

Projections GCMs Emission 
Scenarios 

CMIP3 BCSD CONUS 1/8° by 1/8° 1950-2099 Monthly Total precipitation [mm] 
Mean surface air temperature [°C] 

112 16 SRES B1 
SRES A1B 
SRES A2 

CMIP5 BCSD CONUS 1/8° by 1/8° 1950-2099 Monthly Total precipitation [mm] 
Mean surface air temperature [°C] 
Maximum surface air temperature [°C] 
Minimum surface air temperature [°C] 

234 37 RCP 2.6 
RCP 4.5 
RCP 6.0 
RCP 8.5 

CMIP3 BCCA CONUS 1/8° by 1/8° 1961-2000; 
2046-2065; 
2081-2100 

Daily Total precipitation [mm] 
Maximum surface air temperature [°C] 
Minimum surface air temperature [°C] 

53 9 SRES B1 
SRES A1B 
SRES A2 

CMIP5 BCCA CONUS 1/8° by 1/8° 1950-2099 Daily Total precipitation [mm] 
Maximum surface air temperature [°C] 
Minimum surface air temperature [°C] 

134 20 RCP 2.6 
RCP 4.5 
RCP 6.0 
RCP 8.5 

CMIP5 MACA – 
METDATA v1 

Western US 
(31°-49°N, 
125°-103°W) 

1/24° by 1/24° 1950-2100 Daily Precipitation at surface [kg/m2/s] 
Maximum air temperature near surface [°C] 
Minimum air temperature near surface [°C] 
Maximum relative humidity near surface [-] 
Minimum relative humidity near surface [-] 
Mean specific humidity near surface [-] 
Mean downward shortwave radiation [W/m2] 
Mean wind speed near surface [m/s] 
Mean eastward component of wind [m/s] 
Mean northward component of wind [m/s] 

20 20 RCP 2.6 
RCP 8.5 

CMIP5 MACA – 
METDATA v2 

CONUS 1/24° by 1/24° 1950-2099 Daily Precipitation at surface [kg/m2/s] 
Maximum air temperature near surface [°C] 
Minimum air temperature near surface [°C] 
Maximum relative humidity near surface [-] 
Minimum relative humidity near surface [-] 
Mean specific humidity near surface [-] 
Mean downward shortwave radiation [W/m2] 
Mean eastward component of wind [m/s] 
Mean northward component of wind [m/s] 

20 20 RCP 2.6 
RCP 8.5 
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Climate Projection Datasets 

Spatial 
Domain 

Spatial 
Resolution 

Temporal 
Domain 

Temporal 
Resolution 

Climate 
Variables 

Projections GCMs Emission 
Scenarios 

CMIP5 MACA – 
Livneh v2 

CONUS 1/16° by 1/16° 1950-2099 Daily Precipitation at surface [in/day]; 
Maximum air temperature near surface [°C] 
Minimum air temperature near surface [°C] 
Mean specific humidity near surface [-] 
Mean downward shortwave radiation [W/m2] 
Mean wind speed near surface [m/s] 

20 20 RCP 4.5 
RCP 8.5 

ARRM CONUS, 
Alaska 

1/8° by 1/8° 
(CONUS) 
1/2° by 1/2° 

(Alaska) 

1960-2099 Daily Precipitation at surface [in/day] 
Maximum air temperature near surface [°C] 
Minimum air temperature near surface [°C] 

42 16 SRES B1 
SRES A1B 
SRES A1FI 
SRES A2 

NEX-GDDP Global 1/4° by 1/4° 1950-2100 Daily Maximum air temperature near surface [°C] 
Minimum air temperature near surface [°C] 
Precipitation at surface [mm/day] 

42 21 RCP 4.5 
RCP 8.5 

NARCCAP CONUS 1 
/2° by 1/2° 1971-2000; 

2041-2070 
3-hourly Precipitation at surface [kg/m2/s] 

Air temperature near surface [K] 
Eastward component of wind [m/s] 
Northward component of wind [m/s] 
Air pressure [Pa] 
Specific humidity [-] 
Downwelling shortwave radiation [W/m2] 
(additional variables are provided for most 
models – see website) 

12 4 SRES A2 

USGS 
Dynamically 
Downscaled 
Simulations 
over North 
America 

CONUS, 
Eastern US, 
Western US 

15 km 
(Eastern and 
Western US) 
50 km 
(CONUS) 

1968-2099 6 Hours Temperature 
Precipitation 

4 4 SRES A2 

Units: 
°C = degrees Celcius 
in/day = inches per day 
K = Kelvin 
kg/m2/s= kilograms per meter squared per second, approximately equal to mm per second for liquid water 
m = meter 
mm = millimeter 
m/s = meters per second 
Pa = pascals 
W/m2 = Watts per meter squared 
- = dimensionless (no units) 
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Climate Projection Datasets 

4.2.1. CMIP3 Bias Correction and Spatial Disaggregation
(BCSD) 

Spatial Domain CONUS, plus portions of southern Canada and northern Mexico 
Spatial Resolution 1/8° latitude by 1/8° longitude 

(approximately 12 km north-south by 12 km east-west) 
Temporal Domain 1950 – 2099 
Temporal Resolution Monthly 
Climate Variables Total precipitation [mm] 

Mean surface air temperature [°C] 
Projections 112 
GCMs 16 
Scenarios 3 (SRES B2, A1B, A2) 
URL http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ 

dcpInterface.html 

Background 
Reclamation, in collaboration with six other Federal and non-federal collaborators, 
developed a suite of downscaled climate projections and corresponding hydrology 
projections for use in water resources planning and management (Reclamation et al. 
2013). Within this suite, the CMIP3 Bias Corrected and Spatially Disaggregated 
(BCSD) climate projection dataset provides an ensemble of 112 bias corrected and 
downscaled projections of monthly total precipitation in millimeters per month 
[mm/month] and monthly mean surface air temperature in degrees Celsius [°C] at a 
downscaling target resolution of 1/8° latitude by 1/8° longitude (approximately 12 km by 
12 km at mid-latitudes). 

Methodology 
The CMIP3 monthly BCSD dataset was developed by applying the BCSD downscaling 
methodology to an ensemble of 112 GCM-based global climate projections from the 
CMIP3 multi-model dataset, including projections from 16 different GCMs under three 
SRES emissions scenarios (B1, A1B, and A2). The BCSD methodology is a two-step 
quantile mapping technique applied on a monthly and location-specific basis (Maurer et 
al. 2007 and Reclamation et al. 2013). The first step involves removing biases from the 
raw GCM projections, and the second step involves spatially disaggregating the bias-
corrected GCM projections to the target downscaling resolution. The BCSD procedure 
combines bias-corrected climate variability and trends from coarser-resolution global 
climate projections with long-term average climate conditions (climatology) from 
higher-resolution historical observations to develop a bias-corrected and spatially-
disaggregated climate projection. 
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Selecting Climate Projection Information 

Bias correction is carried out by first aggregating finer-resolution historical 
observations of precipitation and temperature to the coarser GCM resolution. A simple 
quantile-mapping procedure is then applied on a monthly basis to remove biases in 
GCM data such that for each coarse-resolution grid cell, the cumulative distribution 
function (CDF) of monthly GCM values over the bias correction period matches the 
CDF of observed monthly values over this period. 

The gridded historical precipitation and temperature dataset of Maurer et al. (2002) was 
used as the observational basis for bias correction of CMIP3 GCM output, with a bias 
correction period of 1950-1999. The spatial resolution of raw GCM output varies 
among models in the CMIP3 multi-model dataset; for consistency, observations and 
raw CMIP3 GCM output over the target downscaling region were regridded to a 
common spatial resolution of 2.0° latitude by 2.0° longitude prior to bias correction. 
For each 2.0° by 2.0° grid cell, CDFs were developed for observed and simulated 
precipitation and temperature. CDFs were constructed for each month of the year based 
on the historical reference period 1950-1999. Quantile mapping was then applied such 
that the CDFs of bias corrected GCM output for each month and grid cell over the 
period 1950-1999 matched the corresponding observed CDF. The same quantile 
mapping procedure was then applied to the future period 2000-2099. For the future 
period, the bias corrected GCM values reflect the relative changes in mean, variance, 
and other statistical moments between the 20th and 21st centuries as projected by the 
unadjusted GCM output, but mapped onto the observed variance (Reclamation et al. 
2013). 

It should be noted that per the recommendation of Wood et al. (2004), the linear trend 
in GCM temperatures over the future period was removed prior to applying bias 
correction. The trend was subsequently imposed onto the bias-corrected temperatures 
for the future period. The trend was removed to ensure that bias correction does not 
alter projected interannual (year-to-year) variability over the future period, and to 
ensure that the downscaled dataset preserves the future trends in future temperature 
from the global projections. As precipitation trends in global projections are generally 
weak, trends in future precipitation were not removed prior to bias correction. 

Spatial disaggregation was carried out over the full target region for each monthly time-
step by merging an historical spatial climatology with the spatially-disaggregated 
deviation for that time-step. An historical spatial climatology was developed for each 
month of the year based on the monthly mean of the observed historical climate 
dataset—i.e., the dataset of Maurer et al. (2002)—at both the GCM resolution and the 
target downscaling resolution. Deviation factors were then computed at each monthly 
time-step for each GCM grid cell. 

Precipitation factors are computed as the ratio of the bias-corrected GCM precipitation 
for each month divided by the precipitation value from the historical spatial 
climatology for the corresponding grid cell and month; temperature factors are 
computed as the difference between the corrected GCM temperature and the historical 
spatial climatology. Deviation factors were interpolated to the downscaling target 
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Climate Projection Datasets 

resolution (1/8° latitude by 1/8° longitude), and then applied to the historical spatial 
climatology at the downscaling target resolution. 

Usage Notes 
The BCSD methodology is conceptually simple and computationally efficient, thus 
making it easy to implement over relatively large areas and for a large number of GCM 
projections. Recent analysis and comparison of downscaling techniques by Gutmann et 
al. (2014) also demonstrates that the BCSD methodology introduces few biases with 
respect to projected changes precipitation and temperature from the raw GCM results 
compared to other comparable statistical downscaling methods when considered at the 
monthly timescale. However, if daily data are required, temporal disaggregation from 
monthly to daily values based on observed historical weather sequences does not allow 
for changes in the frequency and duration of weather events. As a result, the BCSD 
method does not account for projected changes in the frequency, duration, and intensity 
of precipitation events. In addition, for this dataset, the BCSD methodology preserves 
GCM-projected trends in projected temperature, but not in projected precipitation (see 
above). This results in slight differences between projected precipitation trends between 
the BCSD CMIP3 dataset and the corresponding GCM projections. 

Similar to all statistical downscaling approaches, the BCSD method exhibits two 
important limitations. First, the stationarity assumption inherent in all statistical 
downscaling methods limits the ability to represent projected changes in spatial patterns 
of weather and climate variability (see Section 2.2.3.). Second, the reliance of statistical 
downscaling methods on high-quality, high-resolution observations of historical climate 
conditions is likely to result in errors over areas with widespread sparse measurements, 
extensive irrigated agriculture, and/or complex topography. 
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Selecting Climate Projection Information 

4.2.2. CMIP5 Bias Correction and Spatial Disaggregation 
(BCSD) 

Spatial Domain CONUS, plus portions of southern Canada and northern Mexico 
Spatial Resolution 1/8° latitude by 1/8° longitude 

(approximately 12 km north-south by 12 km east-west) 
Temporal Domain 1950 – 2099 
Temporal Resolution Monthly 
Climate Variables Total precipitation [mm] 

Mean surface air temperature [°C] 
Maximum surface air temperature [°C] 
Minimum surface air temperature [°C] 

Projections 234
 

GCMs 37
 

Scenarios 4 (RCPs 2.6, 4.5, 6.0, and 8.5)
 
URL http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
 

dcpInterface.html 

Background 
Reclamation, in collaboration with six Federal and non-federal collaborators, developed 
a suite of downscaled climate projections and corresponding hydrology projections for 
use in water resources planning and management (Reclamation et al. 2013). Within this 
suite, the CMIP5 monthly BCSD climate projection dataset provides an ensemble of 
234 bias corrected and downscaled projections of monthly total precipitation 
[mm/month] and monthly mean, maximum, and minimum surface air temperature [°C] 
at a downscaling target resolution of 1/8° latitude by 1/8° longitude (approximately 12 km 
by 12 km at mid-latitudes). 

Methodology and Usage Notes 
The CMIP5 BCSD dataset was developed using the same procedure as the CMIP3 
BCSD dataset (see Section 4.2.1. for a summary of the BCSD methodology and usage 
notes). 
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Climate Projection Datasets 

4.2.3. CMIP3 Bias-Correction and Constructed Analogue
(BCCA) 

Spatial Domain CONUS, plus portions of southern Canada and northern Mexico 
Spatial Resolution 1/8° latitude by 1/8° longitude 

(approximately 12 km north-south by 12 km east-west) 
Temporal Domain 1961-2000; 2046-2065; 2081-2100 
Temporal Resolution Daily 
Climate Variables Total precipitation [mm] 

Maximum surface air temperature [°C] 
Minimum surface air temperature [°C] 

Projections 53 
GCMs 9 
Scenarios 3 (SRES B2, A1B, and A2) 
URL http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ 

dcpInterface.html 

Background 
Reclamation, in collaboration with six Federal and non-federal collaborators, developed 
a suite of downscaled climate projections and corresponding hydrology projections for 
use in water resources planning and management (Reclamation et al. 2013). Within this 
suite, the CMIP3 Bias Corrected Constructed Analogues (BCCA) (version 2) dataset 
provides an ensemble of 53 bias corrected and downscaled projections of daily total 
precipitation [mm/day] and daily maximum and minimum surface air temperature [°C] 
at a downscaling target resolution of 1/8° latitude by 1/8° longitude (approximately 12 km 
by 12 km at mid-latitudes). 

Methodology 
The CMIP3 daily BCCA dataset was developed by applying the BCCA downscaling 
methodology to an ensemble of 53 GCM-based global climate projections from the 
CMIP3 multi-model dataset, including projections from nine different GCMs under 
three emissions scenarios (SRES B1, A1B, and A2). The number of GCM projects and 
the time periods included in the CMIP3 BCCA dataset were limited by the availability 
of daily GCM output in CMIP3 multi-model dataset. 

The BCCA methodology is a two-step technique applied on a daily basis. Similar to the 
monthly BCSD methodology, the first step in the BCCA procedure involves applying a 
simple quantile mapping technique to remove biases from the GCM projections at each 
GCM grid cell. The second step involves downscaling the bias-corrected GCM 
projections to the target resolution of 1/8° latitude by 1/8° longitude using a constructed 
analogue approach (Hidalgo et al. 2008 and Reclamation et al. 2013). 

Bias correction was carried out by first aggregating historical observations of 
precipitation and temperature to the GCM resolution, and then applying a simple 
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Selecting Climate Projection Information 

quantile-mapping procedure to remove biases in GCM data such that the cumulative 
distribution function (CDF) of daily GCM values matches the CDF of observed values. 
For the BCCA methodology, bias correction was applied at a daily timestep relative to 
Julian date, with CDFs developed for each day of the year based on daily precipitation 
and temperature values pooled over a 31-day window centered on that day 
(Reclamation 2013). For example, the CDF for March 1 was developed based on daily 
values over the window from February 14 through March 16. The gridded historical 
precipitation and temperature dataset of Maurer et al. (2002) was used as the 
observational basis for bias correction of CMIP3 GCM output. 

For consistency with the limited availability of daily output from CMIP3, bias 
correction was based on observations over the period 1961-1999. The spatial resolution 
of raw GCM output varies among models in the CMIP3 multi-model dataset; for 
consistency, observations and raw CMIP3 GCM output were regridded to a common 
spatial resolution of 2.0° latitude by 2.0° longitude prior to bias correction. For each 
2.0° by 2.0° grid cell over the target downscaling region, CDFs were developed for 
each day of the year for observed and simulated daily precipitation and temperature. 
Quantile mapping was then applied such that the CDFs of GCM output for each day 
and grid cell matched the corresponding observed CDF. 

It should be noted that the linear trend in GCM temperatures over the future period was 
removed prior to applying bias correction, similar to the CMIP3 and CMIP5 BCSD 
datasets (Sections 4.2.1. and 4.2.2.), per the recommendation of Wood et al. (2004). 
The trend was subsequently imposed onto the bias-corrected temperatures for the future 
period. The trend was removed to ensure that bias correction does not alter projected 
interannual variability over the future period, and to ensure that the downscaled dataset 
preserves the future trends in future temperature from the global projections. As 
precipitation trends in global projections are generally weak, trends in future 
precipitation were not removed prior to bias correction. 

Spatial downscaling was then carried out using a constructed analogues approach 
(Hidalgo et al. 2008 and Reclamation et al. 2013). The constructed analogues approach 
involves identifying a set of observed daily climate patterns at the GCM resolution such 
that a weighted linear combination of observed daily patterns closely approximates the 
bias corrected GCM pattern. For any given day in the GCM record, downscaling is 
achieved based on the corresponding weighted linear combination of observed daily 
conditions at the target downscaling resolution. For example, the bias corrected GCM 
precipitation pattern for March 1 is used to identify a set of observed coarse-resolution 
daily precipitation patterns that most closely resemble the March 1 GCM precipitation 
pattern, where similarity between observed and GCM precipitation patterns is based on 
the spatial root mean square error (Hidalgo et al. 2008). A set of weights (one for each 
of the selected observed daily precipitation patterns) is then computed via regression 
such that the weighted (linear) sum of observed daily precipitation patterns 
approximates the March 1 GCM precipitation pattern. Finally, the downscaled GCM 
precipitation pattern is computed as the weighted sum of the selected observed 
precipitation patterns at the target downscaling resolution. 
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Climate Projection Datasets 

In implementing the constructed analogues approach, a set of 30 observed patterns were 
selected to construct each daily analogue. For each daily GCM pattern, 30 observed 
patterns were selected from a 91-day seasonal window encompassing the date of the 
target GCM pattern plus 45 days before and after that date. Analogues were constructed 
based on climate anomaly patterns, where anomalies were calculated as the difference 
between the pattern on the target date and the mean pattern over the period 1961-1999. 
Analogue construction was coordinated for daily maximum and minimum temperatures 
and carried out independently for precipitation. Lastly, it should be noted that 
precipitation was transformed to the square root of precipitation before constructing 
anomalies and analogues to reduce potential biases associated with the heavily skewed 
distribution of daily precipitation over many regions. 

Usage Notes 
Similar to other statistical downscaling methods, the BCCA methodology is relatively 
computationally efficient and, therefore, readily applied to large areas and large 
numbers of GCM projections. However, recent analyses have demonstrated that the 
BCCA methodology exhibits significant dry biases, particularly when applied to large 
regions such as the CONUS (e.g., Gutmann et al. 2014). As suggested by Gutmann et 
al. (2014), “BCCA is likely to select analogue days with smoother spatial patterns, 
resulting in a decrease of larger precipitation events . . . and these larger events will 
affect mean annual totals substantially.” Conversely, BCCA also exhibits a higher wet-
day fraction (fraction of days exhibiting precipitation) than observed (Gutmann et al. 
2014). Both of these artifacts have the potential to significantly bias subsequent 
analyses of hydrology and water resources under climate change. In addition, for this 
dataset, the BCCA methodology preserves GCM-projected trends in projected 
temperature, but not in projected precipitation (see above). This results in slight 
differences between projected precipitation trends between the BCCA CMIP3 dataset 
and the corresponding GCM projections. 

Similar to all statistical downscaling approaches, the BCCA method exhibits two 
important limitations. First, the stationarity assumption inherent in all statistical 
downscaling methods limits the ability to represent projected changes in spatial patterns 
of weather and climate variability (see Section 2.2.3.). Second, the reliance of statistical 
downscaling methods on high-quality, high-resolution observations of historical climate 
conditions is likely to result in errors over areas with widespread sparse measurements, 
extensive irrigated agriculture, and/or complex topography. 
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Selecting Climate Projection Information 

4.2.4. CMIP5 Bias-Correction and Constructed Analogue
(BCCA) 

Spatial Domain CONUS, plus portions of southern Canada and northern Mexico 
Spatial Resolution 1/8° latitude by 1/8° longitude 

(approximately 12 km north-south by 12 km east-west) 
Temporal Domain 1950-2099 
Temporal Resolution Daily 
Climate Variables Total precipitation [mm] 

Maximum surface air temperature [°C] 
Minimum surface air temperature [°C] 

Projections 134 
GCMs 20 
Scenarios 4 (RCPs 2.6, 4.5, 6.0, and 8.5) 
URL http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ 

dcpInterface.html 

Background 
Reclamation, in collaboration with six Federal and non-federal collaborators, developed 
a suite of downscaled climate projections and corresponding hydrology projections for 
use in water resources planning and management (Reclamation et al. 2013). Within this 
suite, the CMIP5 BCCA (version 2) dataset provides an ensemble of 134 bias corrected 
and downscaled projections of daily total precipitation [mm/day] and daily maximum 
and minimum surface air temperature [°C] at a downscaling target resolution of 1/8° 
latitude by 1/8° longitude (approximately 12 km by 12 km at mid-latitudes). 

Methodology 
The CMIP5 BCCA dataset was developed using the same procedure as the CMIP3 
BCCA dataset, described in Section 4.2.3, with two exceptions. First, the historical 
period used in the bias correction step for the CMIP5 BCCA dataset is 1950-1999, 
whereas the historical period used for the CMIP3 dataset is 1961-1999. The shorter 
period was used for the CMIP3 dataset due to the limited availability of daily GCM 
output in the CMIP3 multi-model dataset. Second, downscaled daily maximum and 
minimum temperature fields for the CMIP5 dataset were constructed by applying the 
bias correction and constructed analogue steps to daily maximum temperature and daily 
diurnal temperature range (DTR, calculated as the difference between daily maximum 
and minimum temperatures). Daily minimum temperature was subsequently calculated 
by subtracting the BCCA DTR from the BCCA daily maximum temperature. By 
contrast, the bias correction and constructed analogue steps were applied directly to 
daily maximum and minimum temperatures for the CMIP3 BCCA dataset. 
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Climate Projection Datasets 

Usage Notes 
The CMIP5 BCCA dataset was developed using the same overall procedure as the 
CMIP3 BCCA dataset; refer to Section 4.2.3. for general BCCA usage notes. 

In addition to the usage notes provided in Section 4.2.3, application of the BCCA 
method to daily maximum temperature and DTR in the CMIP5 dataset—rather than to 
daily maximum and minimum temperatures as in the CMIP3 dataset—addresses the 
occasional occurrence of downscaled minimum temperature exceeding downscaled 
maximum temperature. When this occurred in the CMIP3 dataset, the values were 
simply switched so that the maximum temperature would be the greater of the two 
temperature values. See Reclamation et al. 2013 for details. 
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Selecting Climate Projection Information 

4.2.5. CMIP5 Multivariate Adaptive Constructed Analogue
(MACA) – METDATA v1 

Spatial Domain	 Western United States (31.02°-49.1°N, 124.77°-103.02°W) 
Spatial Resolution	 1/24° latitude by 1/24° longitude 

(approximately 4 km north-south by 4 km east-west) 
Temporal Domain	 1950-2100 
Temporal Resolution	 Daily 
Climate Variables	 Precipitation at surface [kg/m2/s] 

Maximum air temperature near surface [°C] 
Minimum air temperature near surface [°C] 
Maximum relative humidity near surface [-] 
Minimum relative humidity near surface [-] 
Mean specific humidity near surface [-] 
Mean downward shortwave radiation at surface [W/m2] 
Mean wind speed near surface [m/s] 
Mean eastward component of wind near surface [m/s] 
Mean eastward component of wind near surface [m/s] 

Projections	 20 
GCMs	 20 
Scenarios	 2 (RCPs 4.5 and 8.5) 
URL	 http://maca.northwestknowledge.net/index.php 

Background 
The Multivariate Adaptive Constructed Analogues (MACA) method is a statistical method 
for downscaling daily GCM outputs of multiple climate variables from their coarse native 
resolution to a finer spatial resolution that is applicable to impact modeling, including 
analysis of climate change impacts on water and environmental resources at regional and 
local scales. There are three MACA datasets available: MACA METDATA v1, MACA 
METDATA v2, and MACA Livneh v2. The different MACA datasets use different 
observational datasets in the statistical downscaling procedure. The different datasets also 
encompass different spatial domains and exhibit minor differences in implementing the 
MACA method. 

Methodology 
The MACA METDATA v1 dataset was developed by applying the MACA method to 
daily outputs from 20 GCM projections in the CMIP5 multi-model dataset over the 
Western United States using the University of Idaho Gridded Surface Meteorology 
Dataset (METDATA). The MACA METDATA v1 dataset was developed and made 
available to the public through a collaborative effort by the University of Idaho, Climate 
Impacts Research Consortium (CIRC), Northwest Knowledge Network (NKN), Regional 
Approaches to Climate Change – Pacific Northwest Agriculture (REACCH), Northwest 
Climate Science Center, and Southeast Climate Science Center (see 
maca.northwestknowledge.net for details). 
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Climate Projection Datasets 

The MACA METDATA v1 dataset was developed by applying the MACA method to 
daily outputs from 20 GCM projections in CMIP5 multi-model dataset to provide 
downscaled projections of daily precipitation, maximum and minimum air temperature, 
maximum and minimum relative humidity, mean specific humidity, mean downward 
shortwave radiation, and wind speed over the Western United States (31.02°-49.1°N, 
124.77°-103.02°W). The MACA method is designed to downscale GCM outputs to finer 
spatial resolutions that “captures both the scales relevant for impact modeling while 
preserving time-scales and patterns of meteorology simulated by GCMs” (MACA 2015). 

The MACA method requires daily observations of all variables to be downscaled at the 
target downscaling resolution, along with daily GCM outputs for all variables. The 
MACA method is then implemented as a series of six steps, summarized below; complete 
details of the method are provided by Abatzoglou and Brown (2011). 

Step 1: Regrid to Common Coarse Resolution 
Regrid observations and GCM outputs to a common coarse-resolution grid. For the 
MACA METDATA v1 dataset, a coarse-resolution grid of 1.0° latitude by 1.0° longitude 
was used. 

Step 2: Remove Trends (Epoch Adjustment) 
Remove seasonal and annual trends at each grid point. For the MACA METDATA v1 
dataset, trends are calculated using a 21-day and 31-year mean at each coarse-resolution 
grid cell. 

Step 3: Coarse Resolution Bias Correction 
Bias correct cumulative distribution functions (CDFs) of coarse-resolution GCM outputs 
for each variable using the Equidistant Quantile Mapping (EDCDFm) method of Li et al. 
(2010). CDFs are developed for each grid cell and for each day of the year based on all 
years of data (historical and future) using a 15-day window around the target day. The 
EDCDFm method adjusts the historical GCM CDF to match the observed CDF, then 
adjusts the future GCM CDF to preserve differences between historical and future GCM 
CDFs. As implemented in the MACA method, the bias correction preserves additive 
future differences for temperature and relative differences in precipitation (i.e., ratio of 
future to historical precipitation). 

Step 4: Constructed Analogues 
The constructed analogues approach involves identifying a set of coarse-resolution 
observed daily climate patterns such that a weighted linear combination of observed daily 
patterns closely approximates the bias corrected coarse-resolution GCM pattern. For any 
given day in the GCM record, downscaling is achieved based on the corresponding 
weighted linear combination of observed daily conditions at the target downscaling 
resolution. For example, the bias corrected GCM precipitation pattern for March 1 is used 
to identify a set of observed coarse-resolution daily precipitation patterns that most closely 
resemble the March 1 GCM precipitation pattern, where similarity between observed and 
GCM precipitation patterns is based on the spatial root mean square error (Hidalgo et al. 
2008). A set of weights (one for each of the selected observed daily precipitation patterns) 
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Selecting Climate Projection Information 

is then computed via matrix inversion such that the weighted (linear) sum of observed 
daily precipitation patterns approximates the March 1 GCM precipitation pattern. Finally, 
the downscaled GCM precipitation pattern is computed as the weighted sum of the 
selected observed precipitation patterns at the target downscaling resolution. 
Implementation of the constructed analogues approach in the MACA method uses a set of 
100 observed patterns to construct each daily analogue. For each daily GCM pattern, 100 
observed patterns were selected from a 91-day seasonal window encompassing the date of 
the target GCM pattern plus 45 days before and after that date. 

Step 5: Replace Trends (Epoch Replacement) 
For each variable for which trends were removed in Step 2, trends are replaced to ensure 
consistency with GCM data. 

Step 6: Fine Bias Correction 
Bias correct CDFs of downscaled GCM outputs (i.e., constructed analogues) using the 
same procedure as Step 3, but applied using fine-resolution observations and GCM 
outputs. 

Usage Notes 
MACA downscaled climate projections have been used in recent climate change impact 
analyses, including analyses of climate change impacts on water and environmental 
resources in the Western United States. Similar to other statistical downscaling methods, 
the MACA method is relatively computationally efficient and therefore readily applied to 
large areas and large numbers of GCM projections. 

The MACA method has also been shown to compare well to other daily downscaling 
methods and to be preferable over daily downscaling methods that require direct 
interpolation of meteorological fields (Abatzoglou and Brown 2011). In addition, the 
MACA method avoids the assumption of stationarity in daily weather patterns that is 
inherent in some downscaling methods that rely on resampling of historical daily weather 
patterns to obtain downscaled daily climate projections. The method also provides 
downscaled projections of future humidity and winds, which strongly affect 
evapotranspiration (ET) and thus agricultural water demands. 

However, similar to the BCCA method, the MACA method is sensitive to the spatial 
extent of the chosen domain, with potential biases occurring when applied over large 
domains such as the CONUS, particularly for precipitation (Fowler et al. 2007, 
Abatzoglou and Brown 2011, and Gutmann et al. 2014). The method also assumes that 
GCMs are capable of simulating realistic synoptic weather patterns, and that the 
relationship between coarse-resolution and finer-resolution weather patterns remains 
constant under future climate conditions (Abatzoglou and Brown 2011). Finally, as with 
other statistical downscaling methods, the MACA methodology relies on the availability 
of high-quality, high-resolution gridded observations. Errors and uncertainties in gridded 
observations result in corresponding errors in downscaled projections, particularly over 
areas with few gages and complex topography. 
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Climate Projection Datasets 

4.2.6. CMIP5 Multivariate Adaptive Constructed Analogue
(MACA) – METDATA v2 

Spatial Domain	 CONUS 
Spatial Resolution	 1/24° latitude by 1/24° longitude 

(approximately 4 km north-south by 4 km east-west) 
Temporal Domain	 1950-2099 
Temporal Resolution	 Daily 
Climate Variables	 Precipitation at surface [kg/m2/s] 

Maximum air temperature near surface [°C] 
Minimum air temperature near surface [°C] 
Maximum relative humidity near surface [-] 
Minimum relative humidity near surface [-] 
Mean specific humidity near surface [-] 
Mean downward shortwave radiation at surface [W/m2] 
Mean wind speed near surface [m/s] 
Mean eastward component of wind near surface [m/s] 
Mean eastward component of wind near surface [m/s] 

Projections	 20 
GCMs	 20 
Scenarios	 2 (RCPs 4.5 and 8.5) 
URL	 http://maca.northwestknowledge.net/index.php 

Background 
The MACA method is a statistical method for downscaling daily GCM outputs of 
multiple climate variables from their coarse native resolution to a finer spatial 
resolution that is applicable to impact modeling, including analysis of climate change 
impacts on water and environmental resources at regional and local scales. There are 
three MACA datasets available: MACA METDATA v1, MACA METDATA v2, and 
MACA Livneh v2. The different MACA datasets use different observational datasets in 
the statistical downscaling procedure. The different datasets also encompass different 
spatial domains and exhibit minor differences in implementing the MACA method. 

Methodology 
The MACA METDATA v2 dataset was developed by applying the MACA method to 
daily outputs from 20 GCM projections in the CMIP5 multi-model dataset over the 
CONUS using the University of Idaho Gridded Surface Meteorology Dataset 
(METDATA). The MACA METDATA v2 dataset was developed and made available 
to the public through a collaborative effort by the University of Idaho, Climate Impacts 
Research Consortium (CIRC), Northwest Knowledge Network (NKN), Regional 
Approaches to Climate Change – Pacific Northwest Agriculture (REACCH), Northwest 
Climate Science Center, and Southeast Climate Science Center (see 
maca.northwestknowledge.net for details). 
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Selecting Climate Projection Information 

The MACA METDATA v2 dataset was developed using the same procedure as the 
MACA METDATA v1 dataset, described in Section 3.2.5, with the following 
exceptions listed below. For additional details, refer to the MACA website: 
http://maca.northwestknowledge.net/MACAmethod.php. 

•	 The MACA method was applied over the entire CONUS in the v2 dataset, 
compared to the Western United States in the v1 dataset. 

•	 Trend removal (Step 2) was applied to all variables in the v2 dataset, compared 
to temperature and wind variables in the v1 dataset. 

•	 Trend removal (Step 2) was applied to both the historical and future GCM 
outputs in the v2 dataset, compared to just the future GCM outputs in the v1 
dataset. 

•	 Trend removal was applied a second time following coarse resolution bias 
correction (Step 3) of multiplicative variables (precipitation, specific humidity, 
and wind speed) in the v2 dataset as coarse resolution bias correction may affect 
trends; secondary trend removal was not applied in the v1 dataset. 

•	 Constructed analogues (Step 4) were developed from the 10 most similar 
observed spatial patterns in the v2 dataset, compared to the 100 most similar 
observed patterns in the v1 dataset. 

•	 The error in the coarse-resolution constructed analogue was interpolated to the 
finer-resolution grid and added to the finer-resolution constructed analogue in 
the v2 dataset. By contrast, the error in coarse-resolution constructed analogues 
was not included in the v1 dataset. 

•	 Finer resolution bias correction (Step 6) of maximum and minimum air 
temperatures was carried out jointly with precipitation in the v2 dataset; finer 
resolution bias correction was carried out independently for all variables in the 
v1 dataset. 

Usage Notes 
See usage notes for MACA METDATA v1 dataset in Section 4.2.5. 
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Climate Projection Datasets 

4.2.7. CMIP5 Multivariate Adaptive Constructed Analogue (MACA) – Livneh v2 

Spatial Domain CONUS, plus Columbia River Basin in Canada 
Spatial Resolution 1/16° latitude by 1/16° longitude 

(approximately 6 km north-south by 6 km east-west) 
Temporal Domain 1950-2099 
Temporal Resolution Daily 
Climate Variables Precipitation at surface [in/day] 

Maximum air temperature near surface [°C]
 
Minimum air temperature near surface [°C]
 
Mean specific humidity near surface [-]
 
Mean downward shortwave radiation at surface [W/m2]
 
Mean wind speed near surface [m/s]
 

Projections 20 
GCMs 20 
Scenarios 2 (RCPs 4.5 and 8.5) 
URL http://maca.northwestknowledge.net/index.php 

Background 
The MACA method is a statistical method for downscaling daily GCM outputs of 
multiple climate variables from their coarse native resolution to a finer spatial 
resolution that is applicable to impact modeling, including analysis of climate change 
impacts on water and environmental resources at regional and local scales. There are 
three MACA datasets available: MACA METDATA v1, MACA METDATA v2, and 
MACA Livneh v2. The different MACA datasets use different observational datasets in 
the statistical downscaling procedure. The different datasets also encompass different 
spatial domains and exhibit minor differences in implementing the MACA method. 

Methodology 
The MACA Livneh v2 dataset was developed using the same procedure as the MACA 
METDATA v2 dataset, described in Section 4.2.6. 

The MACA Livneh v2 dataset was developed by applying the MACA method to daily 
outputs from 20 GCM projections in the CMIP5 multi-model dataset over the CONUS, 
plus the portion of the Columbia River Basin in Canada, using the gridded daily 
meteorology dataset of Livneh et al. (2013). The MACA Livneh v2 dataset was 
developed and made available to the public through a collaborative effort by the 
University of Idaho, Climate Impacts Research Consortium (CIRC), Northwest 
Knowledge Network (NKN), Regional Approaches to Climate Change – Pacific 
Northwest Agriculture (REACCH), Northwest Climate Science Center, and Southeast 
Climate Science Center (see maca.northwestknowledge.net for details). 

Usage Notes 
See usage notes for MACA METDATA v1 dataset in Section 3.2.5. 
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Selecting Climate Projection Information 

4.2.8. Asynchronous Regional Regression Model (ARRM) 
Spatial Domain CONUS, plus southern Canada, northern Mexico, and Alaska 
Spatial Resolution 1/8° latitude by 1/8° longitude over CONUS, S. Canada, N. Mexico 

(approximately 12 km north-south by 12 km east-west)
1/2° latitude by 1/2° longitude over Alaska 
(approximately 50 km north-south by 35 km east-west) 

Temporal Domain 1960-2099 
Temporal Resolution Daily 
Climate Variables Precipitation at surface [in/day] 

Maximum air temperature near surface [°C] 
Minimum air temperature near surface [°C] 

Projections 42 
GCMs 16 
Scenarios 4 (SRES B1, A1B, A1FI, A2) 
URL http://cida.usgs.gov/thredds/catalog.html?dataset=cida.usgs.gov/thre 

dds/dcp/conus_pr 

Background 
The Asynchronous Regional Regression Model (ARRM) is a statistical downscaling model 
that defines quantitative relationships between daily observed and simulated surface 
variables, with a particular emphasis on capturing simulated changes in extremes (Stoner et 
al. 2012). The ARRM downscaled climate projection dataset was developed by applying 
the ARRM method to downscale projected daily precipitation and daily maximum and 
minimum temperatures from 16 different GCMs and 4 future emissions scenarios from the 
CMIP3 multi-model dataset. Downscaled projections cover the CONUS, southern Canada, 
and northern Mexico at a downscaling target resolution of 1/8° latitude by 1/8° longitude 
(approximately 12 km by 12 km at mid-latitudes) and Alaska at a downscaling target 
resolution of 1/2° latitude by 1/2° longitude (approximately 35 km by 20 km over central 
Alaska). 

Methodology 
Regression-based methods are based on developing quantitative relationships between 
variables based on their covariance, where covariance is a statistical measure of the extent 
to which two variables vary together. In most climate and hydrology applications, 
regression-based methods are used to represent the temporal variability of one variable 
with that of another (e.g., a regression model may be used to estimate precipitation at one 
location based on precipitation at another nearby location or locations). By contrast, 
ARRM is an extension of the quantile regression method (Koenker and Basset 1978), 
which estimates relationship between the quantiles18 of two datasets rather than between 
the temporal variability of the datasets (i.e., the relationship between the quantiles of one 
variable and those of another variable). As summarized by Stoner et al. (2012): 

18 Quantiles are values taken at regular intervals from the inverse function of the cumulative distribution function 
(CDF) of a random variable such that the population of the random variable is divided into equal-size segments 
(Stoner et al. 2012). 
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Climate Projection Datasets 

“A model can be constructed by regressing the value at rank ni of the simulated 
vector onto the value of the same rank of the vector containing observed values, for 
i=1 [to] N . . . This regression is asynchronous, i.e., data values that are regressed 
against each other did not necessarily occur the same calendar day, but rather 
correspond by quantile or rank. The regression model derived from historical 
[GCM] simulations and historical observations can then be applied to future 
[GCM] simulations, to project downscaled future conditions.” 

To account for non-linearity in the relationship between observed and simulated climate 
conditions, ARRM uses a piece-wise approach to develop regression relationships 
between GCM outputs (predictor) and historical observations (predictand). To avoid 
unrealistically large or small extreme values, quality control measures are applied to the 
observational dataset prior to applying the ARRM methodology. The magnitude of 
ARRM outputs (i.e., downscaled climate variables) is also constrained to avoid spurious 
results that can arise due to the limited number of data points in the tails of the 
distribution and the sensitivity of regression slopes to individual outliers in the tails 
(Stoner et al. 2012). 

The ARRM downscaling dataset was developed based on the gridded observational 
dataset of Maurer et al. (2002). Piece-wise quantile regression relationships developed 
using observed and simulated data over the period 1960-1999. These relationships were 
then used to downscale historical and future GCM output for the period 1960-2099. The 
resulting dataset provides daily downscaled precipitation, maximum air temperature, and 
minimum air temperature for the period 1960-2099 at 1/8° resolution over the CONUS, 
southern Canada, and northern Mexico and at 1/2° resolution over Alaska. 

Usage Notes 
The ARRM methodology is conceptually simple and computationally efficient, thus 
making it easy to implement over relatively large areas and for a large number of GCM 
projections. The piece-wise approach to developing regression relationships used by 
ARRM improves downscaling of extreme events over the historical climate period (see 
Stoner et al. 2012). However, the ARRM method may alter projected trends in 
temperature and precipitation—i.e., trends in ARRM downscaled projections may differ 
from trends in the corresponding raw GCM projection prior to downscaling. The overall 
advantages of the ARRM method for downscaling projected climate conditions 
compared to other statistical downscaling methods are not well understood at this time. 

Similar to all statistical downscaling approaches, the ARRM method exhibits two 
important limitations. First, the stationarity assumption inherent in all statistical 
downscaling methods (see Section 2.2.3.) limits the ability to represent projected 
changes in weather and climate variability. Second, the reliance of statistical 
downscaling methods on high-quality, high-resolution observations of historical climate 
conditions is likely to result in errors over areas with widespread sparse measurements, 
extensive irrigated agriculture, and/or complex topography. 
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Selecting Climate Projection Information 

4.2.9. NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) 
Spatial Domain Global
 
Spatial Resolution 1/4° latitude by 1/4° longitude
 

(approximately 25 km north-south by 25 km east-west)
 
Temporal Domain 1950-2100
 

Temporal Resolution Daily
 

Climate Variables Precipitation at surface [in/day]
 
Maximum air temperature near surface [°C]
 
Minimum air temperature near surface [°C]
 

Projections 42
 

GCMs 21
 

Scenarios 2 (RCP 4.5 and 8.5)
 
URL https://cds.nccs.nasa.gov/nex-gddp/
 

Background 
The National Aeronautics and Space Administration (NASA) Earth Exchange Global Daily 
Downscaled Projections (NEX-GDDP) contains statistically downscaled climate 
projections from CMIP5 multi-model archive. NEX-GDDP includes downscaled 
projections under RCP 4.5 and RCP 8.5 from the 21 models for which daily scenarios were 
produced and distributed under CMIP5. Each climate projection includes daily maximum 
and minimum temperature and daily precipitation for the period between 1950-2100. The 
target downscaling domain encompasses global and areas at a target downscaling 
resolution of 1/4° latitude by 1/4° longitude (approximately 24 km by 24 km at mid-latitudes). 

Methodology 
The NEX-GDDP dataset is based on the BCSD downscaling method (see Section 4.2.1. for 
a summary of the BCSD method). Rather than being applied at a monthly timescale as 
described in Section 4.2.1, however, NEX-GDDP is based on application of the BCSD 
method at a daily timescale. Similar to the bias correction portion of the BCCA method 
(Section 4.2.3.), BCSD was applied on a for each Julian day by pooling daily temperature 
and precipitation values over a 31-day window (target day plus 15 days prior and after). 
Otherwise, the BCSD method is applied as described in Section 4.2.1. 

NEX-GDDP applied the BCSD method using gridded historical precipitation and 
temperature data from the Global Meteorological Forcing Dataset (GMFD) for Land 
Surface Modeling developed by the Terrestrial Hydrology Research Group at Princeton 
University (Sheffield et al. 2006). The dataset is available at a spatial resolution of 0.25°, 
0.5°, and 1.0°. The temporal resolution is available at 3-hour, daily, and monthly timesteps. 
The NEX-GDDP dataset used the 0.25° historical data for the climate variables for the 
period 1950-2005. 

Usage Notes 
The NEX-GDDP dataset is based on the BCSD downscaling method (see Section 4.2.1. 
for usage notes). 
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Climate Projection Datasets 

4.2.10. NASA Earth Exchange Downscaled 30 Arc-Second 
CMIP5 Climate Projections (NEX-DCP30) 

Spatial Domain CONUS, plus portions of southern Canada and northern Mexico 
Spatial Resolution 30 arcseconds latitude by 30 arcseconds longitude 

(approximately 800 m north-south by 800 m east-west) 
Temporal Domain 1950-2100 
Temporal Resolution Monthly 
Climate Variables Precipitation at surface [in/day] 

Maximum air temperature near surface [°C] 
Minimum air temperature near surface [°C] 

Projections 42 
GCMs 21 
Scenarios 2 (RCP 4.5 and 8.5) 
URL https://cds.nccs.nasa.gov/nex-gddp/ 

Background 
The National Aeronautics and Space Administration (NASA) Earth Exchange 
Downscaled 30 Arc-Second Climate Projections (NEX-DCP30) dataset contains 
statistically downscaled climate projections from CMIP5 multi-model archive. NEX­
GDDP includes downscaled projections under RCP 4.5 and RCP 8.5 from the 34 
models for which daily scenarios were produced and distributed under CMIP5. Each 
climate projection includes daily maximum and minimum temperature and daily 
precipitation for the period between 1950-2100. The target downscaling domain 
encompasses global and areas at a target downscaling resolution of 30 arcseconds 
(0.008333°) latitude by 30 arcseconds (0.008333°) longitude (approximately 800 
meters [m] by 800 m at mid-latitudes). 

Methodology 
The NEX-DCP30 dataset is based on the BCSD downscaling method; refer to Section 
4.2.1 for a summary of the BCSD method. 

NEX-DCP30 applied the BCSD method using gridded historical precipitation and 
temperature data from the Parameter-Elevation Relationships on Independent Slopes 
Model (PRISM) historical climate dataset (Daly et al. 1994). 

Usage Notes 
The NEX-DCP30 dataset is based on the BCSD downscaling method; refer to Section 
4.2.1 for usage notes. 
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Selecting Climate Projection Information 

4.2.11. North American Regional Climate Change Assessment
Program (NARCCAP) 

Spatial Domain CONUS, plus southern and central Canada, northern Mexico 
Spatial Resolution 50 km by 50 km 
Temporal Domain 1971-2000, 2041-2070 
Temporal Resolution 3-hourly 
Climate Variables Precipitation at surface [kg/m2/s] 

Air temperature near surface [K]
 
Zonal surface wind speed [m/s]
 
Meridional surface wind speed [m/s]
 
Surface air pressure [Pa]
 
Surface specific humidity [-]
 
Surface downwelling shortwave radiation [W/m2]
 
(additional variables are provided for most models – see website)
 

Projections 12 
GCMs 4 
Scenarios 1 (SRES A2) 
URL http://www.narccap.ucar.edu/index.html 

Background 
The North American Regional Climate Change Assessment Program (NARCCAP) is 
an international program initiated in 2006 to develop and serve high-resolution 
dynamically-downscaled climate change simulations to support analysis of 
uncertainties in regional-scale climate projections and for use in climate change impacts 
research (NARRCAP 2015). The primary component of the NARCCAP dataset is 
based on six regional climate models (RCM) and four global climate models (GCM). 
Each RCM was used to dynamically downscale outputs from two GCMs under the 
SRES A2 emissions scenario for two 30-year periods (1971-2000 and 2041-2070) for a 
total of 12 dynamically downscaled climate projections. Dynamically downscaled 
RCM outputs encompass the majority of North America, including the CONUS, 
southern and central Canada, and northern Mexico, at a spatial resolution of 50 km by 
50 km (Mearns et al. 2009). 

Methodology 
As summarized in Section 2.2.3., dynamically downscaling is carried out by nesting 
RCMs within GCMs (i.e., outputs from global simulations with a GCM are used as 
boundary conditions for a limited-area RCM over the target region). The RCM then 
simulates climate conditions within the target region at finer resolution based on the 
GCM-simulated large-scale climate conditions. The RCM thus downscales the GCM-
based climate projection by simulating the physical processes that govern regional 
climate dynamics, similar to GCMs but over a limited area and at finer spatial 
resolution. In addition to their finer resolution, RCMs typically include more detailed 
representations of meso-scale atmospheric processes, land cover, topography, and other 
factors that affect local and regional weather and climate. RCMs incorporate the same 
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Climate Projection Datasets 

atmospheric composition—including greenhouse gas and aerosol composition—as the 
driving GCM. 

Usage Notes 
Pairings of RCMs and GCMs in the NARCCAP dataset are illustrated in Table 5. A 
tutorial on how to use this dataset is provided on the NARCCAP website 
(http://www.narccap.ucar.edu/users/data-tutorial.html). Additional details of the GCMs 
and RCMs involved in the NARCCAP project are beyond the scope of this document. 

Table 5. Pairings of RCMs and GCMs in the NARCCAP 
GCMs 

R
C

M
s 

GFDL7 HADCM38 CGCM39 CCSM10 

ECPC1 X X 
HRM32 X X 
MM53 X X 
RCM34 X X 
CRCM5 X X 
WRF6 X X 

1 Experimental Climate Prediction Center Regional Spectral Model 
2 Met Office Hadley Centre’s Hadley Regional Climate Model 
3 Pennsylvania State University Mesoscale Model 5 
4 Abdus Salam International Center for Theoretical Physics Regional Climate Model Version 3 
5 Canadian Regional Climate Model 
6 Weather Research and Forecasting Model 
7 Geophysical Fluid Dynamics Laboratory Global Climate Model 
8 Hadley Center Coupled Model Version 3 
9 Coupled Global Climate Model Version 3
10 Community Climate System Model 
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Selecting Climate Projection Information 

4.2.12. USGS Dynamically Downscaled Climate Simulations
over North America 

Spatial Domain	 North America (50 km by 50 km); 
Eastern North America and Western North America (15km by 15km) 

Spatial Resolution	 50 km by 50 km (North America) 
15 km by 15 km (Eastern and Western North America) 

Temporal Domain	 1968-2099 
Temporal Resolution	 6-hourly 
Climate Variables	 Precipitation at surface [kg/m2/s] 

Air temperature near surface [K] 
Zonal surface wind speed [m/s] 
Meridional surface wind speed [m/s] 
Surface air pressure [Pa] 
Surface specific humidity [-] 
Surface downwelling shortwave radiation [W/m2] 
(additional variables are provided for most models – see website) 

Projections	 12 
GCMs	 4 
Scenarios	 1 (SRES A2) 
URL	 http://www.narccap.ucar.edu/index.html (documentation) 

https://catalog.data.gov/dataset/usgs-dynamical-downscaled­
regional-climate (data access) 

Background 
The U.S. Geological Survey (USGS) Dynamically Downscaled Climate Simulations 
Over North America dataset provides high-resolution climate simulations over North 
America by dynamically downscaling global climate projections using the RegCM3 
regional climate model. The goals of the project were to assess the feasibility of 
developing high resolution simulations for North America, to develop high resolution 
weather and climate data across the temporal domain, and to develop a process for 
processing, summarizing, and distributing climate datasets to all potential users. 
Dynamically downscaled climate projections are provided for multiple models and time 
periods for multiple regions of interest spanning North America. Projections are 
provided at high spatial and temporal resolutions. 

Methodology 
Dynamical downscaling was performed using output from four GCMs. RegCM3 was 
used to downscale climate projections from three GCMs over six regional domains to 
capture more detail associated with processes, such as topographic forcing, that cannot 
be captured by GCMs. 

RegCM3 is a high resolution atmosphere model coupled to a physically based surface 
process model. RegCM3 is the third generation model that was originally developed in 
the 1980s and 1990s by the National Center for Atmospheric Research (NCAR). 
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Climate Projection Datasets 

RegCM3 features the following components: dynamical core, radiative transfer physics, 
dynamic precipitation, convective precipitation, a planetary boundary layer, a 
biosphere, open ocean representation, closed water bodies, and atmospheric 
chemistry/aerosols—all of which are coupled and interactive. RegCM3 requires time-
varying vertical profiles of wind, temperature, and humidity at the model boundaries, as 
well as surface boundary conditions, on a 6-hour simulation interval. RegCM3 
assimilates the GCM boundary conditions with exponential decay in space over 12 grid 
cells around the perimeter of the model domain. The biosphere-atmosphere transfer 
scheme simulates the surface processes related to vegetation and hydrology which vary 
in response to conditions in the atmosphere. The USGS has shown that RegCM3 is 
capable of simulating annual and seasonal climatologies that are in close agreement 
with historical observations. 

Dynamical downscaling was carried out over six different regions (model domains). 
The North American domain has 50 km horizontal grid spacing with 23 vertical levels, 
the Eastern North America and Western North America domains have a 15 km 
horizontal grid spacing with 18 vertical levels. The Western North America domain 
was divided into four overlapping domains to achieve a balance between boundary 
forcing, regional dynamics, and simulation quality due to the complex regional 
topography. The 50-km-grid spacing for the North America domain were intended to 
provide for the analysis of large-scale circulation patterns and modes of variability (e.g. 
El Niño). The 15-km-grid spacing provides high resolution climate and surface fields 
that better reflect topographic forcings. Combined, the 50 km and 15 km simulations 
allow for the joint analysis of synoptic-scale circulation variations and the resultant 
surface responses. 

Boundary conditions for RegCM3 were derived from historical and future climate 
simulations using three GCMs: GFDL CM 2.0, MPI ECHAM5, and GENMOM. 
Simulations from GFDL CM 2.0 and MPI ECHAM5 were obtained from the CMIP3 
multi-model database (see Section 4.1.1.). GENMOM was recently developed by 
USGS in collaboration with Pennsylvania State University by coupling the GENESIS 
v3.0 atmospheric general circulation model and the MOM v2.0 ocean general 
circulation model. GENMOM did not contribute 20th century simulations or 21st 

century projections to the CMIP3 or CMIP5 multi-model datasets; however, the USGS 
is working with GENMOM simulations for the paleoclimate modeling inter-
comparison project as part of CMIP5. 

In addition to three GCMs, RegCM3 was also used to dynamically downscale historical 
climate conditions from the National Center for Environmental Prediction and National 
Center for Atmospheric Research (NCEP-NCAR) Reanalysis. The NCEP-NCAR 
Reanalysis was developed by using an atmospheric general circulation model to 
“reanalyze” historical climate conditions. In contrast to typical GCM simulations of 
historical climate, in which the model simulates all climate processes, the reanalysis 
method uses data assimilation techniques to ensure that the model is consistent with 
historical observations of temperature, precipitation, and other climate variables. The 
resulting reanalysis provides a spatially and temporally complete, internally consistent 
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Selecting Climate Projection Information 

set of historical climate and land surface variables. Results from downscaling the 
NCEP-NCAR Reanalysis were used to evaluate RegCM3. 

Usage Notes 
Hostetler et al. (2011) provide a summary of the RegCM3 regional climate model, 
RegCM3 configuration for use in this dataset, and selection of global climate 
projections used in this dataset. Hostetler et al. (2011) also provide detailed instructions 
regarding access to this dataset of downscaled climate projections. 
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Methods for Selecting Projections 

5. Methods for Selecting Climate 
Projections for Use in Detailed 
Analysis 

Projections of future climate remain uncertain due to incomplete scientific 
understanding of relevant physical processes, limitations of existing modeling and 
downscaling methods, and uncertainties regarding future emissions pathways, 
among other factors. As a result, it is common practice to incorporate information 
from multiple climate projections to characterize subsequent uncertainties in 
future water supplies, demands, and relevant system performance metrics. 
Considering the uncertainty in future climate conditions is particularly important 
when evaluating planning alternatives to ensure that a selected alternative 
provides reliable performance in the face of an uncertain future. 

As summarized above in Section 4., the scientific community has developed a 
number of climate projection datasets to support climate change research, risk and 
impact analyses, and planning and decision making. Each of these datasets 
provides a large number of individual climate projections from multiple GCMs 
and multiple emissions scenarios. In addition, some datasets include multiple 
projections for a single GCM and emissions scenario, each differing only in its 
initial state at the start of the projection. While it is important for study teams to 
consider uncertainty in future climate conditions, detailed analysis using all 
available climate projections—or even all available projections from a single 
dataset—in water resources, planning, and environmental analyses is generally 
not feasible given the practical limitations of study budget and schedule. In these 
cases, study teams must balance the need to consider uncertainty with practical 
study constraints. To do this, study teams typically choose a subset of climate 
projections from a selected dataset for use in detailed analysis. 

The approach used to select the subset of climate projections used in a given study 
affects the climate projection information considered in the study and therefore 
the study results. Several methods have been developed to select a subset of 
climate projections from a given dataset for use in a detailed analysis. These 
methods fall into two general categories: 

•	 Uncertainty-based: Selecting projections based on sampling the range of 
uncertainty in projected future climate (e.g., selecting projections based on 
the range of projected changes in annual mean precipitation and 
temperature; see Section 5.1.) 

•	 Performance-based: Selecting projections based on GCM performance in 
simulating observed historical climate conditions (e.g., selecting 
projections based on evaluation of GCMs’ ability to accurately reproduce 
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Selecting Climate Projection Information 

observed 20th century precipitation and temperature characteristics over a 
region of interest; see Section 5.2.) 

It should be noted that in addition to considering the methods summarized here, 
some studies make assumptions regarding future emissions trajectories and limit 
the projections considered for analysis based on emissions scenario. Recent 
studies by the scientific community have also developed methods to select or 
weight individual projections from a multi-model dataset based on considerations 
of model independence (Sanderson et al. 2015). These considerations are not 
discussed in detail in this document. 

5.1. Methods Based on Sampling the Range of 
Projected Climate Change 

Selecting a subset of climate projections for use in a detailed analysis by sampling 
the range of projected climate change is based on the premise that each of the 
individual projections in a given dataset is equally valid and equally likely, and 
that differences between projections result from uncertainties in our current 
understanding of the global climate system and the trajectory of future greenhouse 
gas and aerosol emissions. 

As discussed in Section 3., the scientific community has developed a large 
number of global climate projections. Individual climate projections differ due to 
differences between the global climate models and emissions scenarios used for 
each projection, as well as differences between the model initial conditions at the 
start of a projection. Methods to select a subset of climate projections from a 
given dataset based on sampling the range of projected climate change assume 
that differences between individual climate projections stem from uncertainties 
that affect all climate projections, rather than from various limitations or 
deficiencies in the models, emissions scenarios, or initial conditions used for any 
given projection. 

Differences between global climate models, for example, are assumed to reflect 
uncertainties within the climate science community regarding how best to 
represent the physical processes that govern the global climate system in a 
computer model (i.e., in a GCM). Similarly, as discussed in Section 2.2.1., 
differences between future emissions scenarios are assumed to reflect the vast 
uncertainty in future emissions. Differences between individual climate 
projections are therefore attributed to the numerous uncertainties inherent in 
projecting future climate conditions, rather than being attributed to one model or 
emissions scenario being more or less accurate than another. As a result, selection 
methods based on sampling the range of projected climate change treat each 
individual projection as equally valid and equally likely, and projections are 
selected to explicitly represent the range of uncertainty in projected future climate 
conditions. 
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Methods for Selecting Projections 

Once a climate projection dataset has been selected based on the considerations 
discussed in Section 4., the general steps for selecting a subset of climate 
projections for use in a detailed analysis by sampling the range of projected 
climate change are discussed below. 

Step 1: Define Location or Region of Interest 
Study teams must define the region or location of interest for their specific study. 
In many cases, the region of interest is the entire river basin or sub-basin being 
considered. In other cases, however, a study team may choose to focus on a 
portion of the basin being considered. For example, in areas where spring 
snowmelt is the dominant source of water supply, study teams may choose to 
focus on the mountain headwaters as the primary source of runoff. Alternatively, 
in areas where water demands are concentrated in a small portion of a basin, study 
teams may choose to focus on the primary irrigated area(s) where the majority of 
water demands occur. 

Step 2: Define Climate Metric(s) 
Study teams must define one or more metrics that characterize climate conditions 
within their study area as related to their specific study objectives. In many cases, 
regionally-averaged or basin-averaged annual mean precipitation and temperature 
are sufficient to characterize climate conditions within the study area. In other 
cases, it may be appropriate to focus on seasonal mean precipitation and 
temperature for seasons of interest. For example, in areas where spring snowmelt 
is the dominant source of water supply, study teams may choose to focus on 
winter season precipitation and spring temperatures as the key climate factors that 
affect the amount and timing, respectively, of spring snowmelt. 

Step 3: Define Historical Reference Period and Future Planning Period 
Study teams must define a historical reference period and future planning period 
for evaluating projected changes in climate. Climate metrics calculated for the 
historical reference period should be representative of recent climate conditions as 
they relate to the specific study objectives. Projected changes in the selected 
climate metrics between the historical and future periods should be representative 
of projected climate change over the study period. Historical and future periods 
should be encompass a minimum of 20 years and should reflect the overall time 
period considered in their specific study. 

Step 4: Define the Range of Uncertainty to be Considered 
For each metric, study teams must define the range of uncertainty to be 
considered in their analysis. The range of uncertainty is typically represented as a 
range of percentiles that correspond to the higher end of the range of projected 
change, the middle or central tendency, and the lower end of the range of 
projected change. The central tendency is defined by the 50th percentile (median). 
In order to represent the range of projected climate change, the 10th and 90th 

percentiles, for example, encompass 80% of the values of a given metric while 
excluding the highest 10% and lowest 10% of values; similarly, the 20th and 80th 
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Selecting Climate Projection Information 

percentiles encompass 60% of values while excluding the highest 20% and lowest 
20%. Selecting a larger range of uncertainty results in considering a broader range 
of future climate conditions in the study, but bears the risk of including outlier 
values. By contrast, selecting a smaller range of uncertainty results in considering 
a narrower range of future climate conditions, but reduces the risk of including 
outlier values. In general, selecting projections based on the 10th, 50th, and 90th 

percentiles is appropriate for most studies. 

Step 5: Calculate Climate Metric(s) for Historical and Future Periods 
For each projection in the selected climate projection dataset, calculate the 
selected climate metric(s) over the selected region or location of interest for the 
selected historical and future periods (see Step 2 above). Metrics must be 
calculated consistently for each projection and time period to allow for direct 
comparison. 

Step 6: Calculate Change in Climate Metric(s) 
For each projection in the selected climate projection dataset, calculate the change 
in the selected climate metric(s) over the selected region or location of interest 
between the future and historical periods. Depending on the climate metric, the 
change in a metric between historical and future periods may be calculated as the 
absolute change (future value minus historical value), relative change (absolute 
change divided by historical value), or ratio (future value divided by historical 
value). The change in metrics based on temperature should be calculated as an 
absolute change, whereas the change in metrics based on precipitation should be 
calculated as a relative change or ratio. 

Step 7: Identify Projections that Reflect the Desired Range of Uncertainty 
For each variable considered, compute values of the percentiles selected in Step 4 
representing the range of uncertainty to be considered. After computing 
percentiles for each variable, identify the projection or projections that best 
represent the desired range of uncertainty across all variables. Projections are 
commonly identified based on the Euclidian distance of each projection-specific 
metric from the selected percentiles across all variables considered. 

If a single variable is considered, then the selected projections will simply be 
those that fall closest to the desired percentiles. For example, if a study team only 
considers the projected change in annual mean temperature and defines the range 
of uncertainty to be considered based on the 10th and 90th percentiles, then the 
study team will select the projections whose changes in annual mean temperature 
is closest to the 10th and 90th percentile values calculated from the overall pool of 
projections. 

If two variables are considered, then the selected projections will be those whose 
changes in both variables are closest to the intersection of the selected percentiles 
for the two variables. For example, assume that a study team will consider 
changes in annual mean precipitation and temperature and a range of uncertainty 
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Methods for Selecting Projections 

in each variable based on the 10th and 90th percentiles. The study team will select 
projections by calculating the two-dimensional Euclidian distance of each dataset 
from the selected percentile values. A “hotter-wetter” projection will be selected 
based on having the shortest distance from both the 90th percentile change in 
precipitation and 90th percentile change in temperature. Similarly, a “hotter-drier” 
projection will be selected based on the shortest distance from the 10th percentile 
change in precipitation and the 90th percentile change in temperature, and so on. 

5.2. Methods Based on Evaluating Model 
Performance in Simulating Historical Climate 

Selecting a subset of climate projections for detailed analysis by evaluating model 
performance in simulating historical climate conditions is based on the premise 
that models which exhibit greater performance in simulating historical climate 
will provide more credible projections of future climate change. 

As discussed in Section 3, the scientific community has developed a large number 
of global climate projections. Individual climate projections differ to due to 
differences between the global climate models (GCM) and emissions scenarios 
used for each projection, as well as differences between the model initial 
conditions at the start of a projection. Selection methods based on evaluation of 
model performance assume that some GCMs are more credible or reliable than 
others, and that differences between projections from different GCMs result in 
part from these differences in model credibility. These methods further assume 
that a GCM’s credibility in projecting future climate conditions is directly related 
to its ability to simulate relevant characteristics of historical climate. These 
methods therefore select a subset of projections from a given multi-model 
projection dataset, or assign weights to individual projection in the dataset, based 
on evaluation of simulated climate characteristics compared to observed historical 
climate. In summary, selection methods based on evaluation of model 
performance treat some projections as more likely than others based on 
differences in each model’s ability to reproduce observed historical climate. 

Important assumptions and limitations of climate projections selection methods 
based on model performance are discussed in Section 3.4. 

Once a climate projection dataset has been selected based on the considerations 
discussed in Section 4., the general steps for selecting a subset of climate 
projections for use in a detailed analysis by sampling the range of projected 
climate change are discussed below. 

Step 1: Define Location or Region of Interest 
Study teams must define the region or location of interest for their specific study. 
In many cases, the region of interest is the entire river basin or sub-basin being 
considered. In other cases, however, a study team may choose to focus on a 
portion of the basin being considered. For example, in areas where spring 

89 



 
 
 

 
 

  
  

   
  

  
 

 
  

  
 

 
  
   

  

  

 
   

 

 
  

   
  

 
 

 
  

 
  

  

 
 

     
 

 
  

 
 

 
  

  

Selecting Climate Projection Information 

snowmelt is the dominant source of water supply, study teams may choose to 
focus on the mountain headwaters as the primary source of runoff. Alternatively, 
in areas where water demands are concentrated in a small portion of a basin, study 
teams may choose to focus on the primary irrigated area(s) where the majority of 
water demands occur. 

Step 2: Define Climate Metric(s) for Evaluation 
Study teams must define one or more metrics for evaluation against historical 
observations. Climate metrics should be selected that characterize climate 
conditions within their study area as related to their specific study objectives. 
Three types of climate metrics may be considered: metrics that characterize local 
climate conditions or processes; metrics that characterize global climate 
conditions or processes; and metrics that characterize the relationship between 
global and local climate conditions (i.e., climate teleconnections) (Brekke et al. 
2008). Metrics may represent aspects of an individual climate variable, such as 
annual mean precipitation or temperature over the study region; alternatively, 
metrics may represent the relationship between multiple variables, such as the 
correlation between local precipitation and a specified teleconnection index (e.g., 
the Niño 3.4 sea surface temperature (SST) anomaly, which is an index of the El 
Niño-Southern Oscillation [ENSO] teleconnection pattern). 

Step 3: Define Historical Reference Period and Historical Reference 
Dataset(s) 
Study teams must define an appropriate historical reference period over which to 
calculate climate metrics for evaluation, along with an appropriate historical 
reference dataset against which to evaluate model-simulated climate metrics. The 
historical reference period should typically encompass a minimum of 20 years, 
and the historical reference dataset(s) to provide sufficient data for a meaningful 
evaluation. 

Step 4: Define Criteria for Selecting or Weighting GCMs Based on 
Evaluation 
Study teams must define criteria for selecting or weighting GCMs based on 
evaluation results. Brekke et al. (2008) ranked models by first calculating the 
difference between simulations and observations for each metric and then 
aggregating the results into a single value for each model. Results were 
aggregated using a distance-based approach in which the overall “distance” 
between each model and the reference dataset(s) was calculated as a Euclidian 
distance, where each metric was treated as a dimension in the Euclidian distance 
formula (see Black 2006). GCMs exhibiting a shorter “distance” from 
observations were then selected for analysis. 

Step 5: Compute Metrics and Select GCMs 
Based on the criteria selected in Steps 1 through 4, compute model performance 
metrics for all GCMs in the selected climate projection dataset. Where a dataset 
includes multiple historical (20th century) simulations with the same GCM, 
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performance metrics can be computed for each simulation and averaged over all 
simulations from the same model. Select a subset of GCMs to include in the 
analysis based on the performance criteria or rank thresholds defined in Step 4. 

Step 6: Select a Subset of Climate Projections 
As noted above, it may be necessary to select a subset of individual projections. 
Methods for selecting climate projections based on evaluation of model 
performance focus on selecting appropriate GCMs based on GCM performance in 
simulating historical climate conditions. These methods do not help study teams 
choose between emissions scenarios or between multiple projections from the 
same GCM and scenario (i.e., differing only by the model initial conditions). 
Additional criteria may be required to select a suitable subset of projections for 
analysis or to combine multiple projections from the selected GCMs. 
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